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Abstract 
In this paper, nonlocal and boundary value problems (BVP) of fractional differential 

equations involv- ing random walk on times scale is discussed. The sufficient 

conditions for existence and uniqueness of dynamical systems are obtained using 

standard fixed point methods. The stability of solutions is made sure by Ulam-Hyers 

stability method. 
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1. Introduction

The theory of time scales calculus allows us to study the dynamic equations, which include both difference 
and differential equations. Since the study on dynamic equations on time scales has received much attention of 
many researchers in recent days, see [1, 2, 3, 4, 5] and the references therein.

Randomness of the FDEs which arises in uncertainties and complexities. Such deterministic equations are 
hardly called as Random differential equations (RDEs). The recent development of RDEs of fractional order can 
be seen in [15, 18, 25].

Ever since the birth of Fractional differential equations (FDEs) in sixteenth century only in past few decades it 
received tremendous development in describe the real-life phenomena more accurately than integer order 
derivative. The main aspect of FDEs is to prove existence, uniqueness and stability of solutions. For the detailed 
study of FDEs one can refer to the books [11, 16, 17] and the papers [7, 9, 14, 19, 24]. The literature provides 
numerous numbers of fractional derivatives with singular kernals. Here in this article we use a special kind of 
fractional derivative called ψ-Hilfer fractional derivative integrate several classical derivative, detailed in [20]. For 
the recent works on ψ-Hilfer fractional derivative we refer the readers to [6, 10, 22, 23]
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   On the other hand, the stability investigation of differential and integral equations is important in 
applications. Here we extend the results of Ulam Hyers stability and Ulam Hyers Rassias(U-H-R) stability to 
fractional RDEs on times scale. The stability check of FDEs and theoretical analysis of Ulam type stability 
can be seen in [12, 21, 26].

From the above discussion and motivation in this work we study ψ-Hilfer fractional RDEs on times scale 
with boundary and nonlocal conditions. The existence, uniqueness and stability solutions are obtained by 
fixed point methods. First consider the BVP for ψ-Hilfer fractional RDEs on times scale of the form





T∆α,β;ψu(t, ω) = g(t, u(t, ω), ω), t ∈ J ⊆ T,

a TI1−γ;ψu(t, ω)|t=0 + b TI1−γ;ψu(t, ω)|t=T = c,
(1)

where (Ω, F, p) is a complete probability space, ω ∈ Ω, T∆α,β;ψ is the ψ-HFD defined on T, 0 < α < 1,

0 ≤ β ≤ 1 and TI1−γ;ψ is ψ-fractional integral of order 1−γ(γ = α+β−αβ). Let T be a time scale,

that is nonempty subset of Banach space. The function g : J := [0, b]×R× Ω → R is a right-dense

continuous function. Here, the Eq. (1) satisfies the random integral equation of the form

u(t, ω) =
(
c− b TI1−β+αβ;ψg(T, u(T, ω), ω)

) (ψ(t)−ψ(0))γ−1

(a+b)Γ(γ) +T Iα;ψg(t, u(t, ω), ω)∆s. (2)

In the next section, we consider the nonlocal fractional random differential equation on times

scale




T∆α,β;ψu(t, ω) = g(t, u(t, ω), ω) t ∈ J,

TI1−γ;ψu(t, ω)|t=0 =
∑m
i=1 ciu(τi, ω), τi ∈ J,

(3)

where τi, i = 0, 1, ...,m are prefixed points satisfying 0 < τ1 ≤ ... ≤ τm < b and ci is real numbers.

Here, nonlocal condition u(0, ω) =
∑m
i=1 ciu(τi, ω) can be applied in physical problems yields better

effect than the initial conditions TI1−γ;ψu(t, ω)|t=0 = u0. Further (3) is equivalent to mixed integral

type of the form

u(t, ω) =





T
Γ(α) (ψ(t)− ψ(0))

γ−1∑m
i=1 ci

∫ τi

0

ψ
′

(s) (ψ(τi)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s

+ 1
Γ(α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s
(4)

where

T =
1

Γ(γ)−
∑m
i=1 ci(ψ(τi)− ψ(0))γ−1

.

The novelty of paper is given as follows: In Section 2, basic definitions and preliminary are
discussed. Existence, uniqueness and stability with random walk for BVP and nonlocal problems

are discussed in Section 3 and Section 4 respectively.

2. Preliminaries

Definition 2.1. Let C(J) be continuous function endowed with the norm

‖u‖C = max {|u(t, ω)| : t ∈ J} .

We denote the C1−γ,ψ(J) as follows

C1−γ,ψ(J) :=
{
g(t, ω) : J × Ω → R| (ψ(t)− ψ(0))

1−γ
g(t, ω) ∈ C(J)

}
, 0 ≤ γ < 1
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where C1−γ,ψ(J) is the weighted space of the continuous functions g on the finite interval J .

Obviously, C1−γ,ψ(J) is the Banach space with the norm

‖g‖C1−γ,ψ
=
∥∥∥(ψ(t)− ψ(0))

1−γ
g(t, ω)

∥∥∥
C
.

Definition 2.2. Let time scale be T. The forward jump operator σ : T → T is defined by

σ(t) := inf {s ∈ T : s > t}, while the backward jump operator ρ : T → T is defined by ρ(t) :=

sup {s ∈ T : s < t}.

Proposition 2.3. Suppose T is a time scale and [a, b] ⊂ T, g is increasing continuous function on

[a, b]. If the extension of g is given in the following form:

F (s) =




g(s); s ∈ T

g(t); s ∈ (t, σ(t)) /∈ T.

Then we have ∫ b

a

g(t)∆t ≤

∫ b

a

F (t)dt.

Definition 2.4. Let T be a time scale, J ∈ T. The left-sided R-L fractional integral of order α ∈ R+

of function f(t) is defined by

(
TIαg

)
(t) =

∫ t

0

ψ
′

(s)
(ψ(t)− ψ(s))

α−1

Γ(α)
g(s)∆s, (t > 0),

where Γ(·) is the Gamma function.

Definition 2.5. Suppose T is a time scale, [0, b] is an interval of T. The left-sided R-L fractional

derivative of order α ∈ [n− 1, n), n ∈ Z
+ of function f(t) is defined by

(
T∆αg

)
(t) =

(
1

ψ′(t)

d

dt

)n ∫ t

0

ψ
′

(s)
(ψ(t)− ψ(s))

n−α−1

Γ(n− α)
g(s)∆s, (t > 0).

Definition 2.6. [9] The left-sided ψ-HFD of function f(t) is defined by

T∆α,β;ψg(t) =
(
TIβ(1−α);ψ T∆(TI(1−β)(1−α);ψg)

)
(t),

where T∆ := d
dt
.

Remark 2.7. 1. The operator T∆α,β;ψ also can be written as

T∆α,β;ψ = TIβ(1−α);ψ T∆TI(1−β)(1−α);ψ = TIβ(1−α);ψ T∆γ;ψ, γ = α+ β − αβ.

2. Let β = 0, the left-sided R-L derivative can be presented as T∆α := T∆α,0.

3. Let β = 0, left-sided Caputo fractional derivative can be presented as T

c∆
α := TI1−α T∆.

Next, we review some lemmas which will be used to extabilish our existence results.

Lemma 2.8. If α > 0 and β > 0, there exist

[
TIα (ψ(s)− ψ(0))

β−1
]
(t) =

Γ(β)

Γ(β + α)
(ψ(t)− ψ(0))

β+α−1
.
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Lemma 2.9. Let α ≥ 0, β ≥ 0 and g ∈ L1(J). Then

TIα TIβg(t)
a.e
= TIα+βg(t).

Lemma 2.10. Let 0 < α < 1, 0 ≤ γ < 1. If g ∈ Cγ(J) and
TI1−αg ∈ C1

γ(J), then

TIα T∆αg(t) = g(t)−

(
TI1−αg

)
(0)

Γ(α)
(ψ(t)− ψ(0))

α−1
.

Lemma 2.11. Suppose α > 0, a(t, ω) is a nonnegative function locally integrable on 0 ≤ t < b (some

b ≤ ∞), and let g(t, ω) be a nonnegative, nondecreasing continuous function defined on 0 ≤ t < b,

such that g(t, ω) ≤ K for some constant K. Further let u(t, ω) be a nonnegative locally integrable on

a ≤ t < b function with

|u(t, ω)| ≤ a(t, ω) + g(t, ω)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

u(s, ω)∆s,

with some α > 0. Then

|u(t, ω)| ≤ a(t, ω) +

∫ t

0

[
∞∑

n=1

(g(t, ω)Γ(α))n

Γ(nα)
ψ

′

(s) (ψ(t)− ψ(s))
nα−1

]
u(s, ω)∆s, 0 ≤ t < b.

Theorem 2.12. [8](Schauder’s Fixed Point Theorem) Let E be a Banach space and Q be a nonempty

bounded convex and closed subset of E and N : Q → Q is compact, and continuous map. Then N

has at least one fixed point in Q.

Theorem 2.13. [8](Krasnoselskii’s fixed point theorem) Let X be a Banach space, let Ω be a bounded

closed convex subset of X and let T1, T2 be mapping from Ω into X such that T1x+T2y,∈ Ω for every

pair x, y ∈ Ω. If T1 is contraction and T2 is completely continuous, then the equation T1x+T2x = x

has a solution on Ω.

3. BVP for fractional RDEs on times scale

Here we list the following assumptions which are going to be useful in proving the results:

(H1) Let ℓg be a positive constant satisfies

|g(t, u, ω) − g(t, v, ω)| ≤ ℓg |u − v| .

(H2) Let m, n be a positive constants and M(ω) = sup m(t, ω), N(ω) = sup n(t, ω), such that

|g(t, u, ω) − g(t, v, ω)| ≤ m(t, ω) + n(t, ω) |u(t, ω)| .

       (H3) For the increasing function ϕ ∈ C1−γ,ψ(J), there exists λϕ > 0 such that

TIαϕ(t) ≤ λϕϕ(t, ω).

Theorem 3.1. Assume (H2) hold. Then, Eq. (1) has at least one solution.
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Proof. Consider the operator P : C1−γ,ψ(J) → C1−γ,ψ(J). The equivalent integral of (2) is of the

operator form

(Pu)(t, ω) =
(
c− b TI1−β+αβ;ψg(T, u(T, ω), ω)

) (ψ(t)− ψ(0))
γ−1

(a+ b)Γ(γ)
+T Iα;ψg(t, u(t, ω), ω) (5)

Define Br =
{
u ∈ C1−γ,ψ(J) : ‖u‖C1−γ,ψ

≤ r
}
. In order to prove the fixed point here we utilize

Theorem 2.12. We prove the result in the following steps

Step 1: We check that P(Br) ⊂ Br.

∣∣∣(ψ(t)− ψ(0))
1−γ

(Pu)(t, ω)
∣∣∣

≤
c

(a+ b)Γ(γ)
+

b

(a+ b)Γ(γ)

1

Γ(1− β + αβ)

∫ T

0

ψ
′

(s) (ψ(T )− ψ(s))
1−β+αβ−1

|g(s, u(s, ω), ω)|∆s

+
(ψ(t)− ψ(0))

1−γ

Γ(α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

|g(s, u(s, ω), ω)|∆s

≤
c

(a+ b)Γ(γ)
+

b

(a+ b)Γ(γ)

1

Γ(1− β + αβ)

∫ T

0

ψ
′

(s) (ψ(T )− ψ(s))
1−β+αβ−1

(m(s, ω) + n(s, ω) |u(s, ω)|) ds

+
(ψ(t)− ψ(0))

1−γ

Γ(α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

|g(s, u(s, ω), ω)| ds, (by Proposition 2.3)

≤
c

(a+ b)Γ(γ)
+

b

(a+ b)Γ(γ)

M(ω)

Γ(2− β + αβ)
(ψ(T )− ψ(0))

1−β+αβ
+

M(ω)

Γ(α+ 1)
(ψ(T )− ψ(0))

α+γ−1

+

(
b

(a+ b)Γ(γ)

N(ω)

Γ(1− β + αβ)
B(γ, 1− β + αβ) (ψ(T )− ψ(0))

α
+
N(ω)

Γ(α)
B(γ, α) (ψ(T )− ψ(0))

α

)
r

≤ r.

Which yields that P(Br) ⊂ Br.

Next we prove that the operator P is completely continuous.

Step 2: The operator P is continuous.

Let un be a sequence such that un → u in C1−γ,ψ(J). Then for each t ∈ J ,

‖Pun − Pu‖C1−γ,ψ
→ 0 as n→ ∞.

Step 3: P(Br) is relatively compact.

Thus P(Br) is uniformly bounded. Let t1, t2 ∈ J , t1 < t2, then

∣∣∣(Pu)(t2, ω) (ψ(t2)− ψ(0))
1−γ

− (Pu)(t1, ω) (ψ(t1)− ψ(0))
1−γ
∣∣∣

≤

∣∣∣∣∣
(ψ(t2)− ψ(0))

1−γ

Γ(α)

∫ t2

0

ψ
′

(s) (ψ(t2)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s

−
(ψ(t1)− ψ(0))

1−γ

Γ(α)

∫ t1

0

ψ
′

(s) (ψ(t1)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s

∣∣∣∣∣

≤
1

Γ(α)

∫ t1

0

ψ
′

(s)
∣∣∣(ψ(t2)− ψ(0))

1−γ
(ψ(t2)− ψ(s))

α−1

− (ψ(t1)− ψ(0))
1−γ

(ψ(t1)− ψ(s))
α−1

∣∣∣ |g(s, u(s, ω), ω)|∆s

+
(ψ(t2)− ψ(0))

1−γ

Γ(α)

∫ t2

t1

ψ
′

(s) (ψ(t2)− ψ(s))
α−1

|g(s, u(s, ω), ω)|∆s
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≤
1

Γ(α)

∫ t1

0

ψ
′

(s)
∣∣∣(ψ(t2)− ψ(0))

1−γ
(ψ(t2)− ψ(s))

α−1

− (ψ(t2)− ψ(0))
1−γ

(ψ(t1)− ψ(s))
α−1

∣∣∣ |g(s, u(s, ω), ω)| ds

+
(ψ(t2)− ψ(0))

1−γ

Γ(α)
(ψ(t2)− ψ(t1))

α+γ−1
B(γ, α) ‖g‖C1−γ,ψ

.

Thus, right-hand side of the above inequality tends to zero. Hence along with the Arzëla-Ascoli

theorem and from Step 1-3, it is concluded that P is completely continuous. Thus the proposed

problem has at least one solution.

Lemma 3.2. Assume that (H1) is fulfilled. If

(
b

(a+ b)Γ(γ)

B(γ, 1− β + αβ)

Γ(1− β + αβ)
+
B(γ, α)

Γ(α)

)
ℓg (ψ(T )− ψ(0))

α
< 1, (6)

then the problem (1) has a unique solution.

Next, we shall give the definitions and the criteria generalized U-H-R stability for ψ-HFD of

dynamic equations on time scales.

Definition 3.3. Eq. (1) is generalized U-H-R stable with respect to ϕ ∈ C1−γ,ψ(J) if there exists a

real number cg,ϕ > 0 such that for each solution v ∈ C1−γ,ψ(J) of the inequality

∣∣T∆α,βv(t, ω)− g(t, v(t, ω), ω)
∣∣ ≤ ϕ(t), (7)

there exists a solution u ∈ C1−γ,ψ(J) of equation (1) with

|v(t, ω)− u(t, ω)| ≤ cg,ϕϕ(t, ω), t ∈ J.

Theorem 3.4. Assume that (H1), (H3) and (6) are satisfied. Then, the problem (1) is generalized

U-H-R stable.

4. Nonlocal fractional RDEs on times scale

Theorem 4.1. Assume that [H1] and [H2] are satisfied. Then, Eq.(3) has at least one solution.

Proof. Consider the operator P : C1−γ,ψ(J) → C1−γ,ψ(J), it is well defined and given by

Pu(t, ω) =





T
Γ(α) (ψ(t)− ψ(0))

γ−1∑m
i=1 ci

∫ τi

0

ψ
′

(s) (ψ(τi)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s

+ 1
Γ(α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s.
(8)

Set g̃(s) = g(s, 0, ω). Consider the ball Br =
{
u ∈ C1−γ,ψ(J) : ‖u‖C1−γ,ψ

≤ r
}
.

Now we subdivide the operator P into two operator P1 and P2 on Br as follows

P1u(t, ω) =
T

Γ(α)
(ψ(t)− ψ(0))

γ−1
m∑

i=1

ci

∫ τi

0

ψ
′

(s) (ψ(τi)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s

and

P2u(t, ω) =
1

Γ(α)

∫ t

0

ψ
′

(s) (ψ(t)− ψ(s))
α−1

g(s, u(s, ω), ω)∆s.
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The proof is divided into several steps.

Step.1 P1u+P2y ∈ Br for every u, y ∈ Br. By direct computation and utilizing condition and with

proposition 2.3 we obtain

‖P1u+ P2y‖C1−γ,ψ
≤ ‖P1u‖C1−γ,ψ

+ ‖P2y‖C1−γ,ψ
≤ r.

where

‖P1u‖C1−γ,ψ
≤
B(γ, α)T

Γ(α)

m∑

i=1

ci (ψ(τi)− ψ(0))
α+γ−1

(
ℓg ‖u‖C1−γ,ψ

+ ‖g̃‖C1−γ,ψ

)

and

‖P2u‖C1−γ,ψ
≤
B(γ, α)

Γ(α)
(ψ(t)− ψ(0))

α
(
ℓg ‖u‖C1−γ,ψ

+ ‖g̃‖C1−γ,ψ

)
.

Step.2 P1 is a contration mapping.

For any u, y ∈ Br

‖P1u− P1y‖C1−γ,ψ
≤

ℓgT

Γ(α)

m∑

i=1

ci (ψ(τi)− ψ(0))
α+γ−1

B(γ, α) ‖u− y‖C1−γ,ψ
.

The operator P1 is contraction.

Step.3 The operator P2 is compact and continuous.

According to Step 1, we know that operator P2 is uniformly bounded.

Now we prove the compactness of operator B.

For 0 < t1 < t2 < T , we have

|P2u(t1, ω)− P2u(t2, ω)| ≤ ‖g‖C1−γ,ψ
B(γ, α)

∣∣∣(ψ(t1)− ψ(0))
α+γ−1

− (ψ(t2)− ψ(0))
α+γ−1

∣∣∣

tending to zero as t1 → t2. Thus P2 is equicontinuous. Hence, the operator P2 is compact on Br

by the Arzela-Ascoli Theorem. We now conclude the result of the theorem based on the Theorem

2.13.

Theorem 4.2. If hypothesis (H1) and the constant

δ =
ℓgB(γ, α)

Γ(α)

(
T

m∑

i=1

ci (ψ(τi)− ψ(0))
α+γ−1

+ (ψ(T )− ψ(0))
α

)
< 1

holds. Then, Eq. (3) has unique solution.

Theorem 4.3. Let hypotheses (H1) and (H3) are fullfilled. Then Eq.(3) is generalized-U-H-R stable.
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