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TRANSMUTED GUMBEL UNIVARIATE EXPONENTIAL
DISTRIBUTION

MONIREH HAMELDARBANDI AND MEHMET YILMAZ

Abstract. A functional composition of the distribution function of one prob-
ability distribution with the inverse distribution function of another is called
the transmutation map. The present paper is purported to show how the
transmuted distribution can be obtained by using the convex combination of
failure probability of two-component systems. The transmuted Gumbel uni-
variate exponential distribution is presented by changing convex combination
parameter. This new distribution is defined and studied. Some mathematical
properties of this distribution including the generating function and ordinary
moments are derived. The survival, hazard rate and mean residual life func-
tions are discussed. Finally, three applications to real data are presented.

1. Introduction

In the present paper, we will start by examining two-component (series and par-
allel) systems. The failure probabilities of these systems will be found and a new
distribution is obtained by applying convex combinations to these probabilities as
these can be ordered within themselves. In the process of proposing this distribu-
tion, the lifetimes of the components of the system which are the random variables
are considered to be both dependent on each other and non-identical. If the random
variables that represent the lifetimes of two components are identical and indepen-
dent, then this proposed distribution will emerge in the transmuted model, which
is one of the important families in the pertinent-literature in recent years. The
transmuted family has been introduced by [27] for the first time and the theory
of transmuted distribution is clearly defined by [28]. This method has led to the
development of new and more flexible distributions by many authors, proposing
many different distributions and pioneering the modeling of many real data sets
with these distributions. Aryal and Tsokos [4] and [5] studied the two forms of
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the transmuted distributions. These scholars provided the mathematical charac-
terization of transmuted extreme value and transmuted Weibull distributions and
their applications to analyze real data sets. Aryal [6] proposed the transmuted log-
logistic distribution and discussed various properties of this distribution. Merovci
[19] introduced the transmuted Lindley distribution and applied it to bladder cancer
data; Merovci [20] proposed the transmuted exponentiated exponential distribution;
Merovci and Elbatal [21] studied the transmuted Lindley-geometric distribution.
Ashour and Eltehiwy [7] discussed the applications of Transmuted Lomax Distrib-
ution and Ashour and Eltehiwy [8] proposed the transmuted exponentiated Lomax
distribution. More recently, the transmuted exponentiated modified Weibull distri-
bution has been suggested by [13] having its applications in real data. Hussian [16]
obtained the transmuted exponentiated gamma distribution and discussed their
various properties and applications. Elbatal et al. [11] discussed as various esti-
mation methods for the transmuted exponentiated Fréchet distribution. Abd El
Hady [1] obtained an extended Weibull distribution as the exponentiated trans-
muted Weibull distribution and discussed its various properties and applications.
Merovci and Puka [22] introduced the transmuted Pareto distribution. Elbatal and
Aryal [12] studied the transmuted additive Weibull distribution; Merovci [23] pro-
posed the transmuted Rayleigh distribution and discussed their various properties.
In the second part of this article, the new family will be introduced and the sur-
vival and hazard rate functions of the model under study will be found. The third
part of this article contains some main definitions as Gumbel Bivariate Exponential
Distribution and Gumbel Univariate Exponential Distribution. Later, the baseline
distributions of the proposed distribution will be taken as exponential distribution
and the proposed distribution is called the transmuted Gumbel univariate expo-
nential (TGUE) distribution. In the subsequent subsections, the analytical shapes
of the probability density, survival, cumulative hazard rate, hazard rate and mean
residual life functions of the TGUE distribution are presented. Statistical prop-
erties including moment generating function and moments, maximum likelihood
estimates and the information matrix, random number generation, Rényi entropy
and order statistics of the TGUE distribution are discussed in other subsections of
Section 3. Finally, in order to demonstrate the usefulness of the proposed distrib-
ution, three real data applications are presented in the application section.

2. The New Family

In recent literature, the transmuted family of lifetime distributions have at-
tracted the attention of the researchers for modeling the lifetime data. Firstly,
two-component (series and parallel) systems will be introduced. Let T1 and T2 be
random variables that represent the lifetime of the components. Throughout this
paper, the marginal distribution functions of T1 and T2 are represented by FT1 (.)
and FT2 (.), and the joint distribution and the joint survival functions of T1 and
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T2 are indicated by FT1,T2 (., .) and ST1,T2 (., .) = 1− FT1 (.)− FT2 (.) + FT1,T2 (., .),
respectively. The series system success requires that the two parts operate success-
fully at the same time. System failure occurs if either one or more components fail.
Then, the random variable Tmin that stands for the series system lifetime is defined
as Tmin = min {T1, T2}. Hence, the probability of the failure of the series system
is given by

P (Tmin ≤ t) = 1−P (T1 > t, T2 > t) = 1−ST1,T2 (t, t) = FT1 (t)+FT2 (t)−FT1,T2 (t, t)

Parallel system is such a system that functions when at least one of its components
works and the failure of all the components is necessary for the system’s failure to
occur. Accordingly, Tmax = max {T1, T2} stands for the parallel system lifetime.
Then, the probability of the failure of the parallel system is given by

P (Tmax ≤ t) = P (max {T1, T2} ≤ t) = P (T1 ≤ t, T2 ≤ t) = FT1,T2 (t, t) .

According to axiomatic properties of probability, component lifetimes T1 and T2

can be ordered stochastically as Tmin≤ st Ti≤ st Tmax, i = 1, 2. Namely, we have
P (Tmax ≤ t) ≤ P (Ti ≤ t) ≤ P (Tmin ≤ t). Then, the lower and the upper bounds
for FTi (t) can be written as follows:

FT1,T2 (t, t) ≤ FTi (t) ≤ FT1 (t) + FT2 (t)− FT1,T2 (t, t) . (1)

In that case, FTi (t) can be represented as a convex combination of failure proba-
bilities series and parallel systems. Then, we have

λ (FT1 (t) + FT2 (t)− FT1,T2 (t, t)) + (1− λ)FT1,T2 (t, t)

= λ (FT1 (t) + FT2 (t)) + (1− 2λ)FT1,T2 (t, t) ,

where the combination parameter λ ∈ [0, 1]. This latter well-defined statement
can derive numerous univariate distribution functions with respect to combination
parameter λ.
In the latter equation, if the distributions of random variables T1 and T2 are

assumed to be identical, namely, FT1 (t) = FT2 (t), then the new distribution with
the parameter set Θ is given by

G (t; Θ) = 2λFTi (t) + (1− 2λ)FT1,T2 (t, t) .

If transformation λ = δ+1
2 is done, range will change from [0, 1] to [−1, 1]. So, for

|δ| ≤ 1, the distribution function can be written as

G (t; Θ) = (1 + δ)FTi (t)− δFT1,T2 (t, t) (2)

= (1 + δ)FTi (t)− δ (2FTi (t) + ST1,T2 (t, t)− 1)

= (1− δ) (1− STi (t)) + δ (1− ST1,T2 (t, t)) .

So, if the distributions of random variables T1 and T2 are taken independent,
namely, FT1,T2 (t, t) = (FTi (t))

2 in the first equation of (2), we can obtain the
transmuted distribution constructed by the quadratic rank transmutation method
of [27] which has become very popular in the recent years.



140 MONIREH HAMELDARBANDI AND MEHMET YILMAZ

In particular, for δ = 0 it gives the baseline distribution FTi (t), for δ = −1,
it gives the distribution of the maximum of dependent two random variables with
joint distribution function FT1,T2 (t, t) and for δ = 1, 2FTi (t) − FT1,T2 (t, t) is the
distribution of the minimum of two random variables T1 and T2 with identically
distributed.

Theorem 1. The probability density function (p.d.f.) of T is represented in terms
of the conditional hazard rates of the component lifetimes T1 and T2 as

g (t; Θ) = (1− δ) fTi (t) + δST1,T2 (t, t) (ψ1 (t) + ψ2 (t)) , (3)

where ψ1 (t) and ψ2 (t) denote the failure rates of the corresponding components,
given that both components are alive at time t.

Proof. The p.d.f. of this distribution can be obtained with derivation of distribution
function defined in (2) as follows

g (t; Θ) =
d

dt
G (t; Θ) = (1− δ)

(
−d
dt
STi (t)

)
+ δ

(
−d
dt
ST1,T2 (t, t)

)
and the result in (3) will be obtained from the following method.

−d
dt
ST1,T2 (t, t) =

−d
dt

∫ ∞
t

∫ ∞
t

fT1,T2 (u, v) dvdu

= −
∫ ∞
t

fT1,T2 (u, t) du−
∫ ∞
t

fT1,T2 (t, v) dv

= −fT2 (t)Pr (T1 ≤ tT2 = t)− fT1 (t)Pr (T2 ≤ tT1 = t)

=
−d
dt2

ST1,T2 (t, t2)

∣∣∣∣
t2=t

+
−d
dt1

ST1,T2 (t1, t)

∣∣∣∣
t1=t

= ψ2 (t)ST1,T2 (t, t) + ψ1 (t)ST1,T2 (t, t)

where ψ1 (t) and ψ2 (t) denote the failure rates of the corresponding components,
given that both components are alive at time t and defined as follows:

ψ1 (t) = lim
∆t→0+

Pr (t < T1 ≤ t+ ∆t |T1 > t, T2 > t )

∆t
=

−d
dt1
ST1,T2 (t1, t)

∣∣∣
t1=t

S (t, t)
, t ≥ 0

ψ2 (t) = lim
∆t→0+

Pr (t < T2 ≤ t+ ∆t |T1 > t, T2 > t )

∆t
=

−d
dt2
ST1,T2 (t, t2)

∣∣∣
t2=t

S (t, t)
. t ≥ 0

(See [26] and see [17]). �
2.1. Survival and Hazard Rate Functions of Proposed Distribution. The
survival function denoted by S (t; Θ) of this distribution is defined as follows,

S (t; Θ) = 1−G (t; Θ) = 1− (1 + δ)FTi (t) + δFT1,T2 (t, t)

= 1− (1− δ) (1− STi (t))− δ (1− ST1,T2 (t, t))
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= (1− δ)STi (t) + δST1,T2 (t, t) .

The hazard rate function (hrf) corresponding to (2) and (3) is given by

h (t; Θ) =
g (t; Θ)

S (t; Θ)
=

(1− δ)hT1 (t)STi (t) + δST1,T2 (t, t) (ψ1 (t) + ψ2 (t))

(1− δ)STi (t) + δST1,T2 (t, t)

= ψ1 (t) + ψ2 (t) +
(1− δ)STi (t) (hT1 (t)− (ψ1 (t) + ψ2 (t)))

(1− δ)STi (t) + δST1,T2 (t, t)

= hT1 (t) +
δST1,T2 (t, t) ((ψ1 (t) + ψ2 (t))− hT1 (t))

(1− δ)STi (t) + δST1,T2 (t, t)

= w1 (t)hT1 (t) + w2 (t) (ψ1 (t) + ψ2 (t)) ,

where w1 (t) =
(1−δ)STi (t)

(1−δ)STi (t)+δ ST1,T2 (t,t) and w1 (t) + w2 (t) = 1. Thus, the hrf can
be written as a weighted sum of the hrf of the random variable T1 and sum of the
conditional failure rates of the corresponding components (ψ1 (t) + ψ2 (t)).
In the next section, we will introduce a bivariate version of the exponential

distribution named the Gumbel bivariate exponential distribution. On the basis
of this, the Gumbel univariate exponential distribution is defined and examined.
Then, the transmuted Gumbel univariate exponential distribution is taken as a
special case for the proposed distribution and some mathematical properties are
studied.

3. Special Case: Transmuted Gumbel Univariate Exponential (TGUE)
Distribution

We will first introduce distributions related to setting-up a special case. Then
the baseline distribution is defined and we study on some reliability properties such
as survival, cumulative hazard rate, hazard rate and mean residual life functions.
Moment generating function and moments of proposed distribution are analyzed.
ML estimation of model parameters are performed and asymptotic distribution
of the parameters are obtained in terms of observed Fisher Information and then
asymptotic confidence intervals are also obtained. General expressions for the Rényi
entropy is presented. Furthermore, general results for the order statistics of the
TGUE random variables are derived.

3.1. Gumbel Bivariate and Univariate Exponential Distribution.

3.1.1. Gumbel Bivariate Exponential Distribution. Exponential distribution plays a
central role in life testing, reliability and analyses of survival or lifetime data. The
Gumbel bivariate exponential (GBE) distribution introduced by [15] is the most
popular model for analyzing lifetime data and its survival function is

ST1,T2 (t1, t2) = e−(α1t1+α2t2+βt1t2), t1, t2 > 0, (4)
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where α1 and α2 are the scale parameters representing the characteristic life and
also positive, β is dependency parameter and 0 ≤ β ≤ α1α2. The marginal sur-
vival functions of T1 and T2 respectively are e−α1t1 and e−α2t2 . Hence T1 and T2

have exponential marginals. The p.d.f. of the three-parameter GBE distribution
corresponding to (4) is given by

fT1,T2 (t1, t2) =
∂2

∂t1∂t2
ST1,T2 (t1, t2) =

∂

∂t1

(
∂

∂t2
e−(α1t1+α2t2+βt1t2)

)
= (α1 + βt2) (α2 + βt1) e−(α1t1+α2t2+βt1t2), t1, t2 > 0.

3.1.2. Gumbel Univariate Exponential Distribution. By letting α1 = α2 and consid-
ering the diagonal section of ST1,T2 (t1, t2) i.e., t1 = t2 = t in the survival function of
GBE distribution defined in (4). Then the random vector (T1, T2) has the Gumbel
univariate exponential (GUE) distribution, and the survival function of the GUE
distribution can be written as follows

ST1,T2 (t, t) = e−(2αt+βt2), t > 0, α > 0, 0 ≤ β ≤ α2. (5)

By using the known relation between ST1,T2 (t, t) and FT1,T2 (t, t), the distribution
function of the GUE random variable is given by

FT1,T2 (t, t) = 1− 2STi (t) + ST1,T2 (t, t) = 1− 2e−αt + e−(2αt+βt2),

and its p.d.f. of the GUE random variable reduces to

fT1,T2 (t, t) = 2αe−αt − (2α+ 2βt) e−(2αt+βt2)

= 2α
(
e−αt − e−(2αt+βt2)

)
− 2βte−(2αt+βt2).

The moment generating function of the GUE random variable is given as follows

MT (k) =

∫ ∞
0

ekT fT1,T2 (t, t) dt =
α+ k

α− k −
k

2

√
π

β
e
(2α−k)2

4β erfc

(
2α− k√

β

)
,

where erfc is a complementary error function and k < α.
Especially, the first four moments of the GUE random variable T are given as

E (T ) = 2

(
−te−αt

∣∣∞
0

+

∫ ∞
0

e−αtdt+te−(2αt+βt2)
∣∣∣∞

0
−
∫ ∞

0

e−(2αt+βt2)dt

)
= 2

(
−1

α
e−αt

∣∣∣∣∞
0

− e
α2

β

∫ ∞
0

e−(
√
β(t+α

β ))
2

dt

)
=

2

α
− ξ (α, β) ,

E
(
T 2
)

=
4

α2
− 1

β
+

1

β
ξ (α, β) ,

E
(
T 3
)

=
12

α3
− 3α

β2 +
3

4β

(
1 +

2α2

β

)
ξ (α, β) ,
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E
(
T 4
)

=
48

α4
− 1

2β2

(
4 + 12α− 4α2

β

)
+

(
3
α

β2 e
α2

β + 2

(
α

β

)3

ξ (α, β)

)

where ξ (α, β) =
√

π
β e

α2

β erfc
(
α√
β

)
.

3.1.3. Transmuted Gumbel Univariate Exponential Distribution. The transmuted
Gumbel univariate exponential (TGUE) distribution is an extended model to ana-
lyze more complex data. T1 and T2 have a exponential distribution with the same
shape parameter α and random vector (T1, T2) has a Gumbel univariate exponential
distribution with α and β parameters, then we can write

STi (t) = e−αt , FTi (t) = 1− e−αt

ST1,T2 (t, t) = e−(2αt+βt2), FT1,T2 (t, t) = 1− 2e−αt + e−(2αt+βt2).

By using equation (2) and (5), the distribution function of the TGUE random
variable with the parameter space Θ =

{
(α, β, δ) : α > 0, β < α2, −1 ≤ δ ≤ 1

}
,

can be obtained as

G (t; Θ) = (1− δ) (1− STi (t)) + δ (1− ST1,T2 (t, t)) , (6)

= (1− δ)
(
1− e−αt

)
+ δ

(
1− e−(2αt+βt2)

)
= 1− (1− δ) e−αt − δe−(2αt+βt2).

Henceforth, the p.d.f. corresponding to (3) and (6) becomes

g (t; Θ) =
d

dt
G (t; Θ) = (1− δ) fTi (t) + δST1,T2 (t, t) (ψ1 (t) + ψ2 (t)) ,

where ψ1 (t) =

−d
dt1

e−(αt1+αt+βt1t)
∣∣∣
t1=t

e−(2αt+βt2) = α + βt, ψ2 (t) = α + βt and β ≤ α2.
Consequently, the p.d.f. of the TGUE random variable can be written as follows

g (t; Θ) = (1− δ)αe−αt + δe−(2αt+βt2) (α+ βt+ α+ βt) , (7)

= (1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2).

The shapes of the p.d.f. of the TGUE random variable can be analyzed as follows

g′ (t; Θ) = − (1− δ)α2e−αt − δ(2α+ 2βt)
2
e−(2αt+βt2),

by examining this derivation, it is clear that when 0 ≤ δ ≤ 1, g′ (t; Θ) < 0 is
obtained and we can say that the p.d.f. is decreasing. Also, in order for p.d.f. to
be unimodal, it must be −1 ≤ δ ≤ 0.
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Figure 1. Plots of the TGUE Probability Density Function

3.1.4. Survival, Cumulative Hazard Rate and Hazard Rate Functions of the TGUE
Distribution. The survival function of the TGUE random variable is given by

S (t; Θ) = 1−G (t; Θ) = (1− δ) e−αt + δe−(2αt+βt2). (8)

Many generalized probability models have been proposed in reliability literature
through the fundamental relationship between the cumulative hazard functionH (t; Θ)
and the survival function S (t; Θ) is given by

H (t; Θ) = − logS (t; Θ) = − log
(

(1− δ) e−αt + δe−(2αt+βt2)
)
. (9)

Thus, we find the cumulative hazard function of the TGUE random variable and
this function describes how the risk of a particular outcome changes with time. We
know

H (0; Θ) = 0, lim
t→∞

H (t; Θ) =∞, H (t; Θ)

is increasing for all t ≥ 0.
The other characteristic of a random variable is the hrf. By using (7) and (8),

this function is given as follows

h (t; Θ) =
g (t; Θ)

S (t; Θ)
=

(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)

(1− δ) e−αt + δe−(2αt+βt2)
(10)

=
α (1− δ) eαt+βt2 + 2δ (α+ βt)

(1− δ) eαt+βt2 + δ

= (2α+ 2βt)− (1− δ) (α+ 2βt) e−αt

(1− δ) e−αt + δe−(2αt+βt2)
.
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The hrf of the TGUE random variable has the following properties:

h (0; Θ) = (1 + δ)α,

δ 6= 1 : lim
t→∞

h (t; Θ) = lim
t→∞

(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)

(1− δ) e−αt + δe−(2αt+βt2)
= α,

δ = 1 : lim
t→∞

h (t; Θ) = lim
t→∞

(2α+ 2βt) =∞.

The hazard rate function will be examined in the extreme values of the parameters:

(1) If δ = 0, the hrf is the same as the exponential distribution;

h (t; Θ) = α

(2) If δ = 1, the hrf is the same as the linear hazard rate function;

h (t; Θ) = 2 (α+ βt)

(3) If β = 0, the hrf is the same as the transmuted exponential distribution;

h (t; Θ) =
(1− δ)αe−αt + 2δα

(1− δ) e−αt + δ
.

Let’s investigate the monotonicity of hrf,

h′ (t; Θ) =
−δ (1− δ) (α+ 2βt)

2
e−(3αt+βt2)(

(1− δ) e−αt + δe−(2αt+βt2)
)2 .

It is clear from above derivation, when −1 ≤ δ ≤ 0, the hazard rate function is
increasing, that is, h′ (t; Θ) ≥ 0. When 0 ≤ δ ≤ 1, the hazard rate function is
decreasing (h′ (t; Θ) ≤ 0). Some possible shapes of hrf for selected parameter value
are shown in the following figures.

Figure 3.2 shows the hrf defined in (10) with different choices of parameters. This
distribution has an increasing hrf for −1 ≤ δ ≤ 0. If 0 ≤ δ ≤ 1, the hrf is

decreasing.

3.1.5. Mean Residual Life Function of the TGUE Random Variable. In this section,
we will find the mean residual life (mrl) function of the TGUE random variable
which is another important characteristic of a random variable.

m (t; Θ) = E (T − t |T > t ) =

∫ ∞
0

(k − t) dP (T ≤ k |T > t )

=

∫∞
t
S (k; Θ) dk

S (t; Θ)
=

(1− δ) 1
αe
−αt − δ

2

√
π
β e

α2

β erfc
(
α+βt√
β

)
(1− δ) e−αt + δe−(2αt+βt2)

. (11)

The mrl function of the TGUE random variable has the following properties:

(1) If δ = 0, the mrl function is the same as the exponential distribution;

m (t; Θ) =
1

α
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Figure 2. Plots of the TGUE Hazard Rate Function

(2) If δ = 1, the mrl function is;

m (t; Θ) = −1

2

√
π

β
erfc

(
α+ βt√

β

)
e
α2

β +2αt+βt2 ,

and some possible shapes of (11) for selected parameter values is showed in
the following figures.

3.1.6. 3.5. Moment Generating Function and moments of the TGUE Random Vari-
able. In this section, we derive the moment generating function and first four mo-
ments for the TGUE distribution. Let T have the TGUE distribution, then the
moment generating function of T is given by

MT (k) = E
(
ekT
)

= (1− δ) α

α− k+δ

(
1 +

k

2

√
π

β
e
(2α−k)2

4β erfc

(
2α− k√

β

))
, k < α

The expressions for the expected value and variance are

E (T ) = (1− δ) 1

α
− δ

(
e
α2

β

∫ ∞
0

e−(
√
β (t+ α

β ))
2

dt

)
= (1− δ) 1

α
− δξ (α, β) ,

E
(
T 2
)

= (1− δ) 2

α2
+ δ

(
1

β
− 1

β
ξ (α, β)

)
,

V ar (T ) = (1− δ) 2

α2
+ δ

(
1

β
− 1

β
ξ (α, β)

)
−
(

(1− δ) 1

α
− δξ (α, β)

)2

.
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Figure 3. Plots of the TGUE Mean Residual Life Function

Finally, the 3th and 4th moments of the TGUE random variable are obtained as

E
(
T 3
)

= (1− δ) 6

α3
+ δ

(
3α

β2 −
3

4β

(
1 +

2α2

β

)
ξ (α, β)

)
,

E
(
T 4
)

= (1− δ) 24

α4
+ δ

(
1

2β2

(
4 + 12α− 4α2

β

)
+

α

β2

(
3e

α2

β +
2α2

β
ξ (α, β)

))
.

3.1.7. Estimation by Maximum Likelihood and the Information Matrix of the TGUE
Distribution. Let (t1, t2, · · · , tn) be sample values from this distribution with para-
meters α, β and δ. The likelihood function for Θ = {α, β, δ} is given by

L (Θ; t1, t2, · · · , tn) =

n∏
i=1

(
(1− δ)αe−αti + δ (2α+ 2βti) e

−(2αti+βt
2
i )
)
.

Throughout this subsection, the log-likelihood function is denoted by
l = logL (Θ; t1, t2, · · · , tn) for brevity. We differentiate l with respect to α, β and δ
as follows

∂l

∂α
=

n∑
i=1

− (1− δ)α2e−αti + 2δ
(
1− 2αti − 2βt2i

)
e−(2αti+βt

2
i )

g (ti; Θ)
, (12)
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∂l

∂β
=

n∑
i=1

2δti
(
1− αti − βti2

)
e−(2αti+βt

2
i )

g (ti; Θ)
, (13)

∂l

∂δ
=

n∑
i=1

−αe−αti + (2α+ 2βti) e
−(2αti+βt

2
i )

g (ti; Θ)
. (14)

The maximum likelihood estimators as α̂, β̂ and δ̂ are obtained by equating these
three equations (12), (13) and (14) to zero and solving the equations simultaneously.
For these three parameters, we will get the second order derivatives of logarithms of
the likelihood function for obtaining the elements of the Fisher-Information Matrix.

Iαα =
∂2l

∂α2
= −

n∑
ı=1

(1− δ)2e−2αti − 2δ (1− δ)
(
αβt3i +

(
α2 + 2β

)
t2i − 2

)
e
−
(
3αti+βt

2
i

)
+ 4δ2e

−2
(
2αti+βt

2
i

)
(g (ti; Θ))2

Iββ =
∂2l

∂β2 = −
n∑
ı=1

2δ (1− δ) t3iα
(
2− αti − βt2i

)
e−(3αti+βt

2
i ) + 4δ2t2i e

−2(2αti+βt
2
i )

(g (ti; Θ))2 ,

Iδδ =
∂2l

∂δ2 = −
n∑
ı=1

(
αe−αti + 2 (α+ βti) e

−(2αti+βt
2
i )

g (ti; Θ)

)2

,

Iαβ = Iβα =
∂2l

∂β∂α

= −
n∑
ı=1

(
2δ (1− δ) ti

(
1 + αti −

(
α2 + β

)
t2i − αβt3i

)
e−(3αti+βt

2
i ) + 4δ2tie

−2(2αti+βt
2
i )

(g (ti; Θ))2

)
,

Iαδ = Iδα =
∂2l

∂δ∂α
= −

n∑
ı=1

2 ((α+ β) + αti) tie
−(3αti+βt

2
i )

(g (ti; Θ))
2 ,

Iβδ = Iδβ =
∂2l

∂δ∂β
= −

n∑
ı=1

−2αti
(
1− αti − βt2i

)
e−(3αti+βt

2
i )

(g (ti; Θ))
2 .

Thus, Fisher information matrix, In (Θ) of sample size n for Θ is as follows:

In (Θ) = −E

 Iαα Iαβ Iαδ
Iβα Iββ Iβδ
Iδα Iδβ Iδδ


Inverse of the Fisher-information matrix of single observation, i.e., I−1

1 (Θ) indi-
cates asymptotic variance-covariance matrix of maximum likelihood estimates of
Θ. Hence, the distribution of maximum likelihood estimator for Θ is asymptoti-
cally normal with mean Θ and variance-covariance matrix I−1

1 (Θ). Namely, α̂

β̂

δ̂

 ∼ AN
 α

β
δ

 , I−1
1 (Θ)

n

 (15)
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By solving this inverse dispersion matrix these solutions will yield asymptotic
variance and covariance of these ML estimators for these parameters.
We can approximate 100 (1− γ) % confidence intervals for α, β and δ by using

(15) are obtained respectively asα̂− z1− γ2

√
I−1
1αα

n
, α̂+ z1− γ2

√
I−1
1αα

n

 ,
β̂ − z1− γ2

√
I−1
1ββ

n
, β̂ + z1− γ2

√
I−1
1ββ

n

 ,
δ̂ − z1− γ2

√
I−1
1δδ

n
, δ̂ + z1− γ2

√
I−1
1δδ

n

 ,
where z1− γ2 is the upper 100γ the quantile of the standard normal distribution, and
I−1
1··
denotes respective diagonal elements of I−1

1 .

3.1.8. Random Number Generation from the TGUE Distribution. Remember the
distribution function defined in section 2,

G (t) = λ (FT1 (t) + FT2 (t)− FT1,T2 (t, t)) + (1− λ)FT1,T2 (t, t)

where 0 ≤ λ ≤ 1. Again, emphasize that G (t) represents a two-component mix-
ture distribution, where the distribution functions of the Tmin and Tmax are the
components of this mixture, respectively. To generate a random number from G(t),
we apply the reference Gentle [14] pp.125. Accordingly, a random number V is
generated from uniform distribution on (0,1) to decide which of the components
are chosen. As a result, when V ≤ λ, the random number will be generated from
FTmin (t) by equating as FTmin (t) = V . Otherwise, namely V > λ, the random
number will be generated from the distribution of Tmax by equating FTmax (t) = V .
First of all, we will consider how to produce component lifetimes. By citing the

method given in Gentle [14] pp.109, these component lifetimes will be generated
with the help of the conditional distribution function. Namely, FT1,T2 (t1, t2) can
be expressed as the product of the cdf of T1 and the conditional cdf of T2 with given
T1 = t1, i.e. FT1,T2 (t1, t2) = FT1 (t1)FT2|T1 (t2) .
In the first step, a random number U1 is generated from the uniform distri-

bution on the interval (0, 1). Then we generate the lifetime of the first com-
ponent t1 = F−1

T1
(U1). In the second step, again we generate a uniformly dis-

tributed random variable U2 (independent of U1) on (0, 1). Therefore, the life-
time of the second component can be generated by equating t2 = F−1

T2|T1=t1
(U2).

Hence, the random number from the TGUE is generated as for V ≤ λ, t =
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minâ{t1, t2} and for V > λ, t = maxâ{t1, t2}. Then, according to the above-
mentioned steps, t1 = −1

α ln (1− U1) and t2 = −αβ −
W−1(η)
α+βt1

are generated where

− (1− U2)
(
α2

β + αt1

)
e
−
(
α2

β +αt1
)

= η. Here W−1 (.) denotes the lower part of

Lambert W-function whose domain is
[
−e−1, 0

)
and range (−∞,−1]. A more

detailed inference about generating second component lifetime is given in the ap-
pendix.

3.1.9. Rényi Entropy of the TGUE Distribution. The entropy of a random variable
is a measure of variation of the uncertainty, see [25]. Then the Rényi entropy
function of the random variable T with p.d.f. (7) is defined by

IR (ρ) =
1

1− ρ log

∫ ∞
0

(g (t; Θ))
ρ
dt, (16)

where ρ > 0, ρ 6= 1. We have the following series representation of (g (t; Θ))
ρ by

applying the generalized Binomial theorem to obtain Rényi entropy for proposed
distribution. Accordingly,

(g (t; Θ))
ρ

=
(

(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)
)ρ
.

(g (t; Θ))
ρ can be written as an infinite series representation as follows.

(g (t; Θ))
ρ

=

∞∑
j=0

(
ρ
j

)(
(1− δ)αe−αt

)ρ−j(
δ (2α+ 2βt) e−(2αt+βt2)

)j
=

∞∑
j=0

(
ρ
j

)
(1− δ)ρ−jαρ−je−(ρ−j)αtδj(2α+ 2βt)

j
e−j(2αt+βt2)

=

∞∑
j=0

(
ρ
j

)
(1− δ)ρ−jδjαρ−j(2α+ 2βt)

j
e−(ρ+j)αt−jβt2

In the latter equation, the statement e−(ρ+j)αt−jβt2 is rearranged as;

e−jβ(t+ (ρ+j)α
2jβ )

2
+
(ρ+j)2α2

4jβ and if the Binomial theorem is applied in (2α+ 2βt)
j , we

can write

(g (t; Θ))ρ =

∞∑
j=0

j∑
l=0

(
ρ
j

)(
j
l

)
(1− δ)ρ−jδj2jαρ−jαj−lβltle

−jβ
(
t+

(ρ+j)α
2jβ

)2
+
(ρ+j)2α2

4jβ

=

∞∑
j=0

j∑
l=0

(
ρ
j

)(
j
l

)
(1− δ)ρ−jδj2jαρ−lβle

(ρ+j)2α2

4jβ tle−jβ(t+ (ρ+j)α
2jβ )

2

Then, the Rényi entropy can be written as follows

IR (ρ) =
1

1− ρ
log

 ∞∑
j=0

j∑
l=0

(
ρ
j

)(
j
l

)
(1− δ)ρ−jδj2jαρ−lβle

(ρ+j)2α2

4jβ

∫ ∞
0

t
l
e
−jβ

(
t+

(ρ+j)α
2jβ

)2
dt
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if the transformation z = jβ
(
t+ (ρ+j)α

2jβ

)2

is done in above integral,

∫ ∞
0

tle−jβ(t+ (ρ+j)α
2jβ )

2

dt =

∫ ∞
(ρ+j)2α2

4jβ

1

2
√
jβz

(√
z

jβ
− (ρ+ j)α

2jβ

)l
e−zdz

and the Binomial expansion is applied for
(√

z
jβ −

(ρ+j)α
2jβ

)l
again, then the equality(√

z

jβ
− (ρ+ j)α

2jβ

)l
=

l∑
k=0

(
l
k

)(√
z

jβ

)k(− (ρ+ j)α

2jβ

)l−k
is obtained, then∫ ∞
(ρ+j)2α2

4jβ

1

2
√
jβz

(√
z

jβ
− (ρ+ j)α

2jβ

)l
e−zdz

=
1

2

l∑
k=0

(
l
k

)(
− (ρ+ j)α

2jβ

)l−k
jβ−

k+1
2

∫ ∞
(ρ+j)2α2

4jβ

z
k−1
2 e−zdz

Thus, the last integral can be expressed in terms of incomplete Gamma function as
follows, ∫ ∞

(ρ+j)2α2

4jβ

z
k−1
2 e−zdz = Γ

(
k + 1

2
,

(ρ+ j)
2
α2

4jβ

)
Now, we obtain an explicit equality for IR (ρ) as follows,

IR (ρ) =
1

1− ρ log

∞∑
j=0

j∑
l=0

l∑
k=0

(
ρ
j

)(
j
l

)(
l
k

)
(−1)

l−k
(1− δ)ρ−jδj2j+k−l−1

αρ−kβ
k−1
2 (ρ+ j)

l−k
j
k−1
2 −le

(ρ+j)2α2

4jβ Γ

(
k + 1

2
,

(ρ+ j)
2
α2

4jβ

)
3.1.10. Order Statistics of the TGUE Distribution. The order statistics are among
the most basic tools in non-parametric statistics and inference. Also, the order
statistics arise in the analysis of reliability of a system and it can represent the
lifetimes of components of a reliability system. Let T(1), T(2), . . . , T(n) denote the
order statistics of a random sample T1, T2, . . . , Tn from a continuous population
with p.d.f. g (t; Θ) and distribution function G (t; Θ), then the p.d.f. of jth order
statistics T(j) for j = 1, 2, . . . , n is given by

fT(j) (t; Θ) =
n!

(j − 1)! (n− j)!g (t; Θ) [G (t; Θ)]
j−1

[1−G (t; Θ)]
n−j

n!

(j − 1)! (n− j)!

(
(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)

)
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×
(

1− (1− δ) e−αt − δe−(2αt+βt2)
)j−1(

(1− δ) e−αt + δe−(2αt+βt2)
)n−j

,

therefore, the p.d.f. of the first order statistics T(1) is given by

fT(1) (t; Θ) = n
(

(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)
)

×
[
(1− δ) e−αt + δe−(2αt+βt2)

]n−1

,

and the p.d.f. of the last order statistics T(n) is given

fT(n) (t; Θ) = n
(

(1− δ)αe−αt + δ (2α+ 2βt) e−(2αt+βt2)
)

×
(

1− (1− δ) e−αt − δe−(2αt+βt2)
)j−1

.

Note that δ = 0 yields the order statistics of the exponential distribution with
parameter α and when δ = 1 yields the order statistics of the TGUE distribution
with parameter (α, β).

4. Numerical Examples

In this section, we provide three data analyses in order to assess the goodness-of-
fit of the TGUE distribution. The following tables show goodness-of-fit measures
for the different distributions.

Data Set 1. (Wheaton River Flood Data) The data consist of the exceedances
of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory,
Canada. The data consist of 72 exceedances for the years 1958—1984, rounded to
one decimal place: 1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 13.0, 12.0, 9.3, 1.4, 18.7,
8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0,
7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6,
5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0, 1.5, 2.5, 27.4, 1.0,
27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0, 1.9, 2.8. Firstly, these data were analyzed
by [10]. Later on, Beta-Pareto (BP) distribution was applied to these data by [2].
Merovcia and Pukab [22] made a comparison between Pareto (P) and Transmuted
Pareto (TP) distribution. They showed that better model is the transmuted Pareto
distribution. Bourguignon et al. [9] proposed Kumaraswamy Pareto (Kw-P) dis-
tribution. Tahir [30] have proposed Weibull-Pareto (WP) distribution and made
a comparison with Beta Exponentiated Pareto (BEP) distribution. Nasiru and
Luguterah [24] have proposed a different type of Weibull-Pareto (NWP) distribu-
tion. Exponential Modified Discrete Lindley (EMDL) distribution was applied to
these data by [31]. We fit data to TGUE distribution and get parameter estimates
as α̂ = 0.0672, β̂ = 0.2972, δ̂ = 0.1976ı̈ˇ. According to the model selection crite-
ria (AIC) tabulated in Table 5.1, TGUE takes the first place amongst 9 proposed
models.
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Table 5.1. K-S test values, -2LL, AIC and BIC for TGUE, P, TP, EP, BP, Kw-P,
WP, BEP, BGP and EMDL distributions

Model K-S -2LL AIC BIC
TGUE 0.089 496.3 502.3 509.1
EMDL 0.116 503.6 507.6 512.1
P 0.456 606.1 610.1 610.4
TP 0.389 572.4 578.4 580.9
EP 0.199 574.6 578.6 583.2
BP 0.175 567.4 573.4 580.3
Kw-P 0.170 542.4 548.4 555.3
WP — 498.8 502.8 507.3
BEP — 496.1 504.1 513.2

Data set 2. (Bladder Cancer Application) The second data set on the remis-
sion times (in months) of a random sample of 128 bladder cancer patients Lee and
Wang [18] is given by 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,
3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50,
2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76,
26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,10.34,
14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,
5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34,
5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25,
8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73,
2.07, 3.36, 6.93, 8.65, 12.63, 22.69. In this section, we test the performance of the
TGUE distribution and show it to be an improved model as compared to some of its
sub-models such as transmuted inverse Rayleigh distribution (TIRD), transmuted
inverted exponential distribution (TIED), inverse Weibull distribution (IWD) and
transmuted inverse Weibull distribution (IWD). It is clear from Table 5.2 that the
TGUE model provides better fits than other models to this data sets. For the
TGUE distribution parameter estimates are α̂ = 0.0485, β̂ = 0.0057, δ̂ = 0.7745ı̈ˇ
and this distribution has the lower AIC, BIC and K-S values.

Table 5.2. K-S test values, -2LL, AIC and BIC for TGUE, TIW, TIE, IW and
TIR distributions

Model K-S -2LL AIC BIC
TGUE 0.065 824.2 830.1 838.6
TIW 0.119 877.0 879.4 879.7
TIE 0.155 885.6 889.6 889.8
IW 0.131 888.0 892.0 892.2
TIR 0.676 1420.4 1424.4 1424.6
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Data set 3. (Bank B Data) The data set represents the waiting times (in minutes)
before customer service of 60 bank customers in Bank B. This data set is given as:
0.1, 0.2, 0.3, 0.7, 0.9, 1.1, 1.2, 1.8, 1.9, 2.0, 2.2, 2.3, 2.3, 2.3, 2.5, 2.6, 2.7, 2.7,
2.9, 3.1, 3.1, 3.2, 3.4, 3.4, 3.5, 3.9, 4.0, 4.2, 4.5, 4.7, 5.3, 5.6, 5.6, 6.2, 6.3, 6.6,
6.8, 7.3, 7.5, 7.7, 7.7, 8.0, 8.0, 8.5, 8.5, 8.7, 9.5, 10.7, 10.9, 11.0, 12.1, 12.3, 12.8,
12.9, 13.2, 13.7, 14.5, 16.0, 16.5, 28.0. This data was analyzed by [3] and was
also used by [29]. They fit this data to Lindley (L) and generalized Lindley (GL)
distributions. We fit data to TGUE distribution and get parameter estimates as
α̂ = 0.185, β̂ = 0.472, δ̂ = −0.222. According to the model selection criteria tab-
ulated in Table 5.3, it is said that TUGE takes first place in amongst 3 proposed
models.

Table 5.3. K-S test values, -2LL AIC and BIC for TGUE, L and Exp distributions
Model K-S -2LL AIC BIC
TGUE 0.067 336.777 342.777 349.060
L 0.080 338.203 340.203 341.759
GL 0.068 338.026 342.026 341.582

In the above three tables, it is clear that the values of the Akaike information cri-
terion (AIC) and Bayesian information criterion (BIC) are smaller for the TGUE
distribution compared to those values of the other models; the new distribution is
a very competitive model to these data.

5. Conclusion

In this article, we propose a new model of transmuted distribution so-called the
transmuted Gumbel univariate exponential distribution. The subject distribution is
generated by using the convex combination of failure probabilities of two-component
series and systems and taking the Gumbel univariate exponential distribution as the
base distribution. Some mathematical and statistical properties including explicit
expressions for the probability density, survival, cumulative hazard rate, hazard rate
and mean residual life functions, also, moment generating function and moments are
addressed. The estimation of parameters is approached by the maximum likelihood
method. According to K-S values in Numerical Examples Section, the applications
of the transmuted Gumbel univariate exponential distribution to real data show that
the new distribution can be used to provide better fits than the other distributions.
We hope that this new distribution may attract wider applications in the lifetime
literature. Taking bivariate distributions will guide to derivation of many new
univariate distributions.
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6. Appendix

Conditional cdf of T2 with given T1 = t1 is given by

FT2|T1 (t2) =
∂
∂t1
FT1,T2 (t1, t2)

fT1 (t1)
=

∂
∂t1

(
1− e−αt1 − e−αt2 + e−α(t1+t2)−βt1t2

)
αe−αt1

=
αe−αt1 − (α+ βt2) e−α(t1+t2)−βt1t2

αe−αt1

= 1−
(

1 +
β

α
t2

)
e−(α+βt1)t2 .

Hence, by equating FT2|T1 (t2) = U2 where U2 is uniformly distributed random
variable on the interval (0, 1) we have a non linear equation to get solution for t2
as follows,

1−
(

1 +
β

α
t2

)
e−(α+βt1)t2 = U2. (17)

To solve the above equation for t2, we use Lambert W- function which is defined
as the solution of the equation W (z) eW (z) = z, where z is the complex number. If
z is any real number, then this equation has a solution on

[
−e−1, +∞) .

In equation (17), if the expression 1 + β
α t2 is taken as z, we can write

ze
−
(
α2

β +αt1
)
z
e

(
α2

β +αt1
)

= 1− U2.

Multiplying both sides of equation above by −
(
α2

β + αt1

)
, above expression can

be simplified as follows,

−
(
α2

β
+ αt1

)
ze
−
(
α2

β +αt1
)
z

= − (1− U2)

(
α2

β
+ αt1

)
e
−
(
α2

β +αt1
)
.

Substituting −
(
α2

β + αt1

)
z = W (z), we have the Lambert equation

W (z) e−W (z) = η,

where η = − (1− U2)
(
α2

β + αt1

)
e
−
(
α2

β +αt1
)
. Hence, the solution for W (z) is

−
(
α2 + αβt1

β

)
z = W−1 (η) .

So, t2 is found as follows

t2 = −α
β
− 1

α+ βt1
W−1 (η) .

To show the uniqueness of the solution for t2 we take into account the well known
inequality e−(z+1) ≥ − z and replacing z with − (α+ βt1) αβ , then η ≥ − 1

e .
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This result guarantees that η belongs to domain of negative branch of Lambert
W-function.
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