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Abstract: In this study, we investigate the existence theorems for timelike ruled surfaces in Minkowski 3-space 3

1
E . We obtain 

a general system and give the existence theorems for a timelike ruled surface according to Gaussian curvature, distribution 

parameter and strictional distance. Moreover, we give some special cases such as the directirx of the surface is a geodesic, an 

asymptotic line, a line of curvature or a general helix. 
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Timelike Regle Yüzeyler Üzerine Bazı Teoremler  
 

Öz: Bu çalışmada, 3

1
E  Minkowski 3-uzayındaki timelike regle yüzeyler için varlık teoremleri araştırılmıştır. Genel bir sistem 

bulunmuş ve bir timelike regle yüzeyin varlık teoremleri, Gauss eğriliği, dağılma parametresi ve striksiyon uzaklığına bağlı 

olarak verilmiştir. Bundan başka, yüzeyin dayanak eğrisinin geodezik, asimptotik çizgi, eğrilik çizgisi ya da bir genel helis 

olması gibi bazı özel durumlar verilmiştir.  

 

Anahtar kelimeler: Frenet çatısı, Minkowski 3-uzayı, Boğaz çizgisi, timelike regle yüzey. 
 

1. Introduction 

 

 In the space, a continuously moving of a straight line generates a surface which is called ruled surface. Ruled 

surfaces have the most important positions and applications in the study of design problems in spatial mechanisms 

and physics, kinematics and computer aided design (CAD). So, these surfaces are one of the most important topics 

of surface theory. Because of this position of ruled surfaces, geometers have studied on these surfaces in Euclidean 

space and they have investigated many properties of the ruled surfaces [1-3].  

 Moreover, Minkowski space 3

1
E  is more interesting than the Euclidean space. In this space, curves and surfaces 

have different casual Lorentzian characters such as timelike, spacelike or null (lightlike). For example, a 

continuously moving of a line along a curve generates a ruled surface which can be timelike, spacelike or null. 

Spacelike ruled surfaces are very similar to the ruled surfaces given in Euclidean 3-space 3
E . Timelike ruled 

surfaces are more fascinating since there exist both timelike and spacelike curves on these surfaces. Timelike ruled 

surface with timelike rulings have been studied by Abdel-All, Abdel-Baky and Hamdoon [4]. Küçük has obtained 

some results on the developable timelike ruled surfaces in the same space [5]. Furthermore, Önder and Uğurlu 

have introduced Frenet frames and Frenet invariants of timelike ruled surfaces [6]. 

 Furthermore, it is interesting to consider the existence of a timelike ruled surface in Minkowski 3-space. In 

global differential geometry, it is well-known that the existence and uniqueness of a surface with given first and 

second fundamental forms are given by Bonnet’s theorem [7-9]. The theorem says that if the coefficients of these 

forms satisfy the Gauss equations and the Peterson-Codazzi equations, then there exists a surface, which is unique 

up to motions in space, for which these forms are, respectively, the first and the second fundamental forms. Of 

course, this is a global theorem for all surfaces and Lorentzian version of this theorem can be introduced by the 

similar way. But how can we give existence of a special ruled surface such as timelike ruled surface without 

considering its first and second fundamental forms? In this study, we try to give an answer for this question. We 

give some theorems for timelike ruled surfaces in Minkowski 3-space by using a similar procedure given in [10]. 

We obtain a general system giving the two parameter family of timelike ruled surfaces. Moreover, we give some 

special cases such as the directirx of the surface is a geodesic, an asymptotic line, a line of curvature or a general 

helix.  
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2. Preliminaries 

 

 Let 1 2 3
( , , )x x x x  and 1 2 3

( , , )y y y y  be two vectors in 
3

E . The function defined by  

 
3 3

, : E E IR     

   1 1 2 2 3 3
( , ) ,x y x y x y x y x y       

 

is called Lorentzian inner product function. The affine space 
3

E  endowed with this function is called Minkowski 

3-space and denoted by 
3

1
E . In this space, an arbitrary vector 1 2 3

( , , )v v v v  in 
3

1
E  can have one of three 

Lorentzian causal characters; it can be spacelike if , 0v v   or 0v  , timelike if , 0v v   and null 

(lightlike) if , 0v v   and 0v  . Similarly, an arbitrary curve ( )s   can locally be spacelike, timelike 

or null (lightlike), if all of its velocity vectors ( )s  are spacelike, timelike or null (lightlike), respectively [11]. 

The norm of the vector 1 2 3
( , , )v v v v  is given by ,v v v   . 

 For any vectors 1 2 3
( , , )x x x x  and 1 2 3

( , , )y y y y  in 
3

1
E , Lorentzian vector product of x  and y  is 

defined by  

 

1 2 3

1 2 3 2 3 3 2 1 3 3 1 2 1 1 2

1 2 3

( , , )

e e e

x y x x x x y x y x y x y x y x y

y y y

 

      , 

 

(See [12,13]).  

 

Definition 2.1.(See [14]) i) Hyperbolic angle: Let x  and y  be future pointing (or past pointing) timelike vectors 

in 
3

1
E . Then there is a unique real number 0   such that , coshx y x y    . This number is called 

the hyperbolic angle between the vectors x  and y .  

      ii) Central angle: Let x  and y  be spacelike vectors in 
3

1
E  such that { , }sp x y  is a timelike vector subspace. 

Then there is a unique real number 0   such that , coshx y x y    . This number is called the 

central angle between the vectors x  and y .  

 iii) Spacelike angle: Let x  and y  be spacelike vectors in 
3

1
E  that span a spacelike vector subspace. Then 

there is a unique real number 0   such that , cosx y x y   . This number is called the spacelike 

angle between the vectors x  and y .  

 iv)  Lorentzian timelike angle: Let x  be a spacelike vector and y  be a timelike vector in 
3

1
E . Then there 

is a unique real number 0   such that , sinhx y x y    . This number is called the Lorentzian 

timelike angle between the vectors x  and y . 
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3. Timelike Ruled Surfaces in 
3

1
E  

 

 Let I  be an open interval in the real line IR , ( )s   be a curve in 
3

1
E  defined on I  and ( )q q s  be 

a unit direction vector of an oriented timelike line in 
3

1
E . Then we have following parametrization for a timelike 

ruled surface N  

 

( , ) ( ) ( )r s v s v q s  .                    (1) 

 

In particular, if the direction of q  is constant, then the ruled surface is said to be cylindrical, and non-cylindrical 

otherwise. The distribution parameter (or drall) of N  is given by 

 

, ,

,

q q
d

q q

  


 
                                                                                                                         (2) 

 

where ,
d dq

q
ds ds


     (see [4,6]). If , , 0q q    , then normal vectors are collinear at all points of same 

ruling and at nonsingular points of the surface N , the tangent planes are identical. We then say that tangent plane 

contacts the surface along a ruling. Such a ruling is called a torsal ruling. If , , 0q q    , then the tangent planes 

of the surface N  are distinct at all points of same ruling which is called nontorsal [6]. 

 

Definition 3.1. ([6]) A timelike ruled surface whose all rulings are torsal is called a developable timelike ruled 

surface. The remaining timelike ruled surfaces are called skew timelike ruled surfaces. Then, from (2) it is clear 

that a timelike ruled surface is developable if and only if at all its points the distribution parameter 0d  . 

 

 For the unit normal vector m  of a timelike ruled surface we have  

 

2

( )

, , ,

s v

s v

r r vq q
m

r r q q q vq vq



  

   
 

       

.                                                          

 

Then, at the points of a nontorsal ruling 1
s s  we have 

  

1
lim ( , )
v

q q
a m s v

q


 


.     

                                                                                              

 The plane of a skew timelike ruled surface N  which passes through its ruling 1
s  and is perpendicular to the 

vector a  is called asymptotic plane  . The tangent plane   passing through the ruling 1
s  which is perpendicular 

to the asymptotic plane   is called central plane. The point C  of the ruling 1
s  where asymptotic plane is 

perpendicular to central plane is called central point of the ruling 1
s . The set of central points of all rulings is 

called striction curve of the surface. The parametrization of the striction curve ( )c c s  on a timelike ruled 

surface is given by 
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0

,
( ) ( ) ( )

,

q
c s s v q s q

q q


 

 
   

 
 

 

where 
0

,

,

q
v

q q

 
 

 
 is called strictional distance ([6]).  

 

Theorem 3.1.(Chasles Theorem) ([6]): Let the base curve of a timelike ruled surface be its striction curve. For 

the angle   between tangent plane of timelike ruled surface at the point 0
( , )s v  of a nontorsal ruling s  and 

central plane, we have 0
tan /v d   where d  is the distribution parameter of ruling s , 0

v  is strictional 

distance and central point has the coordinates ( ,0)s . 

 

4. Existence Theorems for Timelike Ruled Surfaces 

 

 Let N  be a timelike ruled surface in 
3

1
E  given by the parametrization  

 

( , ) ( ) ( )r s v s v q s                       (3) 

 

where ( )s   is directrix of N , s  is arc length of ( )s  and ( )q s  is a unit timelike vector field on N . The 

directrix ( )s  can be a timelike or spacelike curve. Let assume that ( )s  be a timelike curve. Then the Frenet 

formulae of ( )s  are given as follows 

 

1

1 2

2

0 0

0

0 0

T k T

N k k N

B k B

     
         
         

                    (4) 

 

where ( ) ( )s T s   , , 1, , , 1, , , , 0T T N N B B T N T B N B       , , ,T N B  are 

unit tangent, principal normal and binormal vectors, respectively, and 1
k  and 2

k  are curvature and torsion of 

timelike curve ( )s , respectively [13]. The unit normal vector m  of the surface is a spacelike vector and can be 

given in the form  

 

cos sinm N B                        (5) 

 

where ( )s   is differentiable spacelike angle function between spacelike unit vectors m  and N . Let A  be 

a spacelike unit vector in the tangent plane of the surface and be perpendicular to unit tangent T . Then we can 

represent the timelike ruling q  in the form 

 

cosh sinhq T A                        (6) 

 

where ( )s   is differentiable hyperbolic angle function between timelike unit vectors q  and T . It is clear 

that the vector A  lies on the plane { , }Sp N B . Then we can write 
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sin cosA N B                         (7) 

 

By differentiating (5) and (7) with respect to s  it follows 

 

1 2
cos ( )m k T k A     ,   1 2

sin ( )A k T k m                   (8) 

 

respectively. Similarly, considering (7) and (8), the differentiation of (6) is obtained as follows 

 

 

 

1 1 2

2

sinh ( sin ) cosh ( sin ) ( ) sinh cos

cosh cos ( ) sinh sin

q k T k k N

k B

        

     

        

   
         (9) 

 

and (9) gives us 

  
2 2 2 2 2 2

1 1

2 2

1 2 2

( ) , 2 sin (cosh cos sin )

2 ( ) sinh cosh cos ( ) sinh

q q q k k

k k k

     

     

        

    
        (10) 

 

After these computations we can give the following theorems. 

 

Theorem 4.1. For a timelike curve ( )s  as the directrix there exists a two-parameter family of timelike ruled 

surfaces with a given distribution parameter and a given strictional distance.  

 

Proof: The strictional distance and distribution parameter of a timelike ruled surface are given by 

 

0

, , ,
,

, ,

q q q
v d

q q q q

    
  

   
                   (11) 

 

respectively. Then from (6) and (9) it follows 

 

 1 21

0 2 2

sinh cosh cos ( ) sinhsinh ( sin )
,

( ) ( )

k kk
v d

q q

         
 

 
       (12)  

 

From (12) we have 

   
2 2 2 2 22

1 1

2 2

0 1

2 2

1 2 2

2

1

2 sin (cosh cos sin )
1

( sin )

2 ( ) sinh cosh cos ( ) sinh

( sin )

k kd

v k

k k k

k

     

 

     

 

   
 

 

    


 

          (13) 

 

From (10) and (13) it follows 

 

2

2 2

1 2

0

( ) ( sin ) 1
d

q k
v

 
 

    
 

                 (14) 

 

Substituting (14) in (12) we have 
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0

12 2

0

2 1 2 2

0

sinh
sin

coth cos

v
k

d v

d
k k

d v


 

  


   


     
 

                (15) 

 

which are the determining equations for timelike ruled surfaces with a timelike directrix ( )s , given distribution 

parameter and given strictional distance. That proves the theorem.  

  

Corollary 4.1. For any timelike directrix ( )s  as the strictional line, there exists a two-parameter family of 

timelike ruled surfaces with a given distribution parameter. 

 

Proof: If the directrix ( )s  is strictional line then 0
0v  . Thus (15) becomes 

 

1

2 1

sin

1
coth cos

k

k k
d

 

  

 



    


                 (16) 

 

that finishes the proof.  

 

Theorem 4.2. For any timelike directrix ( )s  there exists a two-parameter family of timelike ruled surfaces with 

a given Gaussian curvature and a given angle between the tangent planes and central planes along ( )s .  

 

Proof: From Chasles theorem we have 

  

0tan
v

d
                             (17) 

 

where   is the spacelike angle between tangent plane and central plane of timelike ruled surface at the point 

0
( , )s v . Furthermore, Gaussian curvature K  of a timelike ruled surface is given by 

  
2

2 2 2

0
( )

d
K

d v



                     (18)  

 

(See [15]). If we put 

  

2 2

01 d v
n

K d


                      (19) 

 

then K  defines n  uniquely and followings hold 

 
2

0
sin , sin cosd n v n                     (20)  

 

By using (20), system (15) can be given in the form 
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1

2 1

1
sinh cot sin

1
coth cos

k
n

k k
n

   

  


  


     


                 (21) 

 

that finishes the proof.  

 

Theorem 4.3. For any timelike directrix ( )s  there exists a two-parameter family of general developable timelike 

ruled surfaces with a given strictional distance. 

 

 Proof: If the timelike ruled surface N  is developable and not a cylinder we have 0
0, 0v d  . Then from 

(15) it follows 

 

1

0

2 1

sinh
sin

coth cos

k
v

k k


 

  


  


    

                  (22) 

 

which shows that there exists a two-parameter family of general developable timelike ruled surfaces with a given 

strictional distance. 

 

Theorem 4.4. For any timelike directrix ( )s  there exists a two-parameter family of timelike cylinders.  

 

Proof: If the timelike ruled surface N  is a cylinder then the direction of the ruling q  is constant and from (9) we 

have  

 

1

1 2

2

sinh ( sin ) 0,

cosh ( sin ) ( ) sinh cos 0,

cosh cos ( ) sinh sin 0,

k

k k

k

  

     

     

  


    
    

 

 

that gives us 

 

1 2 1
sin , coth cosk k k                        (23) 

 

and (23) shows that there exists a two-parameter family of timelike cylinders.  

 

5. Some Special Cases 

 

 In this section, we consider some special cases such as the directirx ( )s  is a geodesic, an asymptotic line or 

a line of curvature. Then we can give the followings. 

 

Theorem 5.1. For any timelike directrix ( )s  there exists exactly one timelike ruled surface with a given Gaussian 

curvature on which ( )s  is a geodesic. 

 

Proof: Let the directrix ( )s  be a geodesic. Then we have N m  . By considering (5), we have 

, ( )a a Z   . From system (21) it follows 
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1

2

tanh
1

nk

nk
 


 

 

which shows that if the directrix ( )s  is a geodesic, then there exists exactly one timelike ruled surface with a 

given Gaussian curvature. 

 

Theorem 5.2. For any timelike directrix ( )s  there exists a one-parameter family of timelike ruled surfaces with 

a given angle between the tangent planes and corresponding central planes on which ( )s  is an asymptotic line. 

 

Proof: Assume that the directrix ( )s  is an asymptotic line. Then from (5), we have / 2   and from the 

system (21) we have 

  

1

2

1 1
sinh cot ,k n

n k
        

 

which determines a one-parameter family of timelike ruled surfaces. 

 

Theorem 5.3. Let the angles   and   be constants. Then a timelike directrix curve ( )s  is an asymptotic line 

on a timelike ruled surface N  if and only if ( )s  is a general helix. 

 

Proof: Let the directrix ( )s  be an asymptotic line on N . Then / 2  . Since the angles   and   are 

constants from (21) it follows 

  

1

2

sinh cot
k

k
   

 

which is constant i.e.  ( )s  is a general helix.  

 Conversely, if the angles   and   are constants and ( )s  is a general helix then from (21) we have 

/ 2   which shows that ( )s  is an asymptotic line on N . 

 

Theorem 5.4. A timelike curve ( )s  is a line of curvature on a timelike ruled surface N  if and only if  

 

2
( ) ( )s k s ds C                       (24) 

 

holds where C  is a constant. 

 

Proof: A curve ( )s  is a line of curvature if and only if surface normals generate a developable ruled surface 

along ( )s , i.e. iff  

  

, , 0k m m                        (25) 

 

Then from (8), we have 
2

, , ( ) 0T m k A    which gives 2
k     and (24) is obtained.  
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Theorem 5.5. For any timelike curve ( )s  there exists a one-parameter family of timelike ruled surfaces with a 

given Gaussian curvature along ( )s  on which ( )s  is a line of curvature.  

 

Proof: Since ( )s  is a line of curvature, (24) holds and from (21) we have 

 

1
tanh secnk                       (26) 

 

that finishes the proof.  

 

Theorem 5.6. If   is constant and timelike directrix ( )s  is a line of curvature on a timelike ruled surface N  

then there exists the following relationship between the angles   and    

 

tan cosh cot                       (27) 

 

Proof: Since   is constant and ( )s  is a line of curvature, from (21) and (24) we have 

  

1 1

1 1
sin sinh cot , cos tanhk k

n n
                    (28) 

 

which gives (27).  

   

6. Conclusions 

 

 The some theorems on the existence of timelike ruled surfaces are given by considering a timelike directrix. 

Furthermore, some special cases related to the directrix is introduced. Of course, one can obtain corresponding 

theorems for a ruled surface with null rulings or for a spacelike ruled surface.  
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