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ABSTRACT. A functional composition of the distribution function of one prob-
ability distribution with the inverse distribution function of another is called
the transmutation map. The present paper is purported to show how the
transmuted distribution can be obtained by using the convex combination of
failure probability of two-component systems. The transmuted Gumbel uni-
variate exponential distribution is presented by changing convex combination
parameter. This new distribution is defined and studied. Some mathematical
properties of this distribution including the generating function and ordinary
moments are derived. The survival, hazard rate and mean residual life func-
tions are discussed. Finally, three applications to real data are presented.

1. INTRODUCTION

In the present paper, we will start by examining two-component (series and par-
allel) systems. The failure probabilities of these systems will be found and a new
distribution is obtained by applying convex combinations to these probabilities as
these can be ordered within themselves. In the process of proposing this distribu-
tion, the lifetimes of the components of the system which are the random variables
are considered to be both dependent on each other and non-identical. If the random
variables that represent the lifetimes of two components are identical and indepen-
dent, then this proposed distribution will emerge in the transmuted model, which
is one of the important families in the pertinent-literature in recent years. The
transmuted family has been introduced by [27] for the first time and the theory
of transmuted distribution is clearly defined by [28]. This method has led to the
development of new and more flexible distributions by many authors, proposing
many different distributions and pioneering the modeling of many real data sets
with these distributions. Aryal and Tsokos [4] and [5] studied the two forms of
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the transmuted distributions. These scholars provided the mathematical charac-
terization of transmuted extreme value and transmuted Weibull distributions and
their applications to analyze real data sets. Aryal [6] proposed the transmuted log-
logistic distribution and discussed various properties of this distribution. Merovci
[19] introduced the transmuted Lindley distribution and applied it to bladder cancer
data; Merovci [20] proposed the transmuted exponentiated exponential distribution;
Merovci and Elbatal [21] studied the transmuted Lindley-geometric distribution.
Ashour and Eltehiwy [7] discussed the applications of Transmuted Lomax Distrib-
ution and Ashour and Eltehiwy [8] proposed the transmuted exponentiated Lomax
distribution. More recently, the transmuted exponentiated modified Weibull distri-
bution has been suggested by [13] having its applications in real data. Hussian [16]
obtained the transmuted exponentiated gamma distribution and discussed their
various properties and applications. Elbatal et al. [II] discussed as various esti-
mation methods for the transmuted exponentiated Fréchet distribution. Abd El
Hady [I] obtained an extended Weibull distribution as the exponentiated trans-
muted Weibull distribution and discussed its various properties and applications.
Merovci and Puka [22] introduced the transmuted Pareto distribution. Elbatal and
Aryal [12] studied the transmuted additive Weibull distribution; Merovci [23] pro-
posed the transmuted Rayleigh distribution and discussed their various properties.
In the second part of this article, the new family will be introduced and the sur-
vival and hazard rate functions of the model under study will be found. The third
part of this article contains some main definitions as Gumbel Bivariate Exponential
Distribution and Gumbel Univariate Exponential Distribution. Later, the baseline
distributions of the proposed distribution will be taken as exponential distribution
and the proposed distribution is called the transmuted Gumbel univariate expo-
nential (TGUE) distribution. In the subsequent subsections, the analytical shapes
of the probability density, survival, cumulative hazard rate, hazard rate and mean
residual life functions of the TGUE distribution are presented. Statistical prop-
erties including moment generating function and moments, maximum likelihood
estimates and the information matrix, random number generation, Rényi entropy
and order statistics of the TGUE distribution are discussed in other subsections of
Section 3. Finally, in order to demonstrate the usefulness of the proposed distrib-
ution, three real data applications are presented in the application section.

2. THE NEwW FAMILY

In recent literature, the transmuted family of lifetime distributions have at-
tracted the attention of the researchers for modeling the lifetime data. Firstly,
two-component (series and parallel) systems will be introduced. Let T7 and T» be
random variables that represent the lifetime of the components. Throughout this
paper, the marginal distribution functions of 77 and T3 are represented by Frp (.)
and Fr, (.), and the joint distribution and the joint survival functions of T} and
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T2 are indicated by FT],T2 (., ) and STl,Tg (., ) =1- FT1 () — F‘T2 () + }7:[117'1"2 (., .),
respectively. The series system success requires that the two parts operate success-
fully at the same time. System failure occurs if either one or more components fail.
Then, the random variable T},,;, that stands for the series system lifetime is defined
as Tpmin = min{T1,To}. Hence, the probability of the failure of the series system
is given by

P (Tmzn < t) =1-P (T1 >t, Ty > t) = 1_ST1,T2 (t,t) = .FT1 (t)+FT2 (lf)—.FTl’T2 (t,t)

Parallel system is such a system that functions when at least one of its components
works and the failure of all the components is necessary for the system’s failure to
occur. Accordingly, Trnar = max {11, T2} stands for the parallel system lifetime.
Then, the probability of the failure of the parallel system is given by

P(Tm(w S t) = P(max {Tl,TQ} S t) = P(Tl S t,TQ S t) = FT1,T2 (t,t).

According to axiomatic properties of probability, component lifetimes 77 and T5
can be ordered stochastically as Thin< ot Ti< ot Trnaz, ¢ = 1,2. Namely, we have
P (Thaz <t) < P(T; <t) < P(Thin <t). Then, the lower and the upper bounds
for Fr, (t) can be written as follows:

Frym (4t) < Fr, (t) < Fr, (¢) + Fr, (1) = Fry oz, (6,1). (1)
In that case, Fr, (t) can be represented as a convex combination of failure proba-
bilities series and parallel systems. Then, we have
A (FTl (t) + FT2 (t) - FTl,T2 (ta t)) + (1 - >‘) FTl,TQ (tat)
= AFr, () + Fr, (1) + (1 = 2X) Fry 1, (£,1),
where the combination parameter A € [0,1]. This latter well-defined statement
can derive numerous univariate distribution functions with respect to combination
parameter .
In the latter equation, if the distributions of random variables T} and T3 are

assumed to be identical, namely, Frr, (t) = Fr, (t), then the new distribution with
the parameter set O is given by

G (t7 6) = 2/\FT¢ (t) + (1 - 2/\) FT1,T2 (t7t) .

If transformation A = 5%1 is done, range will change from [0, 1] to [—1,1]. So, for
|6] <1, the distribution function can be written as
G (t, @) = (1 + 6) FTz‘ (t) - 6FT1,T2 (t, t) (2)

= (1 + 6) FTi (t) -0 (QFTz' (t) + ST17T2 (t’t) - 1)

= (1 - 6) (1 - ST«; (t)) + 6(1 - STl,Tz (t7t)) :
So, if the distributions of random variables 77 and T, are taken independent,
namely, Fr, 1, (t,t) = (Fr, (t))? in the first equation of , we can obtain the

transmuted distribution constructed by the quadratic rank transmutation method
of [27] which has become very popular in the recent years.
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In particular, for § = 0 it gives the baseline distribution Fr, (t), for 6 = —1,
it gives the distribution of the maximum of dependent two random variables with
joint distribution function Fr, 1, (¢,t) and for 6 = 1, 2F, (t) — Fp, 1, (t,t) is the
distribution of the minimum of two random variables 77 and 7> with identically
distributed.

Theorem 1. The probability density function (p.d.f.) of T is represented in terms
of the conditional hazard rates of the component lifetimes Ty and Ty as

g(£0) = (1=90) fr, (t) + 051, 1, (£,1) (01 (1) + 12 (1)) 3)
where ¥ (t) and 14 (t) denote the failure rates of the corresponding components,
given that both components are alive at time t.

Proof. The p.d.f. of this distribution can be obtained with derivation of distribution
function defined in as follows

9(60) = 50 (:6) = (1-6) (5n. 1) +6 (Gsnm t0)

and the result in will be obtained from the following method.

_d —d [ee] [e%}
EST1,T2 (tvt) = 7/ / leyT2 ('LL,U) dvdu

= / frym (u,t) du—/ from, (Ev

= —fn, () Pr(Ty <tTy =t) — fr, (t) Pr(Ty < tT) =t)

—d
+ —95 T (B1, T
T .1, (t1,t)
1/’2 (t) ST17T2 (ta t) + 77[}1 (t) ST17T2 (tv t)

where 1 () and 9, (t) denote the failure rates of the corresponding components,
given that both components are alive at time t and defined as follows:

S bt
dto STl,T2( ’ 2)

t1=t

—d
Prit<Ty <t+At|Ty >t To>t) @, o (f1,1) ¢

t) = 1 = 1=t ¢ >
¥1(®) Ato+ At S (1) » 820
—d
o) = lim Prt<Ty <t+AHT >t Ty >t)  anornbBR)] =0
2 T A0+ At - S (t,t) =
(See [26] and see [I7T]). O

2.1. Survival and Hazard Rate Functions of Proposed Distribution. The
survival function denoted by S (¢; ©) of this distribution is defined as follows,

St0) = 1-G(t:0)=1—(1490) Fr, (t)+6Fn, 1, (t,t)
= 1_(1_6)(1_5Ti(t))_5(1_ST1,T2(tﬂt))
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= (1 - (5) STi (t) + 5ST1,T2 (t, t) .
The hazard rate function (hrf) corresponding to and is given by

(t; @) (1 - 5) hT1 (t) STi t) + 6ST17T2 (ta t) (¢1 (t) + 1/)2 (t))

(
(t; ©) (1=10) 5z, (t) + 0Sm, 1, (¢, 1)

= )+ )+ L 5>(f§ gt; ;zéltgtl—g éf g)(:;)pz 1))

i

051y, 1, (8,1) (¥4 () + ¥y (£) — by (1))
(1 - 6) STi (t) + 5ST1,T2 (tv t)
= wi () hy (1) +wa (t) (Yq )+ (1)),

1_6)52(_;;3_?3(2’T2(t7t) and wy () + wo (t) = 1. Thus, the hrf can

be written as a weighted sum of the hrf of the random variable 77 and sum of the
conditional failure rates of the corresponding components (¢ (t) + 1 (2)).

In the next section, we will introduce a bivariate version of the exponential
distribution named the Gumbel bivariate exponential distribution. On the basis
of this, the Gumbel univariate exponential distribution is defined and examined.
Then, the transmuted Gumbel univariate exponential distribution is taken as a
special case for the proposed distribution and some mathematical properties are
studied.

h(t; ©)

|

= hr, (t)+

where wy (t) = 0

3. SPECIAL CASE: TRANSMUTED GUMBEL UNIVARIATE EXPONENTIAL (TGUE)
DISTRIBUTION

We will first introduce distributions related to setting-up a special case. Then
the baseline distribution is defined and we study on some reliability properties such
as survival, cumulative hazard rate, hazard rate and mean residual life functions.
Moment generating function and moments of proposed distribution are analyzed.
ML estimation of model parameters are performed and asymptotic distribution
of the parameters are obtained in terms of observed Fisher Information and then
asymptotic confidence intervals are also obtained. General expressions for the Rényi
entropy is presented. Furthermore, general results for the order statistics of the
TGUE random variables are derived.

3.1. Gumbel Bivariate and Univariate Exponential Distribution.

3.1.1. Gumbel Bivariate Exponential Distribution. Exponential distribution plays a
central role in life testing, reliability and analyses of survival or lifetime data. The
Gumbel bivariate exponential (GBE) distribution introduced by [I5] is the most
popular model for analyzing lifetime data and its survival function is

Sty,1, (tr,tg) = e (afirotatBiata) 1y 4y 5 (4)
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where o1 and as are the scale parameters representing the characteristic life and
also positive, § is dependency parameter and 0 < 8 < ajas. The marginal sur-
vival functions of T} and Th respectively are e~*1%1 and e~®2%2. Hence T} and Th
have exponential marginals. The p.d.f. of the three-parameter GBE distribution
corresponding to is given by

fror, (ti,t2) = 782 Sty,1, (t1,t2) = o ie_(altl+a2t2+6tlt2)
PR o0ty 172 oty \ 9ts
= (a1 + ft2) (a2 + Bt1) e~(ontitastatftata) -y 4, 5 ),
3.1.2. Gumbel Univariate Exponential Distribution. By letting a; = a2 and consid-
ering the diagonal section of St, 1, (t1,%2) i.e., t1 = t2 = ¢ in the survival function of
GBE distribution defined in (). Then the random vector (T7,7%) has the Gumbel

univariate exponential (GUE) distribution, and the survival function of the GUE
distribution can be written as follows

Sryom, (4,8) = e (201485) 150 0 >0, 0< B < (5)

By using the known relation between St, 1, (¢,t) and Fr, 1, (¢,t), the distribution
function of the GUE random variable is given by

Fr,z, (tt) = 1= 285, () + S, 1, (1,1) = 1 — 2¢ 7 4 ¢~ (20t457%),
and its p.d.f. of the GUE random variable reduces to
from (tt) = 20e” " — (2a + 20t) e—(2at+5t2)
= 2a (e—at . e—(2at+5t2)) B 2Bte_(2at+5t2).

The moment generating function of the GUE random variable is given as follows

o a+k k [1m @o-k? 200 — k
Mr (k) = kT t,t)dt = —— — =,/ =¢ B
T (k) /0 € le,T2(> ) k9 66 67”f0< NG >7

where er fc is a complementary error function and k < a.
Especially, the first four moments of the GUE random variable T' are given as

_ —at| * —(2at+pt2 OO_ * (2at+pt?
E(T) = 2( te=| +/o e=otdt +te )‘O /O e ( )dt>
= 2(0}6“0 fean /()Ooe_(‘/a(t+g))2dt>—if(aaﬂ);
4 1 1
E(T?) = g_*"'ﬁf(a,ﬁ),
2
E(T%) = iﬁ—?+;(1+2;‘>§<a,ﬁ),
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2 2 3
E(TY) = ii—m;<4+ma—ﬁ;)+<a;a%+2(g>5@%m>
where £ (o, 8) = \/ge%zerfc (%)

3.1.3. Transmuted Gumbel Univariate FExponential Distribution. The transmuted
Gumbel univariate exponential (TGUE) distribution is an extended model to ana-
lyze more complex data. T and T, have a exponential distribution with the same
shape parameter « and random vector (77, T») has a Gumbel univariate exponential
distribution with o and  parameters, then we can write

STi (t) =e s FTi (t) =1—e ot

ST1’T2 (tv t) = ei(2at+ﬁt2)7 FT1’T2 (tv t) =1—2e + 67(2at+ﬂt2)'

By using equation and , the distribution function of the TGUE random
variable with the parameter space © = {(a,ﬁ,é) ca>0,B<a? —1<6< 1},
can be obtained as

G (t;0)

(1-0)(1=S7, (%) +d6(1—Sm,,1, (£,1)), (6)
(1—®(1—6ﬂﬁ+ﬁ<1—g%hwwﬂ)

= 1-(1-4)e ™~ §e~(201+8¢%)

Henceforth, the p.d.f. corresponding to and @ becomes

9(6:0) = 5.6 (5:6) = (L= 8) Fr, () + 651, 1, (1) (0 (6) + 6 1)

—d —(aty+at+Btyt)
at, ©

where 9, (t) = — ) U=t = a4+ B, Py (t) = a+ Bt and B < .
Consequently, the p.d.f. of the TGUE random variable can be written as follows

g(0) = (1-0)ae® +de (2H5) (o 4 Bt + a+ Bt) (7)
= (1-98)ae ™ +§(2a + 26t) ¢~ (20t+58%),
The shapes of the p.d.f. of the TGUE random variable can be analyzed as follows
g (:0)=—(1-08)a*e " — 520 + 25t)26_(2“t+ﬁt2),

by examining this derivation, it is clear that when 0 < § < 1, ¢’ (£;,0) < 0 is
obtained and we can say that the p.d.f. is decreasing. Also, in order for p.d.f. to
be unimodal, it must be —1 < § < 0.
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FicURE 1. Plots of the TGUE Probability Density Function

3.1.4. Survival, Cumulative Hazard Rate and Hazard Rate Functions of the TGUE
Distribution. The survival function of the TGUE random variable is given by

S(t:0)=1—-G (£0) = (1 —6) et 4 e~ (20t+52) (8)

Many generalized probability models have been proposed in reliability literature

through the fundamental relationship between the cumulative hazard function H (¢; ©)
and the survival function S (¢; ©) is given by

9)
Thus, we find the cumulative hazard function of the TGUE random variable and

this function describes how the risk of a particular outcome changes with time. We
know

H (t:0) = ~log § (1:0) = ~log (1~ §) e~ 4 e~ (2217) ).

H(0;,0)= O,tlim H(t;0) = 00, H (t;0)
is increasing for all ¢ > 0.

The other characteristic of a random variable is the hrf. By using @ and ,
this function is given as follows

: — 8 et o —(2at+p5t2
h(t;©) = 9(t;0) :(1 d) e 46 (2 +26t)e( )

1
S(t;0) (1 —0) e~ot + fe—(at+51%) (10)
(1= 8) e B 125 (a + Bi)
(1—6) et 4§

B (1—=0)(a+26t)e
= (20[ + 2Bt) - (1 — 5) e—at 4 fe—(2at+pt2) "
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The hrf of the TGUE random variable has the following properties:
h(0;0)=(140)a,
2
oL o (T=0)ae™ + 0 (20 4 2t) ¢~ (2at+5t%)
07 1: tliglo h(t:6) = tlirgo (1 —68) e—at 4 fe—(2at+pt%)
d=1: tlim h(t;0) = 75lim (20 + 26t) = 0.

:Of7

The hazard rate function will be examined in the extreme values of the parameters:

(1) If § = 0, the hrf is the same as the exponential distribution;

h(t;0) =«
(2) If § = 1, the hrf is the same as the linear hazard rate function;
h(t;0)=2(a+ pt)

(3) If B =0, the hrf is the same as the transmuted exponential distribution;

(1—90)ae* + 20
(I=9)et+4§

Let’s investigate the monotonicity of hrf,
=5 (1—6) (a + 28t)%e (Bot+57)

(1= 8) eot 4 fe—Cat+p))?
It is clear from above derivation, when —1 < § < 0, the hazard rate function is
increasing, that is, &' (£;©) > 0. When 0 < ¢ < 1, the hazard rate function is
decreasing (b’ (t;©) < 0). Some possible shapes of hrf for selected parameter value
are shown in the following figures.

Figure 3.2 shows the hrf defined in with different choices of parameters. This
distribution has an increasing hrf for —1 < < 0. If 0 < ¢ < 1, the hrf is
decreasing.

h(t;0) =

h' (t;©)

3.1.5. Mean Residual Life Function of the TGUE Random Variable. In this section,
we will find the mean residual life (mrl) function of the TGUE random variable
which is another important characteristic of a random variable.

m(t;@):E(T—t|T>t):/oo(k—t)dP(Tgk|T>t)
0

Crseyar (-0 b g Feerse () .
T SEE6) 0 (1—d)eolfde-atthR) (11)

The mrl function of the TGUE random variable has the following properties:

(1) If § = 0, the mrl function is the same as the exponential distribution;

m(t;@)zé
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FIGURE 2. Plots of the TGUE Hazard Rate Function

(2) If 6 = 1, the mrl function is;

m(t;©) = —% %erfc (aj/—;t> o5 H2at+8t?

and some possible shapes of for selected parameter values is showed in

the following figures.

)

3.1.6. 3.5. Moment Generating Function and moments of the TGUE Random Vari-
able. In this section, we derive the moment generating function and first four mo-
ments for the TGUE distribution. Let T have the TGUE distribution, then the

moment generating function of T is given by

My (k) = B (1) = (1= 8) =+ (1 + ’;\/Ze(za4ﬁk)2 erfe (204\/_316» Lk <a

The expressions for the expected value and variance are

E(T):u_a)l—cs(e%f/oooe(ﬂ(H 5 ))zdt> :(1-5)&-55@,5),

(0%

B(r?) =(1-9) 5 +3(5 - 3€9).

Var(n) = (1-8) 2 +5 (5 - 56(.8) - ((1—6>;—6s<a,ﬁ>)2.



TGUE DISTRIBUTION 147

4 3
3 e So s SO B -'77A_"_7—|
e 2
2 ———a=05, i=0.2
a=2, 3=3
. —— a=4, =10 1
gl==—— ok=——
0 0.5 1 0 0.5 1
i=- 1 d=-05
15 ——— 0.8
1 06 [\ R
\ .
N
\\‘
05| 04 2T
0 0.2 —
0 0.5 1 0 0.5 1
i=0.5 j=1

F1GURE 3. Plots of the TGUE Mean Residual Life Function

Finally, the 3" and 4** moments of the TGUE random variable are obtained as

E(TS)—(1—5);+5<?—;<1+2;‘2)5(a,ﬁ)>,

24 1 402 a2 207
E(T4):(1—(5)a4+5(2ﬁ2 <4+12a—g>+§2(365 +g§(a,ﬁ)>> :

3.1.7. Estimation by Maximum Likelihood and the Information Matrix of the TGUE

Distribution. Let (t1,t2,---,t,) be sample values from this distribution with para-
meters a, 8 and §. The likelihood function for © = {«, 3,0} is given by
n
L(O3t1,ta, ) = [] (1= 8) ac™ 48 (20 + 268;) e~ (220472 )
i=1
Throughout this subsection, the log-likelihood function is denoted by
I =logL(O;ty,ta,--,t,) for brevity. We differentiate [ with respect to a, 5 and §
as follows

O O~ — (1 —8)aeot 425 (1 — 2at, — 212) e~ (20t+5t)
da Z 9(t:;0) 7

=1
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O I~ 25t (1 — at; — Bt;2) e (2otitst) ;
% B Z g (tz’; @) ’ ( )

i=1

ol "L e 4 (200 4 253t ¢~ (2ati+5t7)
% — Z ( ) . (14)
=1

g (ti;0)

The maximum likelihood estimators as &, § and § are obtained by equating these
three equations , and to zero and solving the equations simultaneously.
For these three parameters, we will get the second order derivatives of logarithms of
the likelihood function for obtaining the elements of the Fisher-Information Matrix.

521 no(1—8)2e=20% _25(1 — §) (aBtf I (afz n 25) 2 2) e—(amﬁﬁt?) N 462672(20“5711»/%?)
e ” 902~ =1 (g9 (£:;©))2
; 521 i 25 (1 — 9) o (2 —at; — 57512) ef(SatiJrﬁt?) + 4527512672(2&%“3@)
B8 = 75 = — 7
o8 I (9(t:0))°
2
Iss — >’ Zn: ae=h + 2 (o + Bt;) e~ (20tiF5E)
P T & 9 (t::0) )
9%l
[ s=15, = ——
B = B T 9B0a
_ i 25 (1—0)t; (14 at; — (o + B) t2 — apt?) e—(3ati+8e7) | 462ti672(2ati+ﬁt?)
1=1 (9 (t:;0))? )
Tos = o = 2L __y~2Matf) +at) e~ (Boti+12)
ad —Lfa = Fc5 - — — ,
0400 =1 (g (t:;0))°
0’1 "L —2at; (1 — at; — Bi2) e~ (3et+64)
Tgs = Isp = 555 == 3 :
p= (9 (£:0))
Thus, Fisher information matrix, I,, (©) of sample size n for © is as follows:
Ina Iog Ias
I,(©)=-E| Isa Iss Iss
Ise, I(Sﬁ Iss

Inverse of the Fisher-information matrix of single observation, i.e., I;* (©) indi-
cates asymptotic variance-covariance matrix of maximum likelihood estimates of
O. Hence, the distribution of maximum likelihood estimator for © is asymptoti-
cally normal with mean © and variance-covariance matrix I; * (6). Namely,

& « -1
5 ~av || s ,IIT(@ (15)
5
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By solving this inverse dispersion matrix these solutions will yield asymptotic
variance and covariance of these ML estimators for these parameters.

We can approximate 100 (1 — ) % confidence intervals for «, 5 and § by using
are obtained respectively as

-1 -1
laa ~ laa
a— 217 ,oz—|—zl_% ,
n n
-1 -1
I I
re BB 7 s
5_21—2 n 75+Zl—% n )

where Zp-7 s the upper 100 the quantile of the standard normal distribution, and

I; ! denotes respective diagonal elements of I; .

3.1.8. Random Number Generation from the TGUE Distribution. Remember the
distribution function defined in section 2,

G (t) = )\(FTI (t) + FT2 (t) - FTl,Tz (t7t)) + (1 - )‘) FTI»T2 (t7t)

where 0 < A < 1. Again, emphasize that G (t) represents a two-component mix-
ture distribution, where the distribution functions of the T,,;, and T},,, are the
components of this mixture, respectively. To generate a random number from G(t),
we apply the reference Gentle [14] pp.125. Accordingly, a random number V is
generated from uniform distribution on (0,1) to decide which of the components
are chosen. As a result, when V' < A, the random number will be generated from
Fr,,,. (t) by equating as Fr,,,, (t) = V. Otherwise, namely V' > A, the random
number will be generated from the distribution of Ty,q, by equating Fr  (t) = V.
First of all, we will consider how to produce component lifetimes. By citing the
method given in Gentle [14] pp.109, these component lifetimes will be generated
with the help of the conditional distribution function. Namely, Frp, 1, (t1,t2) can
be expressed as the product of the cdf of T} and the conditional cdf of 75 with given
Tl = tl, i.e. 1‘7"1"171“2 (tl,tg) = F’T1 (tl) FTz\Tl (tg) .

In the first step, a random number U; is generated from the uniform distri-
bution on the interval (0,1). Then we generate the lifetime of the first com-
ponent t; = Frp, 1 (Uy). In the second step, again we generate a uniformly dis-
tributed random variable U; (independent of Uy) on (0,1). Therefore, the life-
time of the second component can be generated by equating to = F;jm:tl (Us).
Hence, the random number from the TGUE is generated as for V< A, t =
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mina{t;,t2} and for V. > X\, t = maxa{t,,ta}. Then, according to the above-

mentioned steps, t; = %1 In(1—-U;) and ¢ty = f% — Vg;}a(ﬁ) are generated where

QQ
—(1-0Us) (%2 + at1> e_(7+at1) = 7. Here W_;(.) denotes the lower part of
Lambert W-function whose domain is [—6_1,0) and range (—oo,—1]. A more

detailed inference about generating second component lifetime is given in the ap-
pendix.

3.1.9. Rényi Entropy of the TGUE Distribution. The entropy of a random variable
is a measure of variation of the uncertainty, see [25]. Then the Rényi entropy
function of the random variable T' with p.d.f. is defined by

In(p) = ——log / (g 0y, (16)

where p > 0, p # 1. We have the following series representation of (g (¢;©))”
applying the generalized Binomial theorem to obtain Rényi entropy for proposed
distribution. Accordingly,

(g(t;0))" = ((1 — &) ae” ™ + 6 (2a + 26t) e_(Q"‘H'ﬁtQ))p.

1—p

(g (t;0))” can be written as an infinite series representation as follows.

( ) (1-9) oze_o‘t)p_j ((5 (2a + 23t) e‘(Qat‘*‘ﬁtz))j

I
ngk ?Mg

<
I
o

( o ) (1- 5)p*jaﬂ—je—(/)—j)at5j(2a + 25t)j o—i(20t+p5t%)
J

v

Il
o

< L ) (1—8)" 767 ar=I (20 + 26t)) e~ (pHDat=iBt"
; J

In the latter equation the statement e~ (P+)at=iBt ig rearranged as;
e_jﬁ(H_ (p;jii)a) + (P+JJ>B

can write

co  J . ) Sa )2 1242
oy =33 (1 ) (] ) a-aroraratgte e

and if the Binomial theorem is applied in (2a + 26t)j, we

=5 j i cini (p+4)2a? . (pti)a\2
= ZZ ( ! ) ( g ) (1- 5)pﬂ532JapflﬁleTtle—Jﬁ(t+ 55 )
: — J

Then, the Rényi entropy can be written as follows

oo J ; o (+) oo (Pﬂ)a
S5 (1 V(1) a-ar e S a3,

j=01=0

Ir (p) =
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2
if the transformation z = jj3 (t + (p;;]ﬁ)a) is done in above integral,

. !
L ip(ty texiay? o 1 z  (pt+ia) _
th B (t+ 55" dt :/ - =z _\TJh% 24
/o ‘ etp?e® 2/jBz \\ jfB 258 c”

N
and the Binomial expansion is applied for ( i (e 2J;J/3) a) again, then the equality

. ] . ]7 ]

> 1 z  (p+j)a ) —
Jo e w“M@(f s )¢ "

l

Sn ()G e e

k=0
Thus, the last integral can be expressed in terms of incomplete Gamma function as

follows,
/ 27 e Fdz =T k+17 (0 +3)°
<p+4:;>;a2 2 4],8

Now, we obtain an explicit equality for I (p) as follows,

iplog 3 ii( ? ) ( g ) ( i} ) (_1)1*’“(1 _5)pfj5j2j+k—z—1

=0 1=0 k=0
k41 (p+j)2a2>

Ir(p) =

2 456

3.1.10. Order Statistics of the TGUE Distribution. The order statistics are among
the most basic tools in non-parametric statistics and inference. Also, the order
statistics arise in the analysis of reliability of a system and it can represent the
lifetimes of components of a reliability system. Let T(y),T(2),...,T(,) denote the

. ( )2 2
BT (p 4 ) H e R F(

order statistics of a random sample T7,75,...,7T, from a continuous population
with p.d.f. ¢ (¢ 0) and distribution function G (t; ©), then the p.d.f. of j** order
statistics T for j = 1,2,..., n is given by
iy (10) = g (1:0) (G (O L - G (1:0)"
@ " (G — D (n—)""" ’ ’
n!

G=Dln—J) ((1 —8) ™™ + 6 (20 + 2ft) e—(2at+5t2)>
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n—j

j—1
x(1-(1-g)ee - 5e—(2af+ﬁtz))J (1= gyemet 4 gem(2arsa)) T,
therefore, the p.d.f. of the first order statistics T{;) is given by

Froy (650) = n((1=8)ae " +§ (20 +28t) e (2r+0))

n—1
X {(1 — ) e+ 56_(2at+m2)} )
and the p.d.f. of the last order statistics T{,) is given

fri (1:6) = ”((1*5)046*“+6(2a+25t)e—(2at+ﬁt2))

2 j—1
T

Note that § = 0 yields the order statistics of the exponential distribution with
parameter o and when § = 1 yields the order statistics of the TGUE distribution
with parameter (o, 3).

4. NUMERICAL EXAMPLES

In this section, we provide three data analyses in order to assess the goodness-of-
fit of the TGUE distribution. The following tables show goodness-of-fit measures
for the different distributions.

Data Set 1. (Wheaton River Flood Data) The data consist of the exceedances
of flood peaks (in m?3/s) of the Wheaton River near Carcross in Yukon Territory,
Canada. The data consist of 72 exceedances for the years 1958-1984, rounded to
one decimal place: 1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 13.0, 12.0, 9.3, 1.4, 18.7,
8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0,
7.3, 22,9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6,
5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0, 1.5, 2.5, 27.4, 1.0,
27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0, 1.9, 2.8. Firstly, these data were analyzed
by [10]. Later on, Beta-Pareto (BP) distribution was applied to these data by [2].
Merovcia and Pukab [22] made a comparison between Pareto (P) and Transmuted
Pareto (TP) distribution. They showed that better model is the transmuted Pareto
distribution. Bourguignon et al. [J] proposed Kumaraswamy Pareto (Kw-P) dis-
tribution. Tahir [30] have proposed Weibull-Pareto (WP) distribution and made
a comparison with Beta Exponentiated Pareto (BEP) distribution. Nasiru and
Luguterah [24] have proposed a different type of Weibull-Pareto (NWP) distribu-
tion. Exponential Modified Discrete Lindley (EMDL) distribution was applied to
these data by [31]. We fit data to TGUE distribution and get parameter estimates
as & = 0.0672, 3 = 0.2972,6 = 0.1976i". According to the model selection crite-
ria (AIC) tabulated in Table 5.1, TGUE takes the first place amongst 9 proposed
models.
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Table 5.1. K-S test values, -2LL, AIC and BIC for TGUE, P, TP, EP, BP, Kw-P,
WP, BEP, BGP and EMDL distributions

Model K-S -2LL AIC BIC
TGUE 0.089 496.3 502.3 509.1
EMDL 0.116 503.6 507.6 512.1
P 0.456 606.1 610.1 610.4
TP 0.389 572.4 078.4 580.9
EP 0.199 574.6 578.6 583.2
BP 0.175 567.4 573.4 580.3
Kw-P 0.170 542.4 548.4 555.3
WP - 498.8 502.8 507.3
BEP - 496.1 504.1 513.2

Data set 2. (Bladder Cancer Application) The second data set on the remis-
sion times (in months) of a random sample of 128 bladder cancer patients Lee and
Wang [18] is given by 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,
3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50,
2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76,
26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,10.34,
14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,
5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34,
5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25,
8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73,
2.07, 3.36, 6.93, 8.65, 12.63, 22.69. In this section, we test the performance of the
TGUE distribution and show it to be an improved model as compared to some of its
sub-models such as transmuted inverse Rayleigh distribution (TIRD), transmuted
inverted exponential distribution (TTED), inverse Weibull distribution (IWD) and
transmuted inverse Weibull distribution (IWD). It is clear from Table 5.2 that the

TGUE model provides better fits than other models to this data sets.

For the

TGUE distribution parameter estimates are & = 0.0485, 3 = 0.0057,8 = 0.7745i

and this distribution has the lower AIC, BIC and K-S values.

Table 5.2. K-S test values, -2LL, AIC and BIC for TGUE, TIW, TIE, IW and

TIR distributions

Model K-S -2LL AIC BIC
TGUE 0.065 824.2 830.1 838.6
TIW 0.119 877.0 879.4 879.7
TIE 0.155 885.6 889.6 889.8
W 0.131 888.0 892.0 892.2
TIR 0.676 1420.4 1424.4 1424.6
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Data set 3. (Bank B Data) The data set represents the waiting times (in minutes)
before customer service of 60 bank customers in Bank B. This data set is given as:
0.1, 0.2, 0.3, 0.7, 0.9, 1.1, 1.2, 1.8, 1.9, 2.0, 2.2, 2.3, 2.3, 2.3, 2.5, 2.6, 2.7, 2.7,
2.9, 3.1, 3.1, 3.2, 34, 3.4, 3.5, 3.9, 4.0, 4.2, 4.5, 4.7, 5.3, 5.6, 5.6, 6.2, 6.3, 6.6,
6.8, 7.3, 7.5, 7.7, 7.7, 8.0, 8.0, 8.5, 8.5, 8.7, 9.5, 10.7, 10.9, 11.0, 12.1, 12.3, 12.8,
12.9, 13.2, 13.7, 14.5, 16.0, 16.5, 28.0. This data was analyzed by [3] and was
also used by [29]. They fit this data to Lindley (L) and generalized Lindley (GL)
distributions. We fit data to TGUE distribution and get parameter estimates as
a = 0.18578 = 0.472,3 = —0.222. According to the model selection criteria tab-
ulated in Table 5.3, it is said that TUGE takes first place in amongst 3 proposed
models.

Table 5.3. K-S test values, -2LL AIC and BIC for TGUE, L and Exp distributions

Model K-S -2LL AIC BIC
TGUE 0.067 336.777 342.777 349.060
L 0.080 338.203 340.203 341.759
GL 0.068 338.026 342.026 341.582

In the above three tables, it is clear that the values of the Akaike information cri-
terion (AIC) and Bayesian information criterion (BIC) are smaller for the TGUE
distribution compared to those values of the other models; the new distribution is
a very competitive model to these data.

5. CONCLUSION

In this article, we propose a new model of transmuted distribution so-called the
transmuted Gumbel univariate exponential distribution. The subject distribution is
generated by using the convex combination of failure probabilities of two-component
series and systems and taking the Gumbel univariate exponential distribution as the
base distribution. Some mathematical and statistical properties including explicit
expressions for the probability density, survival, cumulative hazard rate, hazard rate
and mean residual life functions, also, moment generating function and moments are
addressed. The estimation of parameters is approached by the maximum likelihood
method. According to K-S values in Numerical Examples Section, the applications
of the transmuted Gumbel univariate exponential distribution to real data show that
the new distribution can be used to provide better fits than the other distributions.
We hope that this new distribution may attract wider applications in the lifetime
literature. Taking bivariate distributions will guide to derivation of many new
univariate distributions.
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6. APPENDIX

Conditional cdf of T, with given T7 = t; is given by

P 5 B ) . _
F (t2) = TtlFTLTz (tlatQ) _ ot (1 —e—ati _ gmaty | p—a(ti+ts) Btﬂfz)
pne le (tl) ae—at1
Ole_atl _ (O{ + BtQ) e—oc(tl-i-tz)_gtltz

ae*&tl

= 1- <1 + 6t2) e~ (atBt)ts
«

Hence, by equating Fr,p, (t2) = Uz where Uy is uniformly distributed random
variable on the interval (0,1) we have a non linear equation to get solution for o
as follows,

1— (1 + §t2> e~ (atBtt — 7, (17)

To solve the above equation for t5, we use Lambert W- function which is defined
as the solution of the equation W (2) e (*) = 2, where z is the complex number. If
z is any real number, then this equation has a solution on [—e‘l, +00).

In equation , if the expression 1 + gtg is taken as z, we can write
ze_<7+at1>ze<7+atl) =1-Us.

Multiplying both sides of equation above by — (%2 + at1), above expression can

be simplified as follows,

- (O; + atl) zei(%+at1)z =—(1-0s) <0§ + at1> ei(%ﬂm).

Substituting — (%; + atl) z = W (z), we have the Lambert equation
W (e Ve = o,
2 ~ (% +at) . .
where n = — (1 — Uy) (% + at1> e \? . Hence, the solution for W (z) is

a? + aft
_ <ﬂ1> z=W_y(n).
B
So, to is found as follows
o 1

tQZ_E_ a+6t1W_1 )

To show the uniqueness of the solution for t5 we take into account the well known

inequality e~(*+1) > — 2 and replacing z with — (o + St;) %, then n > — 1

e
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This result guarantees that 1 belongs to domain of negative branch of Lambert
W-function.
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