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A NEW FAMILY OF LIFETIME DISTRIBUTIONS IN TERMS OF
CUMULATIVE HAZARD RATE FUNCTION

OMID KHARAZMI AND SHAHLA JAHANGARD

Abstract. In the present paper, a new family of lifetime distributions is intro-
duced according to cumulative hazard rate function, the well-known concept
in survival analysis and reliability engineering. Some important properties of
proposed model including survival function, quantile function, hazard func-
tion, order statistic and some results of stochastic ordering are obtained in
general setting. An especial case of this new family is introduced by consid-
ering Weibull distribution as the parent distribution; in addition estimating
unknown parameters of specialized model will be examined from the perspec-
tive of Bayesian and classic statistics. Moreover, three examples of real data
sets: complete, right-censored and progressively type-I interval-censored data
are studied; point and interval estimations of all parameters are obtained.
Finally, the superiority of proposed model in terms of parent Weibull distri-
bution over other fundamental statistical distributions is shown via complete
real observations.

1. Introduction

The statistical distribution theory has been widely explored by researchers in
recent years. Given the fact that the data from our surrounding environment follow
various statistical models, is necessary to extract and develop appropriate high-
quality models.
Recently, Nadarajah and Haghighi (2011) have introduced a new model of life-

time distributions, which the researchers refer it as NH distribution. It is an
extended form of exponential distribution and attracted the attention of some re-
searchers. We refer the reader to (Lemonte (2013), Dey et al. (2017) and Kumar et
al. (2017)). This model has a number of desirable features and is comprehensively
studied by the authors. For example, whenever the data contains zero values, NH
model can be a strong competitor for other well-known lifetime distributions such
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as gamma, Weibull and generalized exponential distribution. The cumulative dis-
tribution function (cdf) and probability distribution function (pdf) related to NH
model is given respectively as;

F (x) = 1− e1−(1+λx)
α

, x > 0

and

f(x) = αλ(1 + λx)α−1e1−(1+λx)
α

, x > 0

where the parameters α > 0 controls the shapes of the distribution and the pa-
rameter λ > 0 is the scale parameter. It is easy to see that the NH model has
increasing, decreasing and constant hazard shapes.
In the present paper, we introduce a New family of Lifetime distributions based

on the Cumulative Hazard rate quantity of a parent distribution G, so-called
NLCH − G distribution. One of our main motivation to introduce this new cat-
egory of distributions is that, when the parent distribution G be exponential, the
proposed model reduced to NH distribution.
The cumulative hazard rate function is a prominent concept in topics of survival

analysis and reliability engineering and plays an important role in this area of sci-
ence. Suppose that X be a random variable with density function f and cumulative
distribution function F , then hazard rate and cumulative hazard rate functions are
defined;

h(x) =
f(x)

R(x)

and

H(x) = − logR(x) = e−
∫ x
0
h(t)dt,

respectively, where R(x) = 1 − F (x) denotes the survival function of X (Barlow
and Proschan (1975)).
In the next, we first obtain the fundamental and statistical properties ofNLCH−

G in general setting and then we propose an especial case of NLCH −G model by
considering Weibull distribution instead of the parent distribution G. It is referred
as NLCH −Weibull (or NLCH −W ) distribution. We provide a comprehensive
discussion about statistical and reliability properties of new NLCH −W model.
Furthermore, we consider Maximum likelihood, Bayesian and bootstrap estimation
procedures in order to estimate the unknown parameters of the new model for
complete, right-censored and progressively type-I interval-censored data sets. In
the Bayesian discussion, we consider different types of symmetric and asymmetric
loss functions such as squared error, absolute value, Linear Exponential (LINEX)
and generalized entropy to estimate three unknown parameters of NLCH − W
model. Since the parameter space for all three parameters is positive, we use gamma
priors distributions. Bayesian %95 credible and highest posterior density (HPD)
intervals (see Chen et al. (1999)) are provided for each parameter of proposed
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model. In addition, the asymptotic confidence intervals and parametric and non-
parametric bootstrap confidence intervals are calculated in order to compare with
corresponding Bayesian intervals.
The rest of the paper organized as follows. In the section 2, a new category of

lifetime distributions is introduced based on the fundamental quantity H(x) and
then the main statistical and reliability properties are obtained in general setting.
In section 3, by considering the Weibull distribution as the base distribution, a
new model is presented according to the general model discussed in section 1 and
its prominent characteristics are studied. This new model refer as NLCH − W
distribution. In section 4, we examine the inferential procedures for estimation
unknown parameters of the NLCH−W model. In this Section, we provide discus-
sions about three important estimation methods maximum likelihood, Bayesian and
bootstrap. Here we use four well-known loss functions like squared error, absolute
value, LINEX and generalized entropy. Application and numerical analysis of three
real data sets (complete, right-censored and progressively type-I interval-censored)
are presented in section 5. Finally, in section 6 the paper is concluded.

2. New model and properties

In this section, first we introduce a new category of lifetime distributions and
then we obtain main statistical and reliability properties of the proposed family in
general setting.

Definition 2.1. A random variable X is said to have NLCH − G distribution if
its probability distribution function (pdf) is given by

f(x;α, γ) = αh(x)
(
γ +H(x)

)α−1
eγ−(γ+H(x))

α

, x > 0, α > 0, γ > 0, (1)

and its cumulative distribution function (cdf) is given by

F (x;α, γ) = 1− eγ−(γ+H(x))
α

, x > 0, α > 0, γ > 0 (2)

where, H(x) is cumulative hazard function of baseline distribution G(x) and h(x) =
∂H(x)
∂x .

The corresponding survival function of (1) is given as

R(x;α, γ) = eγ−(γ+H(x))
α

, x > 0, α > 0, γ > 0. (3)

Remark 2.2. Let α = 1, then we get F (x;α = 1, γ) = G(x).

In the following theorem we investigate the connection betweenNH andNLCH−
G models.

Theorem 2.3. Suppose that the random variable X be a continuous random vari-
able with cumulative hazard rate function H(x), and the random variable Y has NH
distribution with parameter α and λ. Then the transformed variable Z = H−1(λY )
has a density with pdf (1) as parameter γ = 1. H−1(.) is inverse function of H(.).
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Proof. Using the method of distribution function we have;

FZ(z) = P (Z ≤ z)
= P (H−1(λY ) ≤ z)

= P (Y ≤ 1

λ
H(z))

= 1− e1−(1+H(z))
α

,

so the proof is completed. �
Following this section, we get some fundamental properties of proposed model

such as hazard rate function, survival function, quantile function and order statistic
distribution. It is seen that all of these measures have closed expression in terms
of quantity H(x).

2.1. Hazard Rate Function. The hazard rate is a key concept in analysis of
reliability and measuring the aging process. Knowing shape and behavior of the
hazard rate in reliability theory, risk analysis, and so on, is very important. The
hazard rate function of the NLCH −G distribution is given as

hF (x, α, γ) =
f(x;α, γ)

R(x;α, γ)

= αh(x)(γ +H(x))α−1. (4)

Remark 2.4. In fact the hazard rate function of new model is a weighted version
of baseline hazard with weight w(x) = α(γ +H(x))α−1.

Lemma 2.5. By considering (4), we have
• if r(x) is increasing and α ≥ 1 then rF (x, α, γ) is increasing.
• if r(x) is decreasing and α ≤ 1 then rF (x, α, γ) is decreasing.

Proof. The proof is straightforward. �
In the following lemma we provide a result about stochastic order in hazard

function to compare proposed model and baseline distribution. First we recall the
following definition. The random variable X is said to be less than variable Y in
hazard rate order, X ≤hr Y , if hX(x) ≥ hY (x), for all x in the union of supports
of X and Y , where hX(x)(hY (x)) is the hazard rate of X(Y ). For more details see
Shaked and Shanthikumar (2007).

Lemma 2.6. Let XF and XG be two random variables corresponding with proposed
model (1) and distribution G respectively, then under the condition γ ≥ 1

• if α > 1 then XF ≤hr XG.
• if α < 1 then XG ≤hr XF .

Proof. The proof is straightforward. �
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2.2. Random variate generation. One important quantity for each probabilis-
tic model is to have the data generator function based on an explicit formula,
because the simulation studies researchers are more satisfied with the data genera-
tor functions of a given form. For generating random variables from the NLCH−G
distribution, we use the inverse transformation method. The quantile of order p of
the NLCH −G distribution is

xp = F−1(p;α, γ) = H−1((γ − log(1− p)) 1
α − γ). (5)

where H−1(x) is inverse function of quantity H(x). Let U be a random variable
generated from a uniform distribution on(0, 1), then

X = H−1((γ − log(1− U))
1
α − γ) (6)

is a random variable generated from the NLCH−G distribution by the probability
integral transform.

2.3. Order statistics. Order statistics have applications in various directions such
as statistical inference, reliability engineering, quality control and etc. Let X1, X2,
. . . , Xn be a random sample from NLCH − G distribution. Let Xi:n denote the
ith order statistic. Then the pdf of Xi:n is given by

gi:n(x) =
n!

(i− 1)!(n− i)!g(x)[G(x)]i−1[Ḡ(x)]n−i

=
n!en−i+1

(i− 1)!(n− i)!αh(x)
(
γ +H(x)

)α−1
e(n−i+1)(γ+H(x))

α

×
(
1− eγ−(γ+H(x))

α)i−1
3. NLCH-Weibull (NLCH-W) model

Without loss of generality let parameter γ = 1 and consider the Weibull distrib-
ution as a parent distribution with cdf function F (x;β, λ) = 1− e−λxβ , x > 0, β >
0, λ > 0. By replacing this model in relation (3), the pdf of the NLCH −W is
given as

f(x;α, β, λ) = αλβxβ−1(1 + λxβ)α−1e1−(1+λx
β)α (7)

and its cdf is given by

F (x;α, λ) = 1− e1−(1+λx
β)α . (8)

Remark 3.1. If α = 1, we attain the pdf of Weibull distribution and If β = 1, we
get NH distribution respectively.
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3.1. Density shape. It is easy to investigate that the shape of NLCH −W is
unimodal and

• if β > 1 then limx→0 f(x) = 0,
• if β < 1 then limx→0 f(x) =∞,

and
lim
x→∞

f(x) = 0. (9)

Figure 1. The graphs of pdf (a) and hazard rate function (b, c
and d) of the NLCH −W distribution for some selected values of
parameters.

In the next section, we consider the hazard shape of NLCH −W distribution.

3.2. Hazard rate function of NLCH-W distribution. The hazard rate func-
tion of NLCH −W distribution is

h(x) =
f(x)

1− F (x)

= αλβxβ−1(1 + λxβ)α−1.
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Determining the behavior of the hazard rate is very important in various appli-
cations, especially in reliability theory. It can easily be shown that the proposed
model (7) has a variety of hazard shapes. The hazard rate function allows for con-
stant, monotonically increasing, monotonically decreasing, unimodal and bathtub
shaped hazard rates. In summary, different types of hazard rates are as follows.

• if β > 1 and αβ > 1 then h(x) is monotonically increases with h(0) = 0.
• if β < 1 and αβ < 1 then h(x) is monotonically decreases with h(0) =∞.
• if β > 1 and αβ < 1 then h(x) is bathtub shape.
• if β < 1 and αβ > 1 then h(t) is upside down bathtub shape.
• if β = 1 and α = 1 then h(t) is constant.

Some shapes of pdf and hazard function for the selected values of parameters is
given in Figure 1.

4. Estimation procedures

Nowadays, three methods of maximum likelihood estimation, Bayesian and boot-
strap procedures are of particular importance in the theory of statistical inference
undoubtedly. In this section, we describe each of these methods separately for esti-
mating the parameters α, β and λ of the NLCH−W distribution. For all methods
we consider the case when all three parameters are unknown.

4.1. Maximum likelihood estimation. The maximum likelihood procedure is
one of the most common methods for obtaining an estimator for an unknown pa-
rameter in classic statistical inference. The likelihood function is a function that
written based on the mechanism of the observations occurrence. Here, the struc-
ture of the likelihood function is expressed for three modes of observations including
complete data, right-censored and progressive interval-censored data sets.

4.1.1. Maximum likelihood estimation for complete data set. LetX1, X2, . . . , Xn be
a random sample of size n from NLCH −W distribution. The likelihood function
is given for equation (7) by

L(x, α, β, λ) =

n∏
i=1

αλβxβ−1i (1 + λxβi )α−1e1−(1+λx
β
i )
α

. (10)

So, the log-likelihood function is written as

`(x, α, β, λ) = logL(x, α, β, λ) = n[logα+ log λ+ log β] + (β − 1)

n∑
i=1

log xi

+ (α− 1)

n∑
i=1

log(1 + λxβi ) + n−
n∑
i=1

(1 + λxβi )α.
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The normal equations are derived by differentiation of the log-likelihood function
with respect to parameters α, β and λ.

∂`

∂α
=
n

α
+

n∑
i=1

log(1 + λxβi )−
n∑
i=1

(1 + λxβi ) log(1 + λxβi ),

∂`

∂β
=
n

β
+

n∑
i=1

(1 + λxβi ) log xi + (α− 1)

n∑
i=1

λxβi log xi

1 + λxβi
−

n∑
i=1

λxβi (1 + λxβi )α log xi,

∂`

∂λ
=
n

λ
+

n∑
i=1

xβi

1 + λxβi
− α

n∑
i=1

xβi (1 + λxβi )α−1.

Setting these differentiations equal to zero and solving for α, β and λ, then we can
obtain the maximum likelihood estimator MLE of parameters α, β and λ.

4.1.2. Maximum likelihood estimation for right-censored data set. Let (X1, δ1), (X2, δ2),
. . . , (Xn, δn) be a right-censored random sample of size n from NLCH −W distri-
bution. Where δi is a censoring indicator variable, that is, δi = 1 for an observed
survival time and δi = 0 for a right-censored survival time. In the case NLCH−W
distribution the likelihood function and the corresponding log-likelihood are given
as

L(x, δ, α, β, λ) =

n∏
i=1

(
αλβxβ−1i (1 + λxβi )α−1e1−(1+λx

β
i )
α

)δi(
e1−(1+λx

β
i )
α

)1−δi
(11)

and

`(x, δ, α, β, λ) = logL(x, δ, α, β, λ)

= [logα+ log λ+ log β]

n∑
i=1

δi + (β − 1)

n∑
i=1

δi log xi

+(α− 1)

n∑
i=1

δi log(1 + λxβi ) + n−
n∑
i=1

(1 + λxβi )α,

respectively. Analogous above results the normal equations can be derived in the
case right-censored sample data.

4.1.3. Maximum likelihood estimation for progressively type-I interval-censored data
set. Let n items to be applied on a life testing simultaneously at time t = 0 and
suppose that m pre-specified times t1 < t2 < ... < tm, where tm is scheduled time
to terminate the experiment, be determined . At the ith inspection time, ti , the
number, Xi , of failures within (ti − 1, ti] is recorded and Ri surviving items are
randomly removed from the life testing for i = 1, 2, ...,m. Therefore, a progressively
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type-I interval-censored sample can be denoted as S = (Xi, Ri, ti) and sample size
is n =

∑m
i=1(Xi+Ri). The likelihood function of density (1) based on progressively

type-I interval-censored sample

S = (Xi, Ri, ti), i = 1, 2, ..., n

is given as

L(S, α, β, λ) =

m∏
i=1

[
e1−(1+λt

β
i−1)

α

− e1−(1+λt
β
i )
α

]Xi[
1− e1−(1+λt

β
i )
α

]Ri
. (12)

The log-likelihood function is given as;

`(S, α, β, λ) = logL(S, α, β, λ) =

n∑
i=1

Xi log
[
e1−(1+λt

β
i−1)

α

− e1−(1+λt
β
i )
α]

+

n∑
i=1

Ri log
[
1− e1−(1+λt

β
i )
α]
.

Also, here we can derive normal equations for corresponding log-likelihood function
similar complete and right-censored samples data. In practical due to the non-
linearity of corresponding normal equations in three cases that discussed above, we
use numerical algorithms to extract MLEs estimators.

4.2. Bootstrap estimation. The uncertainty in parameters of the fitted distri-
bution can be estimated by parametric (re-sampling from the fitted distribution)
or non-parametric (re-sampling with replacement from the original data set) boot-
straps re-sampling Efron and Tibshirani (1994). These two parametric and non-
parametric bootstrap procedures for complete data set are described as follows.
Parametric bootstrap procedure:

(1) Estimate θ (vector of unknown parameters), say θ̂ , by using the MLE
procedure based on a random sample.

(2) Generate a bootstrap sample {X∗1 , . . . , X∗m} , using θ and obtain the boot-
strap estimate of θ, say θ̂∗, from the bootstrap sample based on the MLE
procedure.

(3) Repeat step 2 NBOOT times.
(4) Order θ̂∗1, . . . , θ̂

∗
NBOOT as θ̂

∗
(1), . . . , θ̂

∗
(NBOOT ) . Then obtain γ-quantiles

and 100(1− α)% confidence intervals of parameters.
In case of the NLCH − W distribution, the parametric bootstrap estimators

(PBs) of α, β and λ, say α̂PB , β̂PB and λ̂PB , respectively.
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Non-parametric bootstrap procedure:

(1) Generate a bootstrap sample {X∗1 , . . . , X∗m} , with replacement from origi-
nal data set. Obtain the bootstrap estimate of θ with MLE procedure, say
θ̂∗ using the bootstrap sample.

(2) Repeat step 2 NBOOT times.
(3) Order θ̂∗1, . . . , θ̂

∗
NBOOT as θ̂

∗
(1), . . . , θ̂

∗
(NBOOT ) . Then obtain γ-quantiles

and 100(1− α)% confidence intervals of parameters.

In case of the NLCH−W distribution, the non-parametric bootstrap estimators
(NPBs) of α, β and λ, say α̂NPB , β̂NPB and λ̂NPB , respectively.
Analogous algorithms can be expressed for bootstrap estimation of right-censored
sample data.

4.3. Bayesian estimation. Bayesian inference procedure for censored data have
been taken into consideration by many statistical researchers, especially researchers
in the field of survival analysis and reliability engineering. In this section, a complete
sample data and two widely used types of censored observations, right-censored and
progressively type-I interval-censored observations are analyzed through Bayesian
point of view. We assume that the parameters α, β and λ of NLCH −W distrib-
ution have independent prior distributions as

α ∼ Gamma(a, b), β ∼ Gamma(c, d), λ ∼ Gamma(e, f),

where a,b,c,d,e and f are positive. Hence, the joint prior density function is formu-
lated as follow:

π(α, β, λ) =
badcfe

Γ(a)Γ(c)Γ(e)
αa−1βc−1λe−1e−(bα+dβ+fλ). (13)

In the Bayesian estimation, according to that we do not know the actual value of the
parameter, we may be adversely affected by loss when we choose an estimator. This
loss can be measured by a function of the parameter and corresponding estimator.
Four well-known loss functions and associated Bayesian estimators are presented
as:

• Squared error loss function and Bayesian estimator
L(γ(θ), d(x)) = (γ(θ)− d(x))2

dB(x) = E(γ(θ)|d(x))
• Absolute value loss function and Bayesian estimator

L(γ(θ), d(x)) = |γ(θ)− d(x)|
dB(x) = Median(γ(θ)|d(x))

• LINEX loss function and Bayesian estimator
L(γ(θ), d(x)) =

[
ec(γ(θ)−d(x)) − (γ(θ)− d(x))− 1

]
dB(x) = − logE

(
e−cγ(θ)|d(x)

)
c
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• Generalized entropy loss function and Bayesian estimator
L(γ(θ), d(x)) =

[
(γ(θ)d(x) )

c − log(γ(θ)d(x) )− 1

]
dB(x) =

(
E(γ−c(θ)|x)

)− 1
c

.

For more details see Calabria and Pulcini (1996).
In the next, we provide the posterior probability distributions in three modes:

complete, right-censored and progressively type-I interval-censored data sets. Let
we define the function ϕ as

ϕ(α, β, λ) = αa−1βc−1λe−1e−(bα+dβ+fλ), α > 0, β > 0, λ > 0.

The joint posterior distribution in terms of a given likelihood function L(data) and
joint prior distribution π(α, β, λ) defined as

π∗(α, β, λ|data) ∝ π(α, β, λ)L(data). (14)

Hence, we get joint posterior density of parameters α, β and λ for complete sam-
ple data by combining the likelihood function (10) and joint prior density (13).
Therefore, the joint posterior density function is given by

π∗(α, β, λ|x) = Kϕ(α, β, λ)

n∏
i=1

αβλxβ−1i (1 + λxβi )α−1e−(1+λx
β
i )
α

(15)

where K is given as

K−1 =

∫ ∞
0

∫ ∞
0

∫ ∞
0

ϕ(α, β, λ)

n∏
i=1

αβλxβ−1i (1 + λxβi )α−1e−(1+λx
β
i )
α

dαdβdλ.

Furthermore, by using likelihood functions (11), (12) and joint prior distribu-
tion (13) the joint posterior probability distribution functions for right-censored
(x, δ) and progressively type-I interval-censored sample data (S = (Xi, Ri, ti), i =
1, 2, ..., n) presented respectively with

π∗(a, β, λ|x, δ) = Mϕ(α, β, λ)

n∏
i=1

(
αλβxβ−1i (1 + λxβi )α−1

)δi
e−(1+λx

β
i )
α

and

π∗(a, β, λ|S) = Zϕ(α, β, λ)

n∏
i=1

[
e1−(1+λt

β
i−1)

α

− e1−(1+λt
β
i )
α

]Xi[
1− e1−(1+λt

β
i )
α

]Ri
,

where M is given as

M−1 =

∫ ∞
0

∫ ∞
0

∫ ∞
0

ϕ(α, β, λ)

n∏
i=1

(
αλβxβ−1i (1 + λxβi )α−1

)δi
e−(1+λx

β
i )
α

dαdβdλ.
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and Z is given as

Z−1 =

∫ ∞
0

∫ ∞
0

∫ ∞
0

ϕ(α, β, λ)

×
n∏
i=1

[
e1−(1+λt

β
i−1)

α

− e1−(1+λt
β
i )
α

]Xi[
1− e1−(1+λt

β
i )
α

]Ri
dαdβdλ.

Here we interested in obtaining Bayesian estimators for three sample data sets
(complete, right-censored and type-I progressive interval-censored data sets) under
the four loss functions described above. As it is observed, there are no closed
forms for the Bayes estimators. It is possible to simulated posterior sample data
sets by using Gibbs sampling method and Metropolis-Hasting algorithm. Thus, by
applying MCMC algorithm the corresponding Bayes estimators, Bayesian credible
and HPD intervals are calculated.

5. Application of NLCH-W distribution on the real datasets

This section aims to show applications of the NLCH − W model under the
methods discussed in the section 4 via real data examples. In order to achieve this
target, we consider three real data sets to illustrate the application of proposed
distribution in real world and the superiority of this model to some other useful
classic models. Furthermore, in this section, we provide Bayesian and bootstrap
analysis of parameter estimation of NLCH − W model for three real data sets.
The following data sets contain three modes of real world observations: complete,
right-censored and progressively type-I interval-censored.

Complete data set: Failure times of 84 Aircraft Windshield

We consider the data of service times for a particular model windshield. These
data were recently studied by Ramos et al. (2013). The data consist of 84 obser-
vations.
0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610 3.478 0.557 1.911
2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914 2.646 3.699 1.124 1.981 2.661 3.779
1.248 2.010 2.688 3.924 1.281 2.038 2.82 3 4.035 1.281 2.085 2.890 4.121 1.303 2.089
2.902 4.167 1.432 2.097 2.934 4.240 1.480 2.135 2.962 4.255 1.505 2.154 2.964 4.278
1.506 2.190 3.000 4.305 1.568 2.194 3.103 4.376 1.615 2.223 3.114 4.449 1.619 2.224
3.117 4.485 1.652 2.229 3.166 4.570 1.652 2.300 3.344 4.602 1.757 2.324 3.376 4.663

Right-censored data set: Lifetimes of 30 devices

Meeker and Escobar (2014) represented observed lifetimes of 30 devices that in-
cludes eight censored observations. 2 10 13 23 23 28 30 65 80 88 106 143 147 173
181 212 245 247 261 266 275 293 300+ 300+ 300+ 300+ 300+ 300+ 300+ 300+
The + sign indicates right-ensored observations.
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Progressively type-I interval-censored data set: 112 patients with plasma
cell myeloma

Table 1 contains a typical progressively type-I interval-censored data that de-
voted to 112 patients with plasma cell myeloma treated at the National Cancer
Institute (see Carbone et al. (1967)).

Table 1. Progressively type-I interval-censored data set

Interval in months Number at risk Number of withdrawals
[0,5.5) 112 1
[5.5,10.5) 93 1
[10.5,15.5) 76 3
[15.5,20.5) 55 0
[20.5,25.5) 45 0
[25.5,30.5) 34 1
[30.5, 40.5) 25 2
[40.5,50.5) 10 3
[50.5,60,6) 3 2
[60.5,∞) 0 0

5.1. MLE, bootstrap and Bayesian estimation of NLCH-W model and
comparing with other models in case complete data set. First, we fit the
proposed distribution to the complete real data set by MLE method and compare
the results with the gamma, Weibull, log-normal (Lnorm), generalized exponential
(GE) and weighted exponential (WE) distributions with respective densities

fgamma(x) =
1

Γ(α)
λαxα−1e−λx

fWeibull(x) =
β

λβ
xβ−1e−(

x
λ )
β

fLnorm(x) =
1

xσ
√

2π
e
−(log x−µ)2

2σ2

fGE(x) = αλe−λx(1− e−λx)α−1

fWE(x) =
α+ 1

α
λe−λx(1− e−αλx).



14 OMID KHARAZMI AND SHAHLA JAHANGARD

Table 2 includes the MLEs of parameters, log-likelihood and Akaike information
criterion (AIC) for NLCH−W distribution and the mentioned above distributions
in the case complete real data set. The results of Table 2 shows that, theNLCH−W

Table 2: The MLEs of parameters for complete data set.
Model Estimation Log-likelihood AIC

NLCH-W (α̂, β̂, λ̂)=(3.874,1.938,0.024 ) -128.052 262.105
gamma (α̂, λ̂)=(3.492,1.365) -136.937 277.874
Weibull (β̂, λ̂)=(2.374,2.863) -130.053 264.107
Lnorm (µ̂, σ̂)=(0.789,0.687) -153.920 311.840
WE (α̂, λ̂)=(0.002,0.781) -143.025 290.049
GE (α̂, λ̂)=(3.562 ,0.758) -139.841 283.681

Figure 2. Histogram and fitted density plots, the plots of empir-
ical and fitted cdfs, P − P plots and Q−Q plots for the complete
data set.

distribution provides the best fit for the complete data set as it has lower AIC
statistic than the other competitor models. The histogram of data set, fitted pdf
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of the NLCH −W distribution and fitted pdfs of other competitor distributions
for the real data set are plotted in Figure 2. Also, the plots of empirical and fitted
cdfs functions, P − P plots and Q−Q plots for the NLCH −W and other fitted
distributions are displayed in Figure 2. These plots also support the results in Table
2.
In the rest of this subsection, we provide Bayesian and Bootstrap estimation

results. It is clear from the equation (15) that there is no closed form for the
Bayesian estimators under the four loss functions described in subsection 4.3, so we
suggest using an MCMC procedure based on 1000 replicates to compute Bayesian
estimators. The corresponding Bayesian point and interval estimation provided
in Table 3. The posterior samples extracted by using Gibbs sampling technique.
Moreover, we provide the posterior summary plots. These plots confirm that the
sampling process is of prime quality and convergence is occurred.
Also, here we obtain point and %95 confidence interval estimation of parame-

ters of the NLCH −W distribution by parametric and non-parametric bootstrap
methods for complete real data set. We provide results of bootstrap estimation
based on 10000 bootstrap replicates in Table 3. It is interesting to look at the joint
distribution of the bootstrapped values in a scatter plot in order to understand the
potential structural correlation between parameters (see Figures 3 and 4).

Table 3: Bayesian and bootstrap estimation of parameters of NLCH −W
for complete data set.

Estimation procedure Bootstrap estimation of parameters

Parametric Bootstrap âPB β̂PB λ̂PB
Point estimation 4.517 1.981 0.019
Confidence interval (0.74, 37.944) (1.584, 2.973) (0.003, 0.105)

Non-Parametric Bootstrap âNPB β̂NPB λ̂NPB
point estimation 21.481 1.859 0.005
confidence interval (0.589, 49.932) (1.507, 3.260) (0.0022, 0.088)

Bayesian procedure Bayesian estimation of parameters

Loss function âB β̂B λ̂B
Squared error 3.934 1.952 0.022

Absolute value 3.905 1.955 0.022

LINEX (c = −0.5) 4.059 1.959 0.021

Generalized entropy (c = −0.5) 3.904 1.949 0.022

Bayesian Interval âB β̂B λ̂B
Credible interval (3.444, 4.386 ) (1.845, 2.052) (0.019, 0.024)

HPD ( 2.550, 5.266) (1.624, 2.247) (0.015, 0.029)

By analyzing the results of the present table, we can see that the estimated val-
ues of parameters are similar for both Bayesian and bootstrap procedures in terms
of point and interval (quantile bootstrap, %95 credible and HPD intervals) estima-
tion. In addition, by comparing this results with MLEs estimation of parameters
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Figure 3. Parametric bootstrapped values of parameters of the
NLCH −W distribution for the complete data.

Figure 4. Non-parametric bootstrapped values of parameters of
the NLCH −W distribution for the complete data.

of NLCH−W in Table 2, it can be seen that, in general the estimation results are
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Figure 5. Plots of Bayesian analysis and performance of Gibbs
sampling for complete data set. Top panel: trace plots; Middle
panel: autocorrelation plots; Bottom panel: histograms of each
parameter of NLCH −W distribution.

similar under three estimation procedures that described in section 5. Figures 3 and
4 relate to the parametric and non-parametric bootstrap estimation of parameters
α, β and λ. Also, Figure 5 relates to the Bayesian analysis process, including his-
tory (Trace plot), autocorrelation function(acf) and histogram of three parameters
samples drown from posterior distribution (15). These plots show that convergence
was reached, no autocorrelation problems were encountered and the density of the
posterior is extracted.

5.2. MLE, bootstrap and Bayesian estimation in case right-censored data
set. Here, we provide the MLE, non-parametric bootstrap and Bayesian estima-
tion of α, β and λ, the parameters of NLCH −W distribution for right-censored
data set that given at the beginning of section 5. In order to compare different es-
timation results, we also provide interval estimation (%95 asymptotic confidence,
quantile bootstrap, %95 credible and HPD intervals) of parameters under the three
estimation procedures that considered in section 4. Table 4 shows the corresponding
results for right-censored data set. In addition, the plots of empirical and theoreti-
cal cdfs and diagrams of the Bayesian analysis process are provided in Figure 6 and
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Figure 7, respectively. Associated Bayesian procedure plots show that convergence
was reached and no autocorrelation problems there exist. Also, Figure 6 represent
the estimated lower and upper bound of cumulative probability.

Table 4: MLE, Bayesian and bootstrap estimation of parameters of
NLCH −W distribution for right-censored data set.

Estimation procedure Maximum likelihood estimation

MLE’s â β̂ λ̂
Point estimation 3.344 0.835 0.002
Confidence interval (0, 9.603) ( 0.477, 1.192) (0.001, 0.0034)

LL -142.259
AIC 290.517

Estimation procedure Bootstrap estimation of parameters

Non-Parametric Bootstrap âNPB β̂NPB λ̂NPB
point estimation 1.070 0.835 0.007
confidence interval (0.116, 9.822) (0.579, 1.831 (0.002, 0.054)

Bayesian procedure Bayesian estimation of parameters

Loss function âB β̂B λ̂B
Squared error 3.296 0.876 0.0022

Absolute value 3.129 0.873 0.002

LINEX (c = −0.5) 3.790 0.876 0.0022

Generalized entropy (c = −0.5) 3.175 0.872 0.0021

Bayesian Interval âB β̂B λ̂B
Credible interval (2.335, 4.027) (0.800, 0.949) (0.001 0.0028)

HPD ( 1.145, 5.937) (0.677, 1.089) (0.0005, 0.004)

5.3. MLE and Bayesian estimation in the case progressively type-I interval-
censored data set. Analogous two previous subsections, here we provide a sum-
mary of numerical analysis of progressively type-I interval-censored data set based
on the Bayesian and maximum likelihood methods described in section 5. Table 5
is devoted to estimation of parameters. This table provides the Bayesian estimators
and %95 credible and HPD intervals for each parameter of proposed NLCH −W
model. In addition, the maximum likelihood estimators are calculated in order to
compare with corresponding Bayesian estimators under the different loss functions.
Plots of history, acf plots and histogram of posterior samples of each parameter of
proposed distribution provided in Figures 8. These figures show that the simulation
processes of Gibbs algorithm has good quality and convergence is occurred.

6. Conclusion

In this article, a new model of lifetime distributions is introduced and main
properties of it are obtained. One of the interesting and important properties of
proposed family is that, it results the Nadarajah and Haghighi (2011) famous
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Figure 6. Plots of cdf of NLCH − W distribution for right-
censored data set.

Figure 7. Plots of Bayesian analysis and performance of Gibbs
sampling for right-censored data set. Top panel: trace plots; Mid-
dle panel: autocorrelation plots; Bottom panel: histograms of each
parameter of NLCH −W distribution.

distribution, as an especial case, when the parent distribution is exponential. An
especial example of this family is introduced by considering Weibull distribution as
the base distribution. We also show that the proposed distribution has variability
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Table 5: Bayesian estimation of parameters of NLCH −W for
progressively type-I interval-censored data set.

Estimation method
Maximum likelihood estimation â β̂ λ̂

MLE’s 0.996 1.228 0.019
LL 230.340
AIC 466.681

Bayesian estimation
Loss function âB β̂B λ̂B
Squared error 1.005 1.333 0.019

Absolute value 0.939 1.322 0.018

LINEX (c = 0.5) 0.976 1.328 0.019

Generalized entropy (c = 0.5) 0.924 1.321 0.018

Bayesian Interval âB β̂B λ̂B
Credible interval (0.758, 1.181) (1.226,1.427) (0.015,0.022)

HPD (0.429,1.728) (1.048,1.623) (0.009,0.029)

of hazard rate shapes such as increasing, decreasing, bathtub shape and upside-
down bathtub shapes. Classic and Bayesian inferences for three cases of real data
such as complete, right-censored and progressively type-I interval-censored data
sets are investigated. Bayesian estimators under the four well-known loss functions
are presented. Numerical results of maximum likelihood, Bayesian and bootstrap
procedures for each set of real data are presented in separate tables. From a practi-
cal point of view, the distribution introduced in this study was shown to be better
than some common statistical distributions for some real data sets applied as an
example.
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Figure 8. Plots of Bayesian analysis and performance of Gibbs
sampling for progressively type-I interval-censored data set. Top
panel: trace plots; Middle panel: autocorrelation plots; Bottom
panel: histograms of each parameter of NLCH −W distribution.
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