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ABSTRACT: Geodetic Networks designed as Deformation Networks or Continuous Networks are observed in different 

epochs/ sessions and evaluated as a function of time. Those can be design as global GNSS networks for aim monitoring 

active tectonic movements or as regional densification geodetic and deformation networks for monitoring local earthquakes 

and surface movements. The areas covered geodetic networks are assumed as any surface on ellipsoid or sphere. 

Characteristics of surfaces are analyzed with Geometric Strain Models using deformation data on surface points. In this 

case, effect rates on geodetic network area are determined from local surface movements or regional active earthquakes 

and interpreted as experimental. On the other hand, undetermined outliers by model hypothesis test affect coordinate-

unknowns separately. Outliers cause deformations in certain magnitude on networks points. Therefore, network points 

strain in different rates and directions. Query of maximum affects caused by these strain rates is a referenced reliability 

method called "Robustness Analysis in Geodetic Networks”. Mentioned strain rates are modelled by various estimation 

methods. Thus, deformation results could be interpreted together by the obtained strain components and deformation vector.  

 In this paper, possible strain components belonging to network points are determined with methods of L1 Norm, Least 

Median Squares (LMS) and Least Squares Estimation (LSE). These estimation methods are tested on KOUSAGA (Kocaeli 

University Permanent GPS Network). Strain components are estimated by use polyhedrons covered by network points. 

Obtained results are compared and analyzed according to weakness and strengths of proposed estimation methods. 
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1. INTRODUCTION 

 

Geodetic networks can be designed in different shape 

and sizes according to their functions and purpose as 

global, regional or local. Point-position coordinates of 

these networks can be defined using geocentric or local 

coordinate systems and then evaluated together with 

classical and satellite-based observations. Geodetic 

networks can be continuously measured by advanced 

satellite measurement techniques in different epochs and 

sessions, and evaluated with appropriate mathematical 

statistics methods; their geometric structures and point-

positions can be monitored periodically. Accordingly, in 

areas covered by geodetic networks, possible tectonic 

plate deformations, crustal movements, large and 

important engineering infrastructures and time-dependent 

regular periodic changes in their environment can be 

modeled and possible local-block movements can be 

detected. The areas covered by geodetic networks are 

assumed as any surface on ellipsoid or sphere. The 

displacement ratios of the network points on this surface 

have deformation and strain information representing the 

surface. Surfaces characteristics are analyzed with 

geometric strain models using deformation data on 

surface points, in any coordinate system and datum free. 

As a result of this situation, affect rates of the areas 

covered by geodetic networks from local surface 

movements or regional active earthquakes are determined 

and interpreted as experimental.  

On the other hand, undetermined outliers by model 

hypothesis test affect coordinate-unknowns separately. 

Outliers cause deformations in certain magnitude on 

network points and these points strain in different rates 

and directions. Query of maximum affects caused by 

these strain rates is a referenced reliability method called 

"Robustness Analysis in Geodetic Networks”. A priori or 

a posteriori strain rates are modelled by various 

estimation methods. Thus, deformation results could be 

interpreted together by the obtained strain components 

and deformation vectors.  

Possible strain components belonging to network 

points on the any surface are determined with different 

estimation methods. Depending on the nature of the 

surface movements, the strain components related to any 

surface can be modeled and interpreted by geometric, 

geodetic and/or geophysical data. The estimates that 

having minimum variance, consistently, efficiently, 

sufficiently and at least asymptotically unbiased should 

be used for the strain models. In this study, the possible 

strain in the network points is determined by Least 

Absolute Value (LAVM, L1-Norm), Least Median 

Squares (LMS) and Least Squares (LS, L2-Norm) 

estimation methods. 

In an estimation process; it is aimed to obtain the most 

consistent unknown parameters and the measurement 

corrections having the greatest probability without 

removing any measurements (Öztürk and Şerbetçi, 1992). 

The LAV estimation method is a Maximum Likelihood 

Estimation (MLE) method, which minimizes the sum of 

absolute values of corrections by using any combinations 

of measurements as many as the unknown parameters 

number. With LAV method, it is aimed to minimize the 

effect of the data in contradiction with normal 

distribution. This objective function cannot always be 

guaranteed by the LAV methods. In this case, LMS 

method is recommended as another MLE method which 

controls the LAV method (Niemeier, 2002). 

The MLE method gives successful results when the 

distribution of measurements is well known. On the other 

hand, LS estimation method provides minimum variance 

and unbiased results for the sets of measures which are 

known to have normal distribution at the beginning or not. 

However, the LS method can spread the effects of 

possible outliers with higher weights to the other 

observations (Konak et al, 2005). At the same time, these 

outliers, which occur differently according to the 

measurement plan, observation types and weights, are 

called leverage point effect in the robust statistic 

(Hekimoğlu, 2005). This situation is the most criticized 

and query aspect of the LS method. Both the LS and the 

LAV estimation are adversely affected by the leverage 

point effect. 

On the other hand, normal distribution laws can be 

applied easily and successfully to LS results (Öztürk and 

Şerbetçi 1992). As a result of this feature; LSM methods 

are strengthened by the LS estimation method and 

integrated estimation methods called robust estimation 

methods are developed and implemented. If the 

measurements with sufficient degree of freedom are in 

normal distribution, the LAV, LMS and LS estimation 

magnitudes (sample means) are the same and their 

variances also exhibit asymptotically unbiased behavior 

(Dilaver et al., 1998; Konak and Dilaver, 1998).   

The purpose of this paper is to perform experimental 

strain or robustness analysis using polyhedrons defined 

for any network point, by an appropriate estimation 

method. For this purpose, Affine Transformation is used 

as a mathematical model, and the strain 

tensors/components of symmetric and anti-symmetric 

characteristics are estimated by LAV, LMS and LS 

estimation methods separately. In the last step, an 

integrated solution algorithm is proposed by utilizing the 

useful properties of these methods. 

 

 

2. MATHEMATICAL METHOD  

 

Any surface strain model is written in the form of the 

Affine Transformation Model using deformation/velocity 

vectors at the neighbor network points where any station 

point is connected (Table 1a). Strain elements 

representing the surface are obtained accordingly to the 

objective functions of LAV, LMS or LS estimation 

(Niemeier, 2002). 

If the strain elements tensor matrix (E) are arranged 

in the form of symmetric (S) and anti-symmetric (A) 

matrices, random strain rates can be obtained. If the 

symmetric (S) matrix is separated into eigenvalues and 

eigenvectors; the principal strain axes representing any 

polyhedron and the strain invariants (dilation, differential 

rotation, maximum shear strain) in any coordinate system 

are obtained (Table 1b). The non-diagonal element of the 

anti-symmetric matrix (A) is called the differential 

rotation strain (Vanicek et al., 1990; Berber, 2006; Yetkin, 

2012; Küreç Nehbit, 2018). 

 

 

 



 International Journal of Engineering and Geosciences (IJEG),   

 Vol; 5, Issue; 1, pp. 049-059, February, 2020,    

51 

 

Table 1. Strain components and Mathematical Model 

 

3. ESTIMATION METHODS 

 

The LAV estimation method corresponds to the 

solution of the Affine Transformation problem in 

equation (4) with the inequality system described in Table 

1a. This inequality system, called linear programming, 

can be solved by using Simplex Algorithms. In this 

solution method, for model parameters, there shouldn't be 

any sign constraint. In this case, the measurement 

corrections, having equal number to the number of 

unknown parameters, are equal to “zero”. As a Maximum 

Likelihood Estimation (MLE), in this method the sum of 

absolute values of corrections is going to be minimal 

(Bektaş and Şişman, 2010). Thus, a special equation 

solution is obtained where the number of measurements 

is equal to the number of unknown (Table 2a).  

In LAV method, it is aimed to localize the effect of 

the data which has abnormal distribution in the 

measurement sets and to minimize the sum of the absolute 

values of the corrections as much as possible. However, 

such a purpose function cannot always be guaranteed. In 

other words, in case there are error-free data in some 

subsets of measurements, LAV estimation is not an 

efficient solution. On the other hand, this estimation 

process can be used as an a priori approach/step to be able 

to determine random gross errors in the transformation 

problems. As a result of this situation; the LMS method 

is suggested as another MLE method to control the LAV 

method (Hekimoğlu, 2005; Niemeier, 2002). 

In Regression and Transformation problems, 

measurements separated from the barycenter of network 

points or from geometric distribution of the observations 

called "Leverage Point Effect" are highly effective on the 

parameters. In this case, the leverage point effect can be 

explained as the spreading effect of the random errors in 

poor controllable observations onto the other 

observations. The LMS estimator can determine initially 

the most appropriate observation set purged of outliers. 

Therefore, it is recommended as an estimator to control 

the LAV estimation (Niemeier, 2002). 

The LMS method is solved by an algorithm similar to 

the LAV method. For example; in affine transformation 

problem, the design matrices are composed form the (u + 

2) transformation equation row, where u is the number of 

unknowns and q is the number of coordinate pairs. In this 

case, the different solution combinations 









4

p  arise. The 

optimal solution is the least value of Median Squares in 

all of these combinations, as  .min2  ivedianm

(Table 2b). 

LAV and LMS methods, which are called MLE 

methods, provide successful results when the distribution 

of measurements is well known. On the other hand, LS 

estimation method is an estimation type that gives 

minimum variance and unbiased results for the sets of 

measurement which are known to normal distribution at 

the beginning or not. In this case, LS method can be used 

as an estimation method to control the MLE (Table 2c). 

 

As a result of LS aim-function, outliers in the 

observation set are able to disrupt the estimation values 

and also have a negative effect on other observations 

which have a normal distribution. This is the most 

criticized and questioned aspect of the LS method. 

However, in the LS method, the higher the numbers of 

abnormal observations are the more extend is the unit 

variance of model. This property of LS method allows for 

the localization and elimination of outliers in 

observations having gross-error using mathematical-

statistical methods (Öcalan 2019; Yıldırım and Şişman, 

2019). 

However, in strain analysis; the number of common 

control points is quite limited and, in this case, it is 
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difficult to determine the abnormal observations 

(outliers). On the other hand, normal distribution laws can 

be applied easily and successfully to the LS results. As a 

result of this situation, taking advantage of the features of 

the LS squares estimation, integrated 

approaches/algorithms that can be controlled by LSM 

estimations can be developed (Table 2d). 

 

 

 

 

 

Table 2. Estimation Methods for Strain Elements 

Strain Model: 2D Affine Transformation 
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3.1 Solution Algorithm 

 

The main purpose of this paper is to develop a 

feasible and usable solution algorithm for experimental 

strain or theoretical robustness analysis-processes using 

polyhedrons defined according to any network point. In 

this solution algorithm, LS estimation method is 

controlled by LSM methods and strengthened by a robust 

estimation method which we recommend in necessary 

and obligate situations. This solution algorithm can be 

summarized in five steps. 

In the first step, by using the LAV estimation 

method which is to minimize the sum of absolute values 

of the corrections, a priori values of the strain 

components are estimated, for the polyhedron in any 

station point (Niemeier, 2002). With the help of LS 

estimation, the pair of common control points that 

provide the objective function and equal to the number of 

unknowns are classified as first group observations 

(Table 2a). 

In the second step, by the LSM estimation method 

where the median square is minimum, the results of 

LAV estimation are controlled. In this step, the design 

matrices are composed to form the transformation 

equation row (u + 2), where u is the number of unknowns 

and q is the number of coordinate pairs. The 

transformation unknowns are obtained. These results are 

compared with LAV solutions. In this comparison, the 

pair of common control points that provide the objective 

function and also aren't there in the first group are 

classified as second group observations (Table 2b). 

In the third step, the LS estimation is used which 

minimizes the sum of squares of the corrections by using 

all the common control points for the polyhedron 

determined in each station point. In this step, the set of 

network points not included in the LAV and LMS 

estimation are classified as third control network points 

(Table 2c). 

In the fourth step, the experimental strain invariants 

and their distribution on the network are compared. For 

example, if the comparison operations are based on a 

priori-robustness analysis, the location, direction and 

magnitude of the dilatations, maximum shear and rotation 

invariants can be questioned. 

As a result of the LS estimation, observations not 

conforming to the distribution of corrections may 

occur. As this case, a fifth step, separately robust 

weighting functions are defined for observations 

disrupting the distribution in three different groups. In 

this regard, corrections and their cofactors obtained from 

LS estimation are used. However, the weights of the 

common control point’s pairs determined by using the 

LAV estimation are not altered and these weights are 

saved as original weights. The robust weighting 

procedure occurs according to the threshold of the normal 

distribution for the second group's control points and 

according to the threshold of the Tau-distribution for the 

third group's control points (Table 2d). Under these 

conditions, LS-R estimation is performed by using all of 

the control points and the optimal strain invariants are 

obtained. 

In the developed solution algorithm, the selected 

number of common control points for any polyhedron 

may be limited or insufficient in the outer zone points of 

the network. This leads to some rang or ill-conditioned 

defects in design matrix H. Therefore, such a polyhedron 

can’t be included in the stress/robustness analysis 

(Vanicek et al., 1996; Berber, 2006; Yetkin, 2012). On 

the other hand, Damped LS method (D-LS) is a useful 

common method for problems which lead to uncertainties 

in the solution set and their eigenvalues are equal to zero 

or too close (Canıtez, 1996). 

In the D-LS estimation, the constant    added to the 

diagonal element of the normal equations is a damping 

constant which can be selected in the calculation accuracy 

and does not affect the solution results. These constants 

can be added to the eigenvalues of normal equations and 

consistent generalized inverses called "Lancsoz Inverse" 

are obtained (Table 2e). 

Therefore, the D-LS method has a feature that can be 

successfully adapted to the LAV, LMS and LS methods 

especially at the outer zone points of the network 

especially. 

LAV, LMS and LS solutions give identical results if 

the number of common control point pairs for any 

polyhedron is equal to the unknown number. In cases 

where the number of common controls point is equal to 

the number of points (u+2), LMS and LS solutions are 

identical. 

 

4. NUMERICAL APPLICATION 

 

In this study, the annual velocities for Kocaeli 

University Permanent GPS Test Network (KOUSAGA) 

points are used for the numerical application data. The 

KOUSAGA network is established in the process of the 

Project of Monitoring of İzmit-Kocaeli Natural Gas 

Infrastructure (IZDOGAP) with the Geodetic Networks 

and Geographical Information Systems. This project is a 

scientific research project (Figure 1). 

By evaluating the 30 sec rinex data of this network 

points with GAMIT/GLOBK software, 3 years of regular 

coordinate and velocity area information of KOUSAGA 

network are obtained (Herring et al., 2015a and 2015b). 

The first group of these is selected from point of 10 IGS 

(NOT1, MATE, ORID, BUCU, ISTA, ANKR, TUBI, 

NICO, CRAO and ZECK). The second group is selected 

from point of 11 IGS (TEKR, BAND, BURS, ISTN, 

SLEE, IZMT, BILE, HEND, NAHA, BOLU and ZONG). 

KOUSAGA network covers İZDOGAP project network 

and is established to represent the velocity area of this 

network. KOUSAGA consist of 2 IGS (TUBI and ISTA) 

and 11 TUSAGA-Active (HEND, IZMT, ISTN, ZONG, 

BOLU, NAHA, BILE, BURS, BAND, TEKR and SLEE) 

stations. 

The observation plan of the KOUSAGA network is 

designed with the aid of delaunay triangulation (Küreç 

Nehbit, 2018). For the strain calculations, the coordinate 

and velocity information defined in the ITRF 2008 

reference system is used. Strain surfaces are determined 

as regular polyhedrons formed according to the 

observation plan designed for every station point. Strain 

components and symmetrical strain ratio tensors are 

obtained by LAV, LMS and LS estimation methods. 
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Figure 1. Kocaeli University Permanent GPS Test Network (KOUSAGA) and ranking direction of selected common points for the Strain 
model (Red: Red: according to LAV solution, Blue: according to LMS solution, Dashed line: barycenter point of network which is 

eliminated in both methods, 1, 2, …. 14, 15: number of triangles) 

 
Experimental results are compared in terms of 

optimal deformation surfaces represented by any of 

the polyhedrons. According to these results; 

 According to the results of LAV and LMS, the common 

points entering the set of strain model are scattered as 

to cover the widest possible area over the surface of any 

polyhedron, and these points are located around the 

barycenter of the polyhedron in both methods. 

 As can be seen in equation (3), the design matrix H 

related to the surface of any polyhedron strain is 

constructed using the shifted coordinate differences 

according to this surface's barycenter point. As a result 

of this situation, according to the results of the LAV 

estimation method, barycenter points of polyhedrons 

could often not be included in the optimal common 

point combinations (Table 3). 

 In the LMS estimator, common points that do not 

contribute positively to the geometric shape have been 

excluded. In LMS estimation, the barycenter point of 

any polyhedron is included in all combinations, except 

for the BURS point, which is located at the same line 

approximately with the BAND and BILE points (Figure 

1, Table 3). 

 

When the results are compared in terms of object 

functions and estimation types, in polyhedrons 

consisting of four (4) common network points, the results 

of LAV and LMS estimation remain the same. 

Theoretically, in the case of normal distribution of 

observations, the median value is expected to be the 

smallest and the standard deviation is to be the largest. 

 According to both biased median and absolute error 

and unbiased standard deviation, this ranking is 

provided except the points of ZONG, BOLU, 

NAHA, BAND and TEKR. Mentioned points are the 

outer zone points at both ends of the KOUSAGA 

network (Tables 4, 5 and 6). 

 

Table 3. A Comparison of Polyhedron Gravity Centers 

 

 

Inner zone network points 

Barycenter p 
LAV 

First group observation 

LMS 
Second group observation 

Third group 

observation 
Polyhedron 

Excluded 
triangles 

HEND: 2009 7 SLEE, ZONG, NAHA HEND, IZMT, SLEE, ZONG  BOLU, BILE (S) Area with Widest Angle 12 -13 

IZMT: 2007 6 SLEE, HEND, BILE IZMT, HEND, BURS, TUBI  ---- Entire area -- 

TUBI: 1006 6 ISTA, IZMT, BURS TUBI, ISTA, SLEE, IZMT ISTN (K) Area with Widest Angle 4 

ISTN: 2004 6 ISTN, BURS, BAND ISTN, BURS, BAND, TEKR ISTA, TUBI (N) Area with Widest Angle 1 - 5 

Outer zone network points 

Barycenter p 
LAV 

First group observation 

LMS 

Second group observation 

Third group 

observation 
Polyhedron 

Excluded 

triangles 

ZONG: 2012 4 ZONG, BOLU, SLEE ZONG, BOLU, HEND, SLEE ---  Entire area -- 

BOLU: 2011 4 NAHA, HEND, ZONG BOLU, NAHA, HEND, ZONG ---- Entire area --- 

NAHA: 2010 4 NAHA, BILE, HEND NAHA, BILE, HEND, BOLU ---- Entire area --- 

BILE: 2008 5 BURS, HEND, NAHA BILE, BURS, HEND, NAHA IZMT (N) Entire area --- 

BURS: 2003 6 BAND, TUBI, BILE BAND, ISTN, TUBI, BILE BURS Entire area --- 

BAND: 2002 4 TEKR, ISTN, BURS BAND, TEKR, ISTN, BURS ---- Entire area --- 

TEKR: 2001 4 TEKR, ISTN, BAND TEKR, ISTA, ISTN, BAND ---- Entire area --- 

ISTA: 1005 5 SLEE, TUBI, TEKR ISTA, SLEE, TUBI, TEKR ISTN (S) Entire area --- 

SLEE: 2006 6 ZONG, HEND, TUBI SLEE, ZONG, HEND, TUBI IZMT, ISTA (S) Area with Widest Angle 6 

 (N): in North of Barycenter  (S): in South of Barycenter 
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Table 4. Strain Elements and Results for LS and LS-R Solutions 

 

Table 5. Strain Elements and Results for LAV  

 

Table 6. Strain Elements and Results for LMS Solutions 

 

 

 

KOUSAGA 

Net Points 

  
Biased  

Standard  

deviation 

p

PvTv
s

2
0   

Unbiased  

Standard  

deviation 

62
0




p

PvTv
m  

LS 

min PvTv  

Strain Components Principal Strain Invariants 

p 

λ1                                                                   

(the first 

principal 

axis: 

maximum 

eigenvalue) 

λ2                                                                

(the second 

principal axis: 

maximum 

eigenvalue) 

θ                                              

(the 

direction of 

principal 

axis) 

σ 

(Dilation) 

μ                                   

(Maximum 

shear 

strain) 

Ω                                  

(Differential 

rotation ) 

HEND 7 0,00146 0,00193 2,99.10-5 8,19.10-8 -1,02.10-7 6,62.10-1 -9,82.10-9 1,83.10-7 8,25.10-8 

IZMT 6 0,00110 0,00156 1,47.10-5 1,32.10-7 -9,70.10-8 7,37.10-1 1,75.10-8 2,29.10-7 1,10.10-7 

TUBI 6 0,00127 0,00180 1,95.10-5 1,38.10-7 -8,78.10-8 7,46.10-1 2,51.10-8 2,26.10-7 1,11.10-7 

ISTN 6 0,00109 0,00154 1,42.10-5 1,53.10-7 -1,07.10-7 6,94.10-1 2,27.10-8 2,60.10-7 1,13.10-7 

ZONG 4 0,00111 0,00222 9,83.10-6 4,98.10-8 -1,00.10-7 7,27.10-1 -2,52.10-8 1,50.10-7 6,87.10-8 

BOLU 4 0,00097 0,00193 7,48.10-6 6,52.10-8 -1,27.10-7 5,86.10-1 -3,10.10-8 1,92.10-7 6,51.10-8 

NAHA 4 0,00118 0,00235 1,11.10-5 1,15.10-7 -1,10.10-7 6,69.10-1 2,73.10-9 2,25.10-7 8,82.10-8 

BILE 5 0,00069 0,00109 4,77.10-6 1,39.10-7 -1,15.10-7 7,41.10-1 1,17.10-8 2,54.10-7 1,17.10-7 

BURS 6 0,00051 0,00072 3,12.10-6 1,68.10-7 -1,07.10-7 7,17.10-1 3,07.10-8 2,75.10-7 1,21.10-7 

BAND 4 0,00008 0,00016 4,99.10-8 1,76.10-7 -1,12.10-7 6,73.10-1 3,19.10-8 2,89.10-7 1,16.10-7 

TEKR 4 0,00099 0,00199 7,90.10-6 1,48.10-7 -1,15.10-7 6,58.10-1 1,68.10-8 2,63.10-7 1,15.10-7 

ISTA 5 0,00064 0,00102 4,13.10-6 6,74.10-8 -6,52.10-8 7,19.10-1 1,11.10-9 1,33.10-7 5,55.10-8 

SLEE 6 0,00042 0,00059 2,11.10-6 4,88.10-8 -6,01.10-8 6,71.10-1 -5,65.10-9 1,09.10-7 5,47.10-8 

KOUSAGA 

Net Points 

  
Biased  

Standard  

deviation 

p

v
s

2
0


  

Unbiased  

Standard  

deviation 

62
0






p

v
m  

LMS 

min v  

Strain Components Principal Strain Invariants 

p 

λ1                                                                   

(the first 

principal 

axis: 

maximum 

eigenvalue) 

λ2                                                                

(the second 

principal axis: 

maximum 

eigenvalue) 

θ                                              

(the direction 

of principal 

axis) 

σ 

(Dilation) 

μ                                   

(Maximum 

shear 

strain) 

Ω                                  

(Differential 

rotation ) 

HEND 7 0,00102 0,00179 0,0143 6,58.10-8 -9,15.10-8 6,68.10-1 -1,28.10-8 1,57.10-7 8,08.10-8 

IZMT 6 0,00076 0,00152 0,0091 1,19.10-7 -8,89.10-8 7,70.10-1 1,50.10-8 2,08.10-7 1,08.10-7 

TUBI 6 0,00093 0,00185 0,0111 1,64.10-7 -8,76.10-8 -7,62.10-1 3,84.10-8 2,52.10-7 1,10.10-7 

ISTN 6 0,00078 0,00157 0,0094 1,77.10-7 -1,10.10-7 6,77.10-1 3,33.10-8 2,87.10-7 1,16.10-7 

ZONG 4 0,00074 0,00295 0,0059 4,78.10-8 -1,17.10-7 -7,69.10-1 -3,47.10-8 1,65.10-7 7,90.10-8 

BOLU 4 0,00045 0,00180 0,0036 5,59.10-8 -1,17.10-7 5,65.10-1 -3,07.10-8 1,73.10-7 7,54.10-8 

NAHA 4 0,00094 0,00375 0,0075 1,18.10-7 -1,12.10-7 7,49.10-1 3,22.10-9 2,30.10-7 1,07.10-7 

BILE 5 0,00055 0,00138 0,0055 1,32.10-7 -1,12.10-7 7,63.10-1 1,00.10-8 2,44.10-7 1,10.10-7 

BURS 6 0,00040 0,00080 0,0048 1,69.10-7 -1,14.10-7 7,29.10-1 2,77.10-8 2,83.10-7 1,20.10-7 

BAND 4 0,00005 0,00020 0,0004 1,74.10-7 -1,12.10-7 6,69.10-1 3,13.10-8 2,86.10-7 1,15.10-7 

TEKR 4 0,00065 0,00260 0,0052 1,34.10-7 -1,16.10-7 6,42.10-1 9,09.10-9 2,50.10-7 1,16.10-7 

ISTA 5 0,00038 0,00095 0,0038 7,47.10-8 -6,64.10-8 7,04.10-1 4,12.10-9 1,41.10-7 5,90.10-8 

SLEE 6 0,00030 0,00060 0,0036 5,33.10-8 -5,97.10-8 6,38.10-1 -3,19.10-9 1,13.10-7 5,94.10-8 

KOUSAGA 

Net Points 

 

n 
Median 

LMS 

min2  vmed  

Strain Components Principal Strain Invariants 

λ1                                                                   

(the first 

principal axis: 

maximum 

eigenvalue) 

λ2                                                                

(the second 

principal axis: 

maximum 

eigenvalue) 

θ                                              

((the direction of 

principal axis) 

σ (Dilation) 

μ                                   

(Maximum 

shear 

strain) 

Ω                                  

(Differential 

rotation ) 

HEND 7  0,0004 1,50.10-7 5,01.10-8 -6,24.10-8 6,19.10-1 -6,18.10-9 1,12.10-7 5,92.10-8 

IZMT 6  0,0004 1,84.10-7 1,59.10-7 -1,31.10-7 6,59.10-1 1,39.10-8 2,90.10-7 1,46.10-7 

TUBI 6  0,0002 4,73.10-8 4,35.10-8 -2,88.10-8 7,62.10-1 1,40.10-8 7,23.10-8 1,23.10-7 

ISTN 6  0,0001 1,64.10-8 1,76.10-7 -1,12.10-7 6,73.10-1 3,19.10-8 2,89.10-7 1,16.10-7 

ZONG 4  0,0014 2,05.10-6 4,98.10-8 -1,00.10-7 7,27.10-1 -2,52.10-8 1,50.10-7 6,87.10-8 

BOLU 4  0,0012 1,41.10-6 6,52.10-8 -1,27.10-7 5,86.10-1 -3,10.10-8 1,92.10-7 6,51.10-8 

NAHA 4  0,0016 2,69.10-6 1,15.10-7 -1,10.10-7 6,69.10-1 2,73.10-9 2,25.10-7 8,82.10-8 

BILE 5  0,0005 2,16.10-7 1,27.10-7 -1,10.10-7 7,66.10-1 8,55.10-9 2,37.10-7 1,07.10-7 

BURS 6  0,0003 1,04.10-7 1,76.10-7 -8,47.10-8 6,60.10-1 4,56.10-8 2,61.10-7 1,23.10-7 

BAND 4  0,0001 1,20.10-8 1,76.10-7 -1,12.10-7 6,73.10-1 3,19.10-8 2,89.10-7 1,16.10-7 

TEKR 4  0,0013 1,64.10-6 1,48.10-7 -1,15.10-7 6,58.10-1 1,68.10-8 2,63.10-7 1,15.10-7 

ISTA 5  0,0003 9,56.10-8 6,94.10-8 -6,50.10-8 7,14.10-1 2,20.10-9 1,34.10-7 5,60.10-8 

SLEE 6  0,0002 3,35.10-8 5,53.10-8 -6,43.10-8 6,29.10-1 -4,49.10-9 1,20.10-7 6,26.10-8 
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 According to the values computed by using degrees 

of freedom as a mixed unbiased comparison, 
estimation values of LAV unbiased absolute error 

are obtained as smaller than LS unbiased error 

estimation values except for HEND, IZMT, BOLU 

and ISTA points (Tables 4 and 5). 

Principal strain invariants obtained by LAV, LMS 

and LS methods are compared by drawing surface 

maps (Figures 3, 4 and 5) and the values obtained are 

summarized as tables (Tables 4, 5 and 6). In this study, 

differential rotation maps are emphasized as an 

interesting sample. These maps and table data are 

examined; the surface maps of LAV and LS estimations 

are generally similar. Significant changes according to 

LMS estimation are observed at the inner zone points of 

the network. This is due to the fact that the number of 

common pairs in the outer zone of the network is equal to 

or very close to the number of strain parameters. 

Therefore, all three estimators are produced similar 

results in the outer zone. 

On the other hand, the behavior of the LMS 

estimation is clearly recognizable at the inner zone 

points of the network (TUBI and IZMT). In the LMS 

estimation, the points representing the polyhedron 

according to the TUBI point are selected from the 

northern part of the polyhedron. The points representing 

the polyhedron according to the IZMT point are selected 

from the southern part of the polyhedron (Figure 1). The 

northern part of the TUBI polyhedron belongs to the 

EURASIA Plate and the southern part of the IZMT 

polyhedron belongs to the ANADOLU Plate. We would 

like to emphasize here as authors, the main purpose of this 

paper is not to question plate movements, but to examine 

the behavior of LAV, LMS and LS estimators. However, 

these estimation results are quite interesting. In other 

words; the distribution and number of these points on the 

polyhedrons are the most optimal solutions which provide 

the objective function of the LMS estimation. The results 

mentioned here should be considered as the leverage 

point and at the same time the common effects of 

observations which do not conform to the annual velocity 

distribution of the common points. Similar results are 

observed in the behaviors of the principal strain 

components (Figure 2 and 3). 

Strain surfaces according to the dilatation maps are 

generally similar. However, due to the lever point effect, 

the Maximum Shear Strain Map of the LMS estimator is 

exhibited a different distribution according to the maps of 

other estimators (Figure 4 and 5). 

In this study; according to the LS estimation results, 

there has not arisen any observation group that passed the 

threshold value of the normal distribution or Tau-

distribution and excluded from the common point sets of 

LAV or LMS. Therefore, these have not conformed to the 

normal distribution. For this reason, the results of LS and 

LS-R estimation are identical (Tables 3,4 and 5 and 

Figures 2, 3 and 4). 

 

5. CONCLUSION 

 

When numerical results and graphs are analyzed 

together; LMS estimation shows that besides the 

velocities to related the network points, the barycenter 

point is also very effective in eliminating the leverage 

point effect. 

During the computing of the strain components for 

any network point, the reference point selected for a 

polyhedron is determined as the barycenter of 

polyhedron. In this case, due to the objective function, 

LAV estimation method uses the common network points 

representing velocity information consistent with the 

barycenter. Therefore, the estimated values are the best 

approximate values representing the strain components. 

According to our experimental results, a polyhedron or 

deformation surface determined by LMS estimation is a 

shape improved and supported by barycenter point of any 

surface determined by use of the LAV estimation. 

As a result, in the geodetic network, during the 

interpreting of the deformations points with experimental 

strain or robustness analyzes, the common network points 

and velocity information determined by the LMS and 

LAV method should be preserved as much as possible. 

For this reason, if the LS estimation method is used, the 

surface properties estimated by LMS and LAV methods 

should be considered and interpreted together. 
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Figure 2. The Maps of Differential Rotation 

 

 

 
Figure 3. The Maps of The First Principal Strain Axe: Maximum Eigenvector (λ max) 

LS; LS -R LS; LS -R 

LAV 
LAV 

LMS LMS 
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Figure 4. The Maps of Dilatation 

 

 

 

 
Figure 5. The Maps of Maximum Shear Strain

LS; LS -R LS; LS -R 

LAV LAV 

LMS 
LMS 
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