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1. Introduction 
The effects of pollution upon the environment are causing increased concern in the 

developed countries. This concern centers on the policies to adopt to control the level of 
pollution. Some countries are also concerned in reducing the level of pollution. The 
developing and less developed countries can benefit from the experience of the 
developed countries in pollution control. The next century will probably experience 
stringent regulations on environmental pollution as the problem becomes enormous. 
Societies are becoming more and more aware of the environmental issues. This 
awareness will reflect itself in a stronger demand for strategic policies to deal with 
environmental issues.  

Following Pigou, economists have regarded environmental pollution as an issue of 
externality. We point out that simple policies designed to deal with externalities may fail 
when used against the problem of environmental pollution which requires centralized 
control. Keller, Spence, and Zeckhauser (1971) suggests that optimal control of 
pollution may require restrictions on the consumption of certain type of products, 
limiting or completely abandoning the use of some inputs and productive processes, and 
possible restricting the growth of certain industries. The control of pollution may even 
require limiting the population growth. These intertemporal aspects of pollution are best 
addressed within the framework of optimal control theory. Therefore, we put the 
pollution problem into the framework of optimal control theory and analyze several 
issues addressed in this paper within this framework. Similar approaches can be found in 
Keller, Spence, and Zeckhauser (1971), Froster (1975), Gruver (1976), and Lee (1977).  

It is observed that the standards set for controlling pollution are changing over 
time. For instance, the emission standards set for air pollution have changed 
significantly. Many countries have also changing water quality standards. Why it is 
optimal to set changing standards over time needs an economic explanation. Harford 
(1975) offers three explanations. First, the amount of wastes being created and diffused 
had an upward trend. This may be due to insufficient preventive or treatment standards. 
Therefore, governments faced with this upward trend set stringent affluent standards. 
Second, there have been costless improvements in the waste treatment and prevention 
technology. This second reason may lead to both tighter ambient and emission 
standards. Third, the rate of change of standards affects the level of costs. This means 
that to achieve a certain target in two years costs more than achieving it in three years. 
This phenomenon is called adjustment costs in the literature. Economists have become 
aware that firms may face adjustment costs when changing their level of capital stock. 
Adjustment costs can partly be explained by increases in the prices of capital and skilled 
labor due to rapidly increasing demand. In this study, we point out to another aspect of 
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pollution prevention. In order to achieve socially optimal levels of pollution, economists 
propose marginal damage taxes. The pollution taxation is usually assumed to be 
costless. However, collection costs and costs of determining marginal damages make the 
pollution taxation costly. We argue that these costs will depend on the rate of change of 
the pollution as well as the level of pollution stock. Because, as the level of pollution 
increases new parties will be affected, this will require new marginal damage 
calculations. This explains the observed facts that preventive pollution measures usually 
come after pollution reaches a certain level. It is optimal to delay pollution taxes 
because of adjustment costs associated with taxation.  

Pollution type market failures are usually analyzed in a static environment. 
Marginal damages obtained from static models form the basis of the Pigouvian 
corrective taxation. However, dynamic aspects of pollution have significant economic 
consequences. The optimal time path of pollution can only be derived from a dynamic 
model. In this study, we derive the time path of optimal pollution tax using a dynamic 
model.  The Pigouvian pollution tax as a method of correcting market failure is usually 
assumed to be costless. We show that adjustment costs will affect the optimal path of the 
Pigouvian pollution tax. We further show that the corrective tax rate can be used to set a 
standard even though the optimal tax rate and the optimal pollution level are unknown to 
the policymaker. 

This paper is organized as follows. Section 2 sets up the basic dynamic model of 
the economy. The adjustment cost function is also introduced in this section. In section 
3, we derive the Pareto optimal allocations. The time path of optimal pollution tax is 
also derived in this section. Section 4 presents the steady state analysis of the model. In 
Section 5, we introduce an alternative formulation and present some numerical examples 
that support the predictions of the model. The Pigouvian pollution tax is discussed in 
Section 6. Section 7 concludes the paper. Mathematical derivations are given in the 
Appendix. 

2. The Model 
There is more than one model that can be used to analyze the economic impacts of 

pollution. Pollution has major effects on consumption, production, or both. In our 
model, society derives utility from consumption and production process generates 
externality type pollution. Although we are analyzing a pollution type externality, the 
model can be generalized to other kinds of externalities. The interdependence of 
consumption and pollution through production makes them joint products. This also 
allows us to measure pollution in the same units in which consumption is measured. In 
order to focus on the basic problem, we assume away the problems of population 
growth, technical change, and capital accumulation. These problems can easily be 
incorporated into the model.  

Our assumption about the nature of pollution implies that pollution enters directly 
into the social utility function. Pollution may have adverse effect on production as well. 
We assume that social welfare of society at time t is a function of consumption in time t, 
C(t), and pollution in time t, P(t).The time invariant social utility function and its 
properties are as follows:  

(1) ( )U U C t P t= ( ), ( ) , 
(2) U U C tC CC> < >0 0 0, , ( ) ,   
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(3) P P P tC CC< < ≥0 0 0, , ( ) ,  
(4) U U U UCC PP CP CP− ≥ <0 0, ,  
(5) ( )lim ( ), ( ) , ( ) ,

C CU C t P t P t
→

= >
0

0 0 for all  

(6) ( )lim ( ), ( ) , ( ) .
P PU C t P t C t

→
= >

0
0 0 for all  

Assumptions stated in (2)-(5) guarantee a well behaving utility function. Although we 
assumed  

UCP < 0, this assumption is not essential for the analysis. One can certainly assume 
a separable utility function for simplicity and we will do so when assumption of a 
separable utility function is not damaging for the analysis. A separable utility function 
can be specified by assuming UCP = 0. 

In static models of pollution, the distinction between a stock and flow pollution is not 
important and usually ignored. In a dynamic model, it is possible to make a distinction 
between a stock and flow variable. A pollutant may have both stock and flow impacts. In 
some cases, such as river pollution, stock concept with a decay rate is appropriate. In other 
cases, flow concept better describes the nature of pollution. Noise pollution is such a case. 
Noise pollution has a decay rate of one. A decay rate equal to one makes pollution a perfect 
flow variable. We believe that pollution control is usually a stock control problem. However, 
many pollutants have a nonzero decay rate. Recognizing this fact we assume that pollution 
evolves according to the following differential equation,  

(7) ( )& ( ) ( ),P F C t P t= − δ  
(8) 0 1 0 0 0≤ ≤ = >δ , ( ) , ( ) ,F C t  
(9) ( )F F F C t

C
' , " , lim ' ( ) ,> > =

→
0 0 0

0
 

where ( )F C t( )  is the flow of pollution at any point in time. ( )F C t( )  can also 
bethought as the pollution control function. The particular specification given in (7)-(9) 
is fairly standard in the literature. Societies usually have no direct control over the 
quantity of pollution. This implies that pollution should be treated as a state variable, not 
a choice. There is no choice in regard to pollution. By selecting the level of C(t), society 
uniquely determines the net pollution level it desires. δ  in expression (7) is the constant 
decay rate. The assumption of constant decay rate is fairly common in the literature and 
we offer no justification for it. If 0 1≤ <δ , but not large enough to reduce pollution level 
to the desired level in desired time, present consumption must be foregone in order to 
have less pollution in the future. There is no need to forego present consumption in 
order to reduce future pollution level when δ=1. If δ=0, foregoing present consumption 
is the only way of reducing pollution.  

In order to get around the problems of capital accumulation, population growth, 
etc., we assume that a fixed amount of net of replacement investment output Y0 is 
produced in each period. We further assume that markets are perfectly competitive and 
there is no Coasian solution to pollution. We do not think the Coasian solution will be 
accessible even for the solution of externality type pollution. One reason for this may be 
high transaction costs, among others. 

When there is no government intervention society would choose C(t)=Y0 in each 
time period. This is the competitive solution. However, this solution is not Pareto 
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optimal in the sense that C(t)<Y0 is a Pareto improvement over C(t)=Y0. In order to get 
Pareto optimal allocations government may impose a Pigouvian tax on either P or C. It 
is not unrealistic to assume that some resources should be allocated to antipollution 
activities. The literature on environmental pollution mostly concentrated on the damage 
and abatement costs. We agree on the importance of these costs. However, we believe 
that the societies should concentrate on preventive measures rather than abatement. 
When abatement and prevention are equally costly, we think that prevention should be 
preferred. Preventive measures traditionally include installment of filters, abandoning a 
certain type of production process, adaptation a of a new technology, etc. We also 
include taxation among the preventive measures. As it is true for the other type of 
preventive measures, society should forgo some resources for the collection and 
imposition of taxes. These foregone resources can be interpreted as the cost of taxation. 
Total taxation costs may include collection costs, costs incurred in determining marginal 
damages, etc. As pointed out before, these costs depend on both the level and rate of 
change of pollution stock. The dependence on the rate of change is known as adjustment 
costs. 

There is more than one way to explain adjustment costs in the literature. Following 
Treadway (1969) we can treat adjustment costs as a loss in output arising from the new 
capital investment for reducing pollution. This is an intra-firm cost arising from the 
difficulty of undertaking greater and greater levels of investment in a certain time 
interval. A second way of explaining adjustment costs is due to Eisner and Strotz 
(1963). They treat adjustment costs as arising from a rising supply curve of capital 
goods as the demand for capital goods increases. Because of an upward sloping supply 
curve, the price of new capital goods will increase as all firms demand larger amounts. 
This type of adjustment costs are called extra-firm, because it is caused by the behavior 
of all firms together. As firms are required to invest in pollution reduction, they will face 
these types of adjustment costs. Investment in waste treatment plants will of course be 
subject to these types of adjustment costs. We further argue that taxation when used as a 
preventive measure against pollution will also be subject to adjustment costs. This 
means that cost of taxation will depend on both the level and rate of change of pollution 
stock. It depends on the level of pollution since collection costs depend on the level of 
total taxes collected. Dependence on the rate of change of pollution can be explained as 
follows: As pollution grows faster, new parties will be affected. This will require new 
marginal damage calculations and extending the coverage of pollution tax. Effect of this 
on the cost of taxation will be the same as the effect of increased investment on costs. 
Adjustment costs may also arise from the entrance of new firms, which brings extra 
costs to taxation. Based on these reasons, we may write pollution cost function as  

(10) ( )G G P t P t= ( ), & ( ) ,  

(11) G G G G GP PP P PP PP> > > > =0 0 0 0 0, , , , ,& & & &  

(12) 
( ) ( ) ( )

( ) ( ) ,0)(),(lim)(),(lim

,0)(),(lim)(),(lim)(),(lim

00

00
0
0

==

===

→→

→→
→
→

tPtPGtPtPG

tPtPGtPtPGtPtPG

PPPPPP

PPPPP

P
P

&&

&&&

&&&

&&
&  

(13) ( ) ( ){ }lim ( ), & ( ) min ( ), & ( ) .
&P

G P t P t G P t P t
→

=
0

 

Conditions in (11) yield a separable and nondecreasing cost function in its 
arguments. The evidence suggests that cost function is an increasing function both in the 
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level and rate of change of pollution. However, very little is known about the curvature 
of such a cost function. The conditions given in (11)-(13) except the separability 
assumption are minimum requirements for a well behaving cost function that includes 
adjustment costs. The condition in (13) states that costs are at minimum when & .P = 0  
Therefore, the level of costs given in (13) can be interpreted as the long-run cost of 
maintaining the pollution stock at the socially optimal level. After introducing 

( )G P t P t( ), & ( ) ,  society should allocate output over C(t) and G(t), namely, 
(14) ( )Y C t G P t P t0 = +( ) ( ), & ( ) .  

In writing (14), we assume that tax revenues are rebated to consumers in a 
nondistortionary way. Equivalently, we can assume that tax revenues are spent on 
imports by the government and imported goods are distributed to consumers. However, 
this last assumption requires that the foreign country from which the goods are imported 
does not create any externality for the importing country. We further assume that 
government budget is balanced.  

3. The Pareto Optimal Solution 
Now we seek a Pareto optimal solution that maximizes social welfare subject to the 

constraints given in (7) and (14). Another question we are trying to answer is what 
should be the per unit Pigouvian tax that yields a Pareto optimal allocation. In order to 
determine the Pareto optimal solution we assume that a social planner maximizes the 
discounted flow of utility over an infinite horizon. Assume that future utility streams are 
discounted at a constant exponential rate σ>0. Then, the social planner needs to find 
solution of the following problem:  

(15) 

( )

( )
( ) .0)(,0)(,)(),()()(      

free, )(,)0(),()()(  s.t.

,)(),(max

0
0

0)(

>≥+=

∞=−=

−∞

∫

tCtPtPtPGtCtY

PPPtPtCFtP

dtetPtCU t

tC

&

& δ

σ

 

This is a fairly standard optimal control problem, which can be solved using the 
Pontryagin’s maximum principle. The solution to this problem will give the socially 
optimal time paths of P(t) and C(t). Then, government’s objective is to choose these 
same time paths of P(t) and C(t) which could be chosen by a social planner. In practice, 
the government needs to impose a Pigouvian tax on pollution in order to obtain the 
Pareto optimal time paths of P(t) and C(t). The maximization problem in (15) is an 
optimal control problem in one state variable, P(t), and one control variable, C(t). First 
order conditions from the Pontryagin's maximum principle, which are derived in the 
Appendix, yield 

(16) ( ) ( ) ( ) ( )[ ],)()(),(1)()(')()(),( tCFtPtPGttCFttPtCU PC ′++−= &
&µλ  

(17) ( ) ( ) ( ) ( )[ ]&( ) ( ) ( ), ( ) ( ) ( ), & ( ) ( ), & ( ) .&λ σ δ λ µ δt t U C t P t t G P t P t G P t P tP P P= + − + −  

Equation (16) states that marginal utility of consumption should be equal to 
marginal cost. Costate variable λ(t) can be interpreted as the shadow price of pollution. 
This shadow price can be determined by solving the linear differential equation (17). 
This solution yields 
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( ) ( ) ( ) ( )[ ]{ } ( )( )λ µ δ σ δt U C t P t s G P s P s G P s P s e dsP P P
s t

t
= − − − + −∞

∫ ( ), ( ) ( ) ( ), & ( ) ( ), & ( ) .&
 

This expression states that -λ(t) is the discounted value as of time t of the later marginal 
disutility plus the marginal taxation cost of pollution. From this last expression the appropriate 
time path of damage tax imposed on pollution flow can be determined asτ λ( ) ( ).t t= −  This 
pollution tax yields the Pareto optimal allocations. Alternatively a tax which is equal to 

( )− λ( ) ' ( )t F C t  can be imposed on consumption. The per unit Pigouvian tax on pollution for 
each time period t can be determined from (17) as  

(18) ( ) ( )[ ] ( ){ } ( ) ( )τ µ δ σ δ( ) ( ) ( ), & ( ) ( ), & ( ) ( ), ( ) .&t s G P s P s G P s P s U C s P s e dsP P P
s t

t
= − − − + −∞

∫  

Therefore, τ(t) is set equal to the discounted value as of time t of later marginal 
disutility plus the marginal taxation cost of the pollution. 

One thing that needs an explanation in (18) is the negative effect of PG &  on the per 
unit tax. The intuition behind this is simple. When there is an increase in current 
consumption away from the Pareto optimal level, & ( )P t  will be positive. However, δ 
percent of increased pollution will dissolve by itself. Therefore, the current pollution tax 
rate should be reduced by δGP& .  This is simply the decay effect and will disappear when 
δ=0. This does not mean that the tax rate will be lower when consumption has increased. 
The overall tax rate will always be higher, because P(t) is now higher. Unfortunately, it 
is not optimal for the government to adjust the new tax rate immediately. During the 
period of positive & ( )P t  firms and government incur extra costs at an increasing rate. 
Therefore, it is optimal for government to spread the tax increase over a longer period to 
save on costs. This is shown in Figure 1. 

Assume that there is an unexpected increase in consumption at time t0. For simplicity set 
δ=1. While P(t) jumps simultaneously with consumption, τ(t) needs to be adjusted over a 
longer time interval. This implies that in a continuously growing economy τ(t) should never 
be at its equilibrium level. Nevertheless, this is an optimal policy to save on costs which cause 
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a utility loss more than the utility loss due to pollution. Another point which is worth to 
mentioning is that this model assumes perfect foresight. Therefore, response of τ(t) on the 
changes in time paths of C(t), P(t), and & ( )P t differ under expected and unexpected changes. In 
the above analysis, we assumed an unexpected changes in C(t). If the change is expected, the 
response of τ(t) will depend on the time paths of partial derivatives appearing in (18). For 
instance, optimal policy is to raise τ(t) immediately, if C(t) is expected to increase. 

4. Steady State Equilibrium 
A steady state equilibrium is characterized by the condition & ( )P t = 0  and &( )τ t = 0 . 

When & ( )P t = 0 , we get  

(19) P F C* *( ),=
1
δ

 

where P* and C* are the steady state values of P(t) and C(t), respectively. &( )τ t = 0  yields 
the following expression for the steady state equilibrium value of τ(t): 

(20) τ
µ

σ δ
*

* * * *( , ) ( , ) ,=
−
+

G P U C PP P0  

where 
( ) ( )

( )
µ

σ δ λ
*

* * *

*

,

,
.=

+ − U C P

G P

P

P 0
 

Phase plane of (P,τ) is shown in Figure 2. The equilibrium is a unique saddle  point 
at (P*,τ*), which is approached asymptotically along the stable branch of the saddle. The 
slopes of the singular curves are derived in the Appendix.  

The saddle point equilibrium is a well known property of many economic models. 
One may wonder how come the initial conditions always guarantee convergence to 
equilibrium. In fact, various initial conditions will usually lead to unstable trajectories. 
However, unstable trajectories violates the transversality condition. Hence, imposition 
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of the transversality condition is what guarantees a stable equilibrium. In the following 
section, we present an example that demonstrates the saddle point equilibrium property. 
In the example, imposition of the transversality condition leads to elimination of 
unstable solution due to positive eigenvalues. 

5. An Example 
The models appearing in the literature on adjustment costs always put the adjustment 

costs in the objective function additively. In dynamic firm theory, adjustment costs are 
assumed to be a loss in the revenue. Therefore, it appears in profit function in an additive 
way. The literature that introduces adjustment costs into pollution models also set up models 
with adjustment cost function additively appearing in the objective function. For instance, 
Beavis (1976) and Harford (1976) both minimize damage plus adjustment costs. In this way, 
they are able to put adjustment cost function additively in the objective. The reason for setting 
up a model with adjustment cost function additively appearing in the objective is the 
intractability of the resulting differential equations when adjustment costs do not appear 
additively in the objective. In our model, adjustment cost function appears as a nonlinear 
constraint. Therefore, resulting differential equations from the first order conditions of the 
dynamic optimality are intractable. For instance, a Cobb-Douglas utility function and a 
quadratic adjustment cost function results in a very complicated nonlinear differential 
equations system. In order to gain some more insight about the dynamic nature of the 
solution and make some numerical comparisons we need tractable differential equations. 
We tried a quadratic separable utility function along with a quadratic adjustment cost 
function in order to simplify the solution. However, resulting nonlinear differential 
equations were still hard to manage. 

One way to simplify the mathematics involved in the solution of (15) is to follow 
the previous literature on adjustment costs and put adjustment cost function in the 
objective additively. In order to do so, we will assume that adjustment costs cause a 
direct utility loss. This is possible if adjustment costs and utility are measured in the 
same units. This assumption may be too strong and require a cardinal utility measure. 
However, other forms of utility functions are not more innocent and realistic than a 
cardinal utility function in the context of our analysis. Hence, we will assume away any 
objections and reformulate the model in the following way:  

(21) 

( ) ( )[ ]
( )

.0)(,0)( free, )(,)0(
),()()(  s.t.

,)(),()(),(max

0

0)(

≥≥∞=
−=

− −∞

∫

tCtPPPP
tPtCFtP

dtetPtPGtPtCU t

tC

δ

σ

&

&

 

In order to get tractable differential equations we will specify a separable quadratic 
utility function. That is, 

(22) .)(
2
1)(

2
1 22 tGtCU βα −=  

The following adjustment cost function satisfies all conditions given in (11)-(13): 

(23) G P t P t= +1
2

1
2

2 2φ ψ( ) & ( ) .  
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The last function we need to specify is ( )F C t( ) .  Assuming each unit of C(t) creates 
γ percent pollution flow suffices for our purpose. Under this assumption pollution 
accumulates according to 
(24) & ( ) ( ) ( ).P t C t P t= −γ δ  

We can determine the conditions of dynamic optimality for the problem in (21) 
using the Pontryagin’s maximum principle. These conditions for the specifications given 
in (22)-(24) are obtained in the Appendix. The resulting differential equations from the 
first order conditions for dynamic optimality are as follows: 

(25) ),()()( 22

2

tPttP
αψγ

αδ
λ

αψγ
γ

−
+

−
=&  

(26) ( ) ( ) ).()()()( tPtPtt && δψφβλδσλ ++++=  

where λ(t) is the costate variable. Equations (25)-(26) form a homogenous simultaneous 
differential equations system. It is simple to obtain solution of this homogeneous linear 
differential equations system. Before proceeding to the solution we will put this system 
into a matrix form. Let us define the following matrices: 

(27) 
( ) ( )

.
)(
)(

,)()(,
1
01 2222









=









+−+−
−−−−

=Γ







−

=Π
t
tP

λδσφβ
αψγγαψγαγ

δψ
x  

Using these definitions, the system of differential equations in (25)-(26) can be 
expressed as 
(28) Π Γ& .x x 0+ =  

The solution of (39) can be written as 

(29) ,)( tet ξCx =  

where C is a 2×1 vector of constants to be determined and ξ is a scalar. To avoid a 
trivial solution it is necessary that 

(30) .0ΓΠ =+ξ  

The eigenvalues resulting from the solution of the characteristic equation (30) will 
yield the ξi we need for the solution in (29). The solution of (31) yields the following 
eigenvalues: 

(31) ,
)(2

4
,

)(2
4

2

2

22

2

1 ψγα
ςθθ

ξ
ψγα

ςθθ
ξ

−
−+

=
−

−+−
=  

where 

     
))((

)2(
2222

2

ψγαφγαδσαδβγς

ψσδγασθ

−+−−=

+−=  

A sufficient condition for all roots be real is .42 ςθ −>  For simplicity, we assume 
that this condition is satisfied. It is simple to see that signs of 1ξ  and 2ξ  are ambiguous, 
but for most parameter values they have opposite signs. In Section 4, we showed that 
steady state equilibrium is a saddle point. This result assures that the solution has a 
saddle path equilibrium. To better illustrate this result assume that 
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 ,1==== ψσφβ ,2=α 70.=γ  and .6.0=δ  Then, it is simple to show that 
(32) .15.1,54.0 21 ≅−≅ ξξ  

Since 02 >ξ  the equilibrium is a saddle path. We use the transversality conditions 
to force a stable equilibrium and write the solution as 
(33) ,)( 1tet ξCx =  

where C is a 2×1 vector of arbitrary constants. To illustrate the dynamic properties of 
the solution we compute the time paths of P(t) and P*(t) for the solution in (33). In order 
to compute time paths of P(t) and P*(t), we need to know the time path of C(t). Assume 
that C(t)=t for t=1,2,..,19,21,..,50. We set C(20)=40, creating a 20 unit unexpected shock in 
C(t) at time 20. The time path of C(t) under this specification is plotted in Figure 3. This shock 
in C(t) takes the system out of equilibrium. Starting from the disequilibrium position at time 
20 we will be able to derive the time path of P(t). 

In Figure 3, we plot the time path of P*(t) obtained from the steady state solution. 
Note that the shock in C(t) creates a corresponding jump in P*(t). Further, as C(t) falls 
down to its normal trend P*(t) also falls down to its normal trend. However, P(t) will not 
fall immediately and diverge from P(t) for a long time. It takes about 30 periods for P(t) 
to converge to P*(t). The time path of P(t) is also plotted in Figure 3. 

In order to illustrate the effect of adjustment costs we simulate a simple economy 
with two cases. In the first case, we assume that there are no adjustment costs, .0=ψ   In 
the second case, an economy with adjustment costs is simulated with .1=ψ  Both models 
are calibrated using values for other parameters given as above. The economy with 
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adjustment costs will have the roots given in (32). The economy without adjustment 
costs will have the following roots: 

(34) .35.1,35.0 21 ≅−≅ ξξ  
We again force a stable solution for both cases. We compare results against the 

following values of steady state equilibrium: 

22.0,184,438 *** === τPC  
We assume that C and P are measured in thousands and τ is measured as percentage. 

In order compare the properties of these two hypothetical economies we take each 
economy out of equilibrium and compare how C(t), P(t), and τ(t) approach the 
equilibrium. For this, we set 656* =C . The values of *P and *τ consistent with this 
value of *C  are 275 and 0.51, respectively. The time paths of each economy under these 
configurations are calculated from the equations in (A17)-(A19). These time paths are 
given in Table 1. 

Table 1: Effect of Adjustment Costs in a Simulated Economy 
        

Time C(t) P(t) τ(t)  C(t) P(t) τ(t) 

        
 ψ=0 (no adjustment costs)  ψ>0 (with adjustment costs)  

0 656.00 275.00 0.55  656.00 275.00 0.55 

1 565.04 237.03 0.41  591.62 248.13 0.45 

2 512.03 214.90 0.33  546.26 229.19 0.38 

3 481.14 202.01 0.29  514.29 215.84 0.34 

4 463.14 194.49 0.26  491.76 206.44 0.30 

5 452.65 190.12 0.24  475.88 199.81 0.28 

6 446.54 187.56 0.23  464.70 195.14 0.26 

7 442.98 186.08 0.23  456.81 191.85 0.25 

8 440.90 185.21 0.22  451.26 189.53 0.24 

9 439.69 184.71 0.22  447.34 187.90 0.23 

10 438.98 184.41 0.22   444.58 186.75 0.23 

Comparison of values τ(t) for the economies with adjustment costs and without 
adjustment costs very clearly reveals the prediction of our model about the adjustment of 
τ(t). When there are adjustment costs τ(t) is adjusted much slowly. When there are no 
adjustment costs τ(t) approaches the equilibrium two times faster than τ(t) under 
adjustment costs. As predicted by the model, slow adjustment of τ(t) leads slow 
adjustments of consumption and pollution level. Therefore, along the adjustment path 
consumption and pollution level will be higher when there adjustment costs. 
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6. A Pigouvian Pollution Tax 
Baumol (1972) proposes a tax adjustment scheme leading to the Pareto optimal 

solution. Baumol’s proposition is to set a Pigouvian tax which is equal to current 
marginal damage. This tax rate may or may not be equal to τ*. We can analyze Baumol’s 
proposition using Figure 4. Assume that current pollution level is Pa. Under Baumol’s 
proposition government would set a tax equal to τa. At this tax rate &P < 0  and the 
marginal damage falls. This leads government to set a lover tax rate. If pollution level 
falls to Pb, then government should set the new tax rate to τb.  When the tax rate is set at 
τb the marginal damage will further fall leading to a further decrease in the tax rate. This 
process will eventually converge to (P*,τ*).  The process starts at point a and continues 
along the &τ = 0 curve. We should point out that it may take a long time to locate the 
optimal tax rate. There is a practical difficulty for the implementation of this tax 
adjustment scheme. That is, government may not be able to calculate the current 
marginal damages. In that case, there is no trajectory leading to (P*,τ*) and τ* can never 
be located but chance.  

Suppose that government knows neither P* nor the current marginal damage. Is 
there a way to obtain a better outcome than the one prevailing under competitive 
markets? If we follow the Baumol’s suggestion of setting pollution standards, which 
may not be the same as the Pareto optimal level of pollution, this would be possible. 
Suppose that government sets a pollution standard of Pa. A tax rate of ′τ a  would satisfy 
&P = 0 . Therefore, a pollution level of Pa would be sustained even if it is not the Pareto 

optimal steady state level. Although Pa is not the Pareto optimal pollution level, it is still 
better than a pollution level that exceeds Pa under no government intervention.  
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7. Conclusion and Summary 
Recent years witnessed a growing awareness of many countries about the effects of 

environmental pollution on the human life. Many countries have been making legal 
regulations to control pollution. These regulations usually set certain standards including the 
restriction of certain methods of production or consumption of some goods. We believe that 
certain intertemporal aspects of pollution require economic regulations through centralized 
control. A most important and efficient measure is the taxation of certain goods. In a static 
environment taxation is a simple matter. However, dynamic aspects of pollution complicate 
the taxation. Furthermore, taxation may have significant economic costs. 

In this study, we point out that taxation will usually involve significant adjustment 
costs. In addition, pollution reduction itself will have capital investment with large 
adjustment costs. We showed that adjustment costs lead to a different optimal tax rate. 
Particularly, the Pigouvian tax rate obtained from a dynamic model differs from the one 
obtained from a static model due to two factors. First, adjustment costs alter the time 
path of optimal tax when the pollution level is not at the steady states. Second, optimal 
tax rate will be different both on and out of the steady states to the extend that future 
utility is discounted. Assuming decay rate is one and no taxation costs, a dynamic model 
implies that the optimal Pigouvian tax rate should be lower than the one implied by a 
static model. Furthermore, once the cost of pollution taxation is introduced, tax rate will 
increase, and relative magnitude will depend on these two effects. If the marginal 
damages can be determined, government can reach the Pareto optimal allocation by 
adjusting the tax rate even if the optimal tax rate is not known. If the marginal damages 
cannot be determined and the Pareto optimal allocations are not known, government can 
set pollution standards for a better outcome. 

APPENDIX 
In order to solve the maximization problem given in (15) we use the optimal 

control theory. We translate the problem into the optimal control format by forming the 
following current value Hamiltonian: 
(A1) ( ) ( )[ ]H U C t P t t F C t P t= + −( ), ( ) ( ) ( ) ( ) .λ δ  

This Hamiltonian takes care of only the constraint imposed through the state 
equation. In order to incorporate the remaining constraints into the problem we form the 
following Lagrangian: 
(A2) ( )( )[ ] ( )[ ]L H t Y C t G P t F C t P t t F C t P t t C t= + − − − + − +µ δ π δ ω( ) ( ) ( ), ( ) ( ) ( ) ( ) ( ) ( ) ( ).0  

(A2) can be maximized using the Pontryagin’s maximum principle. The first order 
necessary conditions for dynamic optimality are given by 

(A3) ( ) ( )
( ) ( )[ ] ( ) ,0)()()()()(),(1)(

)()()(),(

=+′+′+−

′+=

ttCFttCFtPtPGt

tCFttPtCUL

P

CC

ωπµ

λ
&

&

 

(A4) ( ) ( )
( ) ( )[ ]

L t t U C t P t

t G P t P t G P t P t t

P P

P P

= − + + −

− − + =

&( ) ( ) ( ), ( )

( ) ( ), & ( ) ( ), & ( ) ( ) ,&

λ σ δ λ

µ δ π δ 0
 

(A5) ( )L P t F C t P tλ δ= = −& ( ) ( ) ( ),  
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(A6) ( )( )[ ]µ µ δ( ) , ( ) ( ) ( ), ( ) ( ) ,t t Y C t G P t F C t P t≥ − − − =0 00  

(A7) π π π( ) , ( ) ( ) , ( ) &( ) , ( ) ,t t P t t P t P t≥ = = ≥0 0 0 0  
(A8) ω ω( ) , ( ) ( ) , ( ) ,t t C t C t≥ = ≥0 0 0  
(A9) lim ( ) , lim ( ) ( ) .

t

t

t

te t e t P t
→∞

−

→∞

−≥ =σ σλ λ0 0  

It is easy to show that π(t)=ω(t)=0 for any level of positive consumption. We 
assume that C(t)>0 since zero consumption is not Pareto optimal. Therefore, rearranging 
(A3) and (A4) we get the equations (16) and (17) in the text. 

To derive the slopes of & ( )P t = 0  and &( )τ t = 0  locu we solve (A3)-(A5) for C(t) by 
eliminating & ( )P t  and (t).µ  This yields 
(A10) ( )C t C P t t( ) ( ), ( ) .= λ  

Substituting (A10) into (19) and (20) and using τ(t)=-λ(t), we derive the following 
slopes for the singular curves in Figure 2: 

(A11) d
dP

F C
F CP

Pτ δ

τ&

,
=

=
− ′

′
<

0

0  

(A12) ( )[ ]
( )( )

d
dP

U U U U F U F G

U F U C

CC PP CP PP CC PP

CC CP

τ τ τ

τ σ δτ τ&

* *

*
,

=

=
− − − ′ ′ − − ′ ′

− ′ ′ + +
>

0

2

0  

where 
(A13) C F

U FCC
τ

τ
=

′
− ′′

<* ,0  

(A14) C U
U FP

CP

CC

=
−

− ′′
<

τ *
.0  

The maximization problem given in (21) can be solved in the same way. In order to put 
the problem in the format of the optimal control theory, letV t P t( ) & ( ).=  Using this definition 
and the specifications given in (22)-(24), the current value Hamitonian can be set up as 

(A15) ( ) [ ].)()()()()(
2
1)(

2
1)(

2
1)(

2
1 2222 tPtCttPtCtPtPtCH δγλδγψφβα −+



 −+−



 −=  

As noted before, we need to care of nonnegativity constraints in addition to the 
constraint imposed by the state equation. The following Lagrangian incorporates the 
nonnegativity constraints: 
(A16) [ ]L H t C t P t t C t= + + − +π γ δ ω( ) ( ) ( ) ( ) ( ).  

The Pontryagin’s maximum principle yields the following first order necessary 
conditions for dynamic optimality: 
(A17) ,0)()()()()( =−+++= tPtttCtLC

&γψωδπαγλ  
(A18) ( ) ( ) ,0)()()()()( =++++++−= δπδψφβλδσλ ttPtPttLP

&  
(A19) ),()()( tPtCtPL δγλ −== &  
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(A20) π π π( ) , ( ) ( ) , ( ) &( ) , ( ) ,t t P t t P t P t≥ = = ≥0 0 0 0  
(A21) ,0)(,0)()(,0)( ≥=≥ tCtCtt ωω  
(A22) .0)()(lim,0)(lim =≥ −

∞→

−

∞→
tPtete t

t

t

t
λλ σσ  

As we did before, we will assume that C(t)>0, since C(t)=0 is not Pareto optimal. A 
positive consumption implies that π(t)=ω(t)=0. Using this last result and substituting 
(A17) into (A19), we obtain the following differential equations: 

(A23) ),()()( 22

2

tPttP
αψγ

αδ
λ

αψγ
γ

−
+

−
=&  

(A24) ( ) ( ) ).()()()( tPtPtt && δψφβλδσλ ++++=  

These there differential equations form the system of differential equations given in 
(25)-(27) in the text. 
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