

Gazi University Journal of Science
GU J Sci
23(4):465-474 (2010) www.gujs.org

♠Corresponding author, e-mail: ozgu.can@ege.edu.tr

Personalizable Ontology-Based Access Control

Özgü CAN1♠, Okan BURSA1, Murat Osman ÜNALIR1

1 Ege University, Faculty of Engineering, Department of Computer Engineering, 35100, Izmir, TURKEY

Received: 19/03/2010 Revised: 06/04/2010 Accepted:14/05/2010

ABSTRACT

The main idea of Semantic Web is creating web pages which are also understood by machines and using
ontologies to unify data. Improving a secure Semantic Web is one of the main works in Semantic Web research
area. For this purpose, policies are used. Policy is a set of rules and provides an access control mechanism for a
resource without making any change in that resource. Policy management in Semantic Web is used to define
rules for accessing a resource and to provide users to interpret and comply with these rules. One of the key
features to develop successful personalized Semantic Web applications is to build user profiles. In this paper, we
developed an Ontology-Based Access Control (OBAC) model. This model represents domain and profile
information semantically and has a profile based policy approach in order to achieve a personalized policy
management for Semantic Web. We store personal information in profiles and model this information
semantically to make it part of access control model. Thus, we created two kinds of policies: domain and profile
based policies. We implemented an Ontology-Based Access Control application which creates, modifies, and
deletes policy ontologies. Policy conflicts are also resolved to provide fine-grained policies in OBAC model.
The main contributions of this work are: defining semantically rich resource and entity policies for an Ontology-
Based Access Control mechanism and making use of these policies in terms of the personalization scope.

Key Words: Semantic Web, Ontology, Policy, Profile, Personalization, Conflict Resolution.

1. INTRODUCTION

Semantic Web allows machines to communicate with
each other and provides sharing and reusing of the
information by using formal semantics. Thus, while in
today’s web users decide their navigation choices by
reading web pages, in Semantic Web, agents in behalf of
their users make decisions by using common ontologies
and description languages.

Ontologies are common definitions for entities. As
ontologies are needed for the standardization of the
definition of different terms, they are also important for
the understanding of web pages by machines.

Sharing the information brings forth some security needs
like privacy, access control, authentication, authorization
and data integrity. Hence, effective mechanisms are
needed to ensure the security of Semantic Web
technologies. Therefore, improving a secure Semantic
Web is one of the main works in Semantic Web research
area.

In secure systems, access to data is controlled and the
management of information is ensured. For this purpose,
policies are used. Policy is providing an access control
mechanism for a resource without making any change in
that resource. Recently, two parallel issues are handled in
access control area: to develop new access control models

466 GU J Sci., 23(4):465-474 (2010)/ Özgü CAN1♠, Okan BURSA1, Murat Osman ÜNALIR1

to meet the policy needs of real world application
domains and to develop policy languages for access
control [1].

Rei [2, 3] and KAoS [2, 4] are two of the most known
semantic web based policy languages used for policy
specification. In our work, we used Rei policy language
for policy specification.

Rei is a policy specification language based on OWL-
Lite. It allows users to express and represent the concepts
of rights, prohibitions, obligations, and dispensations [2,
5]. Rei allows developers to express policies over
domain-specific ontologies in e.g., RDF and OWL. Rei
has a set of speech acts primitives that allow the system
to exchange rights and obligations between entities. It
provides a Prolog policy engine that reasons about the
policy specifications. Meta policies are used to resolve
policy conflicts that the Rei policy engine encounters [3].
The engine accepts policy specification in both the Rei
language and in RDF-S, consistent with the Rei ontology
[2]. Rei ontologies can be found at
http://www.cs.umbc.edu/~lkagal1/rei/ontologies.

Besides policy languages, another issue for access control
area is access control models. One of the main traditional
access control model is Role Based Access Control
(RBAC). In RBAC model, the security policy gives
permissions directly to roles, not to the user. A user
obtains her permissions according to his/her roles defined
in the system. Thus, a user will inherit all the permissions
associated with his/her roles and this role hierarchy also
simplifies the definition of policies [6]. For example, in a
hotel system, the existing roles can be: manager, desk
officer, staff and guest. If a user’s role is assigned as a
desk officer then the user is granted to access the room
files, while the hotel manager role can access both the
hotel’s room and accounting files. However, RBAC has
some limitations like: administrative tasks needed for
user-to-role and permission-to-role assignments and also
the exponential grow of the number of roles and
permissions makes these assignment tasks expensive [7].
These limitations of RBAC led us to use profile based
policies.

Our approach is a profile based policy approach. Access
to information and service can be achieved in various
ways depending on the user profile. A user can create and
update her profile. Modeling user profiles is an important
issue of personalization. Various methods exist to collect
user information and to create user profiles from this
information. User information can be provided explicitly
or implicitly [8]. Online registration forms,
questionnaires and reviews are explicit profiling, which is
also called static profile. In implicit profiling, which is
also called dynamic profiling, preferences of each user
are recorded and analyzed through internal devices like
cookies and web server log files without the sense of the
user.

In our approach, we define two kinds of policy which are
based on Rei policy language. One of these policies is for
the related domain and the other policy is for the profile.
The domain policy defines rules for the related domain,
such as a hotel policy rule like “Smoking is not allowed
in guestrooms”. The profile policy defines rules for a
chosen profile. For example, a rule which specifies that
“A person who has a diabetic profile can eat salmon” is a
rule for a diabetic profile.

The paper is organized as follows. Section 2 presents an
Ontology-Based Access Control (OBAC) under the
domain and profile based policy approaches. We outlined
how policy conflicts are resolved. In Section 3, we
explained the implementation details of our Ontology-
Based Access Control model and gave a brief result of
OBAC model. Finally, conclusion and future work
follows.

2. MATERIAL AND METHOD

Policies are encountered in every area of our daily lives.
There are various types of policies like access control,
education, government and health policies. Policy is a
statement that defines the behavior of a system. It acts as
both a decision-support system and a declarative behavior
system [9]. Semantic Web based policy languages allow
policies to be described over heterogeneous domain data
and promote common understanding among participants
who might not use the same information model [1].

In Semantic Web, ontologies are also used to define
policies. Ontology is a formal explicit specification of a
shared conceptualization [10]. Ontologies are used to
represent information and to model specific domain
information by defining objects, concepts and
relationships. Therefore, standard conceptual
vocabularies can be defined for information exchange
between systems, by this way, information can be reused,
and services answer queries to simplify interoperability
between heterogeneous systems.

Policy management in Semantic Web is used to define
rules for accessing a resource and to provide users to
interpret and comply with these rules. Thereby,
semantically-rich policy representations reduce human
error, simplify policy analysis, reduce policy conflicts,
and facilitate interoperability [2].

We developed an Ontology-Based Access Control model
to create, modify and query semantically-rich policies.
This model accesses the data by using a semantic based
approach. In present models, there is no metadata
knowledge for the resource to be accessed and the entity
which is going to access that resource. In OBAC, policies
are created based on resource and entity metadata.
Triples, which are part of policies, are represented in our
model as: the entity which is going to access the resource
is the subject, the resource itself is the object and policy
objects are the predicate.

A policy consists of policy rules. Rules are used to define
policies. Positive rule like “User A can read B1.doc and
write to C1.doc” and negative rule like “User A can’t
write to A1.doc and can’t read D1.doc” are examples of a
policy rule. Policy rules are formed by policy objects.
Policy objects are also called deontic objects. These
policy objects are:

• Permission: Permission is what an entity can do.

• Prohibition: Prohibition is what an entity can’t do.

• Obligation: Obligation is what an entity should do.

• Dispensation: Dispensation is what an entity need no
longer do.

Users have different roles in daily life. These roles have
different preferences and properties. Individual users vary
so much that a model of canonical user is insufficient,

 GU J Sci., 23(4):465-474 (2010)/ Özgü CAN1♠, Okan BURSA1, Murat Osman ÜNALIR1 467

thus, models of individual users are necessary [11]. For
this purpose, in this work, a profile based policy approach
is presented instead of using a role based approach. In
order to provide a profile based policy management, each
user must be handled as a different user and must have
different user models. The “user model” is used to
describe a wide variety of knowledge about people [11].
Users who create and update their profile are participants
of the system. The entity of a policy is represented with a
profile. Profile is used in spite of entity to give detailed

information of the subject. A policy is shown with a triple
(P, O, A), in which P is profile, O is object and A is
action. Profile indicates the user who wants to access to a
resource, object indicates the resource which is going to
be accessed and action indicates the operations which a
user wants to achieve on a resource.

The relationship between profile, policy objects, action
and object is shown in Figure 1. Every policy object is
related with a profile, action and object.

Figure 1. The relationship between profile, policy objects, action and object.

Policy ontologies, which include policy objects, subjects
and objects, are all created separately in OBAC model.
Figure 2 shows OBAC policy components. Subject is
represented with profile and profiles come from the

profile ontology. Condition is a constraint that describes
under which conditions a policy will be executed.
Condition is based on domain ontology. Policy, action
and condition triple is used to form policy objects.

Figure 2. OBAC policy components.

Speech acts allow decentralized security control. We
implemented four speech acts:

• Delegate: Delegate speech act gives a right to another
entity or group of entities.

• Revoke: Revoke speech act removes a right.

• Cancel: Cancel speech act cancels a request.

• Request: Request speech act makes a request for a
right.

In Ontology-Based Access Control model, we defined
two kinds of policies: domain and profile based. Domain
data is used to compose domain and profile based policy
ontologies. Policy ontologies are created with Rei policy
language. Besides, profile based policies are created by
using a profile ontology which is based on a meta-profile
ontology.

2.1. Domain Based Policies

Domain ontology is the machine-processable
representation of the concepts in a specific area. A
domain may be a department, an enterprise, a group or a
project. Domain knowledge allows the specification of a

policy. In domain based policies, policies are created
according to the related domain’s rules. Domain rules are
represented by a ternary relationship between user,
condition and object. Rules define constraints that must
be satisfied. A rule has the form:

B1, B2, ….., Bn A (If B1, B2, ….., Bn hold then A holds.)

In this form, A is the head of the rule and B1, B2, ….., Bn
are the premises of the rule. The set {B1, B2, ….., Bn} is
also called the body of the rule [12]. For example;

mother(selin, can) family (selin, can)

If Selin is Can’s mother, then Selin is the family of Can.

works(can,bornova), resides(can,alsancak), location
(alsancak, izmir), location(bornova, izmir) lives(can,
izmir)

If Can works in Bornova, resides in Alsancak and also,
Alsancak and Bornova are in Izmir, then Can lives in
Izmir.

Our domain is based on tourism domain concepts and
domain based policies are created over this domain. We
are mapping the concepts of tourism domain to concepts

468 GU J Sci., 23(4):465-474 (2010)/ Özgü CAN1♠, Okan BURSA1, Murat Osman ÜNALIR1

in the policy ontology, so we are using these concepts to
express domain based policies.

Example rules of a hotel domain can be written as below:
Pets are allowed in Hotel Louvre. (Permission)

Guests can’t use wireless connection without any extra
payment in Hotel Seine. (Prohibition)

Figure 3 shows the policy definition of the prohibition
domain policy rule above.

<deontic:Prohibition rdf:ID="Prohibition_Seine_WirelessConnection">

 <policy:desc rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> Guests can't

 use WirelessConnection without any extra payment.

 </policy:desc>

 <deontic:constraint>

 <constraint:And rdf:ID="GuestAndNoExtraPayment">

 <constraint:second>

 <constraint:Not rdf:ID="Not_extraPayment">

 <constraint:first>

 <constraint:SimpleConstraint rdf:ID="extraPayment">

 <constraint:object

 rdf:resource="http://efe.ege.edu.tr/~odo/Ontology/I_Tour_mdfy.owl

 #Seine"/>

 <constraint:predicate rdf:resource="#makePayment"/>

 <constraint:subject rdf:resource="#Guest"/>

 </constraint:SimpleConstraint>

 </constraint:first>

 </constraint:Not>

 </constraint:second>

 <constraint:first rdf:resource="#any_Guest"/>

 </constraint:And>

 </deontic:constraint>

 <deontic:actor rdf:resource="http://efe.ege.edu.tr/~odo/Ontology/Profile.owl#Guest"/>

 <deontic:action rdf:resource="#Seine_InternetAccess"/>

</deontic:Prohibition>

Figure 3. Domain based prohibition policy definition example.

Our case study is based on e-tourism ontology (http://e-
tourism.deri.at/ont/e-tourism.owl) which is improved by
DERI (Digital Enterprise Research Institute). We
extended the tourism domain ontology within the case
study. We added new object properties, data properties
and individuals. The extended version of the tourism
ontology can be found at http://efe.ege.edu.tr/~obac/
I_Tour_mdfy.owl.

2.2. Personalizable Access Control

Personalizable access control specifies whether a profile
can perform certain actions on an object. In this section,
we first expressed the user profiling model, how these
profiles are created and then present profile based
policies.

2.2.1 Personalization and Profile Management

Modeling user profiles is an important part of the
personalization. Personalization can be achieved by
filtering out irrelevant information and identifying
additional information of likely interest of the user [13].
There are various methods to collect user information and
to compose user profiles from this user information. User
information can be obtained explicitly or implicitly [8].
Online forms, questionnaires and reviewing are explicit
information. This information is structured in order to
create static profiles. In implicit profiling, which is also
called dynamic profile, preferences and behaviors of each
user are recorded and analyzed through cookies and log
files. In Figure 4, implicit and explicit profile structures
can be seen [8].

 GU J Sci., 23(4):465-474 (2010)/ Özgü CAN1♠, Okan BURSA1, Murat Osman ÜNALIR1 469

Figure 4. Static and dynamic profile structures.

In our approach, we use FOAF (Friend Of A Friend,
http://www.foaf-project.org) ontologies to store static
user profiles. Thus, the static structure of FOAF
ontologies forms an appropriate environment for our user
profiling approach. Canonical properties determine the
individual set of the specific user profile. In the sense of
our approach, these properties are grouped inside our
meta-profiles based on their values. For example, users
whose age are between 18 and 35 are in “Young People”
profile, users who work as a Professor are in “Academic”
profile.

However, grouping profile properties and describing new
meta-profiles for the user creates contradictions.
Canonical properties of FOAF ontologies cannot be used
inside the meta-profiles. Due to their nature, these
properties were created as static variables those can be
object/data type properties. Thus, in order to use these
canonical properties inside our meta-profiles, these
properties must be redefined as an interval or a restriction
set. It is not easy to use properties as classes. This
interpretation needs meta-modeling.

Figure 5. Relationship between Meta-Profile, Profile and FOAF ontologies.

470 GU J Sci., 23(4):465-474 (2010)/ Özgü CAN1♠, Okan BURSA1, Murat Osman ÜNALIR1

We propose a meta-modeling approach based on FOAF
and meta-profiles which can be seen in Figure 5. In this
approach, static FOAF descriptions like occupation are
turned into a restricted set and properties those are not
described inside FOAF are also added. There are no
max/min values for data type definitions inside OWL,
however, some properties like age must be defined as
numerical interval. We define a meta-metaprofile M2, to
define different kinds of data type/object type intervals
and restrictions. Further, these defined properties are
available for the use of meta-profile definition in M1
level. As the meta-profile properties and objects are
defined, meta-profile classes are instantiated in M0 level.
These instances are the meta-profiles like “Young
People” and “Academic”. For example, as seen in Figure
6, academic profile that is defined in profile ontology has
three properties: age (hasAge), occupation
(hasOccupation) and name (hasName). Age instance
value of an academic profile is defined by the maximum
(AcademicAgeValueMax) and minimum
(AcademicAgeValueMin) age properties of meta-profile
ontology. “ageValue” data property of FOAF ontology is
used to define these min/max values. Also, “can-be” data
property is used to define occupation instance and
“name” data type property is used to define the
academician name instance.

<metap:Age rdf:ID="AcademicianAge">

 <metap:hasMinValueAge
rdf:resource="AcademicAgeValueMin"/>

 <metap:hasMaxValueAge
rdf:resource="AcademicAgeValueMax"/>

</metap:Age>

<foaf:Age rdf:ID="AcademicAgeValueMin">

 <foaf:ageValue>22</foaf:ageValue>

</foaf:Age>

<foaf:Age rdf:ID="AcademicAgeValueMax">

 <foaf:ageValue>67</foaf:ageValue>

</foaf:Age>

<metap:Occupation
rdf:ID="AcademicianOccupation">

 <foaf:canbe>Professor</foaf:canbe>

</metap:Occupation>

<metap:Profile rdf:ID="Academician">

 <metap:hasName
rdf:resource="AcademicianName"/>

 <hasAge rdf:resource="AcademicianAge"/>

 <hasOccupation>

 <rdf:Description
rdf:about="#AcademicianOccupation"/>

 </hasOccupation>

</metap:Profile>

Figure 6. Academic profile example in Profile ontology.

2.2.2. Profile Based Policies

In OBAC, domain rules are assigned to users. Policy
determines the ideal behaviors of the user with using the
user profile information. Profiling is creating the set of
same type of users. Profiles can help in tailoring
information delivery to the specific user [14]. As the user
profiles share common properties, grouping of user
profiles based on their interests make new sets of users.

Profile rules are as follows:

A company employee profile can not stay in Eiffel view
rooms. (Prohibition)

A tourist profile can use steam bath if she pays an extra
bill. (Obligation)

In profile based policy ontology, profile instances of the
profile ontology are used instead of the instances of
“entity:Variable” class as the actor of an action.
Entity:Variable is a class of ReiEntity ontology. In this
case, there is no mapping between entity:Variable class
and profile ontology. Entity:Variable class holds entity
examples of a policy ontology. While defining profile
based policies, these entities are taken from semantically
rich profile ontology instead of entity:Variable class.
http://efe.ege.edu.tr/~obac/Profile.owl is used as profile
ontology and http://efe.ege.edu.tr/~obac/MetaProfile.owl
as meta-profile ontology. Figure 7 shows the prohibition
policy definition of the above prohibition profile rule.
Here, deontic:actor instance, which defines the actor of the
policy action, comes from profile ontology.

 GU J Sci., 23(4):465-474 (2010)/ Özgü CAN1♠, Okan BURSA1, Murat Osman ÜNALIR1 471

<deontic:Prohibition rdf:ID="Prohibition_EiffelViewRoom_HiltonParis">

 <deontic:action rdf:resource="#StayingInEiffelViewRoom_HiltonParis"/>

 <deontic:actor rdf:resource="http://efe.ege.edu.tr/~ozgucan/Gazi/ontology/

 Profile.owl#CompanyEmployee"/>

 <policy:desc rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 Company employees can't stay in Eiffel view rooms in Hilton Paris.

 </policy:desc>

 <deontic:constraint rdf:resource="#any_CompanyEmployee"/>

</deontic:Prohibition>

Figure 7. Profile based prohibition policy definition example.

2.3. Conflicts over Policies

Conflict occurs if policies are about the same action, on
the same target but the modalities are different [15].
Policy conflicts can arise due to omissions, errors or
conflicting requirements [16]. Specifying priorities and
precedence relations are the regulation of conflicting
policies [2]. We use meta-policy specifications of Rei
policy language to resolve conflicts. Meta-policies are
policies about how policies are interpreted and how
conflicts are resolved dynamically.

Policy conflicts occur in two manners: policy conflict and
rule conflict. Policy conflicts are resolved with specifying
priorities and precedence relations. In specifying
priorities, priorities between policies and rules are
defined. For example, “Rule1 overrides Rule2.” or
“PolicyA overrides PolicyB.” In precedence relations,
precedence of negative modality and precedence of
positive modality are defined. In precedence of negative
modality, prohibition has precedence over permission and

dispensation is stronger than obligation. In precedence of
positive modality, permission has precedence over
prohibition and obligation is stronger than dispensation.

If a conflict occurs, the ultimate decision is given by the
policy. For example, the hotel policy rules are like
“Conference participants can use snack bar.” and
“Tourists can’t use snack bar.” The user can be either a
tourist or a conference participant. If the user operates
with her conference participant profile then the final
choice will be permission, but if the user operates with
her tourist profile then there will be a restriction for using
snack bar. To resolve this conflict, deontic conflict
resolution algorithm, which is shown in Figure 8, is used.
Inside this algorithm, if the action property of prohibition
and permission rules are equivalent then rule priorities
are generated based on user properties. Figure 9 shows
the generated “ruleofLesserPriority” and
“ruleOfGreaterPriority” meta-policy object properties.

deonticConflictResolution

 for each individual of deonticClass of Policy

 if (deonticProhibitionActionProperty==deonticPermissionActionProperty)

 print conflictError

 choice (“PermOverridesPro”|| “ProOverridesPer”)

 if (choice==”PermOverridesPro”)

 metaPolicy_ruleOfGreaterPriority deonticPermission

 metaPolicy_ruleOfLesserPriority deonticProhibition

 else if (choice==”ProOverridesPer”)

 metaPolicy_ruleOfGreaterPriority deonticProhibition

 metaPolicy_ruleOfLesserPriority deonticPermission

Figure 8. Rule conflict resolution algorithm.

<metapolicy:rulePriority rdf:ID="ProhOverridesPerm_SnackBar">

<metapolicy:ruleOfLesserPriority rdf:resource="#Permission_SnackBar"/>

<metapolicy:ruleOfGreaterPriority rdf:resource="#Prohibition_SnackBar"/>

</metapolicy:rulePriority>

Figure 9. Rule conflict resolution

We also set priorities between policies which might cause
a policy-policy conflict in the model. Thus, we are

defining meta-policy rules for conflicting policy
ontologies. The meta-policy rule in Figure 10 is an

472 GU J Sci., 23(4):465-474 (2010)/ Özgü CAN1♠, Okan BURSA1, Murat Osman ÜNALIR1

example to a policy-policy conflict where
CompanyEmployee Policy overrides TouristPolicy.
“policyOfLesserPriority” and “policyOfGreaterPriority”

meta-policy object properties are used to resolve policy
conflict. A policy-policy conflict ontology can be seen at
http://efe.ege.edu.tr/~obac/PolicyPolicyConflict.owl.

<metapolicy:rulePriority rdf:ID="CompanyEmployeePolicyOverridesTouristPolicy">

<metapolicy:policyOfLesserPriority rdf:resource="#TouristPolicy"/>

<metapolicy:policyOfGreaterPriority rdf:resource="#CompanyEmployeePolicy"/>

</metapolicy:rulePriority>

Figure 10. Policy conflict resolution.

In conflict resolution, we provide fine-grained access
control policies by defining user specific policies. When
the profile set of a user grew, the user can have different
profiles. In this situation policy rules and policies can
conflict due to different policies of different profiles. The
access rights between the resource and the user must not
be conflict. We are controlling this conflict by specifying
priorities and precedence relations.

3. IMPLEMENTATION AND RESULTS

In this work, we present an Ontology-Based Access
Control model which has a profile based approach in
order to achieve a personalized policy management. We
emphasize that both data and people must be understood
for the success of an access control mechanism. In our
work, we represent data semantically. However, to
provide a complete ontology based application, we also
have to represent people’s information semantically. For
this purpose, we store personal information in profiles
and model this information semantically to make it part
of our Ontology-Based Access Control model. We also
use profiles to provide personalization which is not
possible by using roles. In the literature, roles are used for
access control mechanisms and personal information is
not represented semantically. The main contribution of
our work is representing personal information
semantically in an access control model and using this

information to achieve personalization in policy
management.

In OBAC, we define two kinds of policies: domain and
profile based policies allowing the system to behave
according to the specific requirements of users for better
socialization. Thus, OBAC model provides personalized
query results to users.

In our work, firstly, we created policy ontologies by
using Rei policy language. Protégé ontology editor is
used to create ontologies. After creating policy
ontologies, we developed an Ontology-Based Access
Control application to create, modify, delete and query
policies. Java programming language is used to
implement the application. Jena Semantic Web
Framework (http://jena.sourceforge.net) for building
Semantic Web applications is utilized to interpret and
reason over policies. Jena provides a programmatic
environment for RDF, RDFS and OWL, SPARQL and
includes a rule-based inference engine.

3.1. Running Example & Comparative Analysis Of
RBAC and Personalized OBAC

In this section, we will give a brief running example of
personalized OBAC model for a university domain. Some
individuals of profiles, resources and actions in a
university domain can be seen in Table 1.

 GU J Sci., 23(4):465-474 (2010)/ Özgü CAN1♠, Okan BURSA1, Murat Osman ÜNALIR1 473

Table 1. Profile, resource and action individuals of a university domain.

Profiles Resources Actions

Professor

Associate Professor

Assistant Professor

Lecturer

Faculty
Member

Research Assistant

Undergraduate

Graduate

Master
Students

PhD

Secretary

Student
Affairs

Personal
Affairs

Accounting

Officer

Library

Staff

Technician

• Course Web
Sites

• FTP Service

• Labs

• Printer

• Fax

• Accessing course
materials and
FTP service

• Usage of library,
labs, printer and
fax.

Users choose their profiles and they can have more than
one profile. For example, a user can be a PhD student and
research assistant at the same time. In this situation,
policy conflicts may occur for different profiles due to
policy rules like: “PhD students can’t use Semantic Web
Lab printer” and “Research Assistants can use Semantic
Web Lab printer”. So, the same user has permission and
prohibition on using printer action. OBAC model
determines and resolves these policy conflicts by
specifying priorities and precedence relations. RBAC
does not provide to determine and resolve policy
conflicts.

User’s profiles can change in time. For example, an
assistant professor profile may change into associate
professor profile. In this case, this profile change will not
affect the model. But, in RBAC, change in user’s
personal information will affect the system and making
new role assignments will increase administrative tasks
expense. In OBAC, profiles are assigned to users through
their personal information, if any change happens in the
user’s personal information user’s profile changes
without any administrative task and policies related to
this new profile will be executed. Thus, OBAC has no
administrative tasks expense and does not deal with state
changes in user’s data.

4. CONCLUSIONS AND FUTURE WORK

Semantic Web based policies are used to access the data
in a secure way. Although policies are widely used in
access control mechanisms, we use ontology based policy
management for achieving personalization in our
approach. In this work, we have proposed an Ontology-
Based Access Control model for the Semantic Web by
specifying policies over domain and profile knowledge.
Therefore, we defined two kinds of policies: domain and

profile based. We also developed a user interface and
policy engine to interpret and reason over policies by
using JENA Semantic Web Framework.

As part of our future work, we will add preference based
policies to our model in order to achieve a better
personalization. Preferences are clustering entities that
make preferences. User preferences are constrained by
enforcing domain and profile policies, so, users can
achieve the best query results. Hence, effective
personalization to serve the users based on their requests
will be achieved. For example, if a tourist wants to stay in
a pets-allowed guestroom, after the enforcement of the
hotel domain policy, pets-allowed hotel names will be
listed for this user. In addition, we will implement some
queries. For this purpose, SPARQL query module of
SESAME framework will be used.

REFERENCES

[1] Finin, T. et al., “ROWLBAC - Representing Role
Based Access Control in OWL”, Proceedings of the
13th Symposium on Access Control Models and
Technologies, Colorado, USA (2008).

[2] Tonti, G., Bradshaw, J. M., Jeffers, R., Monranari, R.,
Suri, N., Uszok, A., “Semantic Web Languages for
Policy Representation and Reasoning: A Comparison
of KaoS, Rei, and Ponder”, 2nd International
Semantic Web Conference (ISWC 2003), 419-437
(2003).

[3] Kagal, L., Finin, T., Joshi, A., “A Policy Language
for a Pervasive Computing Environment”, POLICY
'03: Proceedings of the 4th IEEE International
Workshop on Policies for Distributed Systems and
Networks, 63 (2003).

474 GU J Sci., 23(4):465-474 (2010)/ Özgü CAN1♠, Okan BURSA1, Murat Osman ÜNALIR1

[4] Uszok, A., Bradshaw, J. M., Jeffers, R., “KAoS: A

Policy and Domain Services Framework for Grid
Computing and Semantic Web Services”, Second
International Conference on Trust Management,
Springer-Verlag (2004).

[5] Kagal, L., Finin, T., Joshi, A., “A Policy Based
Approach to Security for the Semantic Web”, 2nd
International Semantic Web Conference (ISWC
2003), Sanibal Island, Florida, USA 402-418 (2003).

[6] Cuppens, F., Miège, A., “Modelling Contexts in the
Or-BAC Model”, 19th Annual Computer Security
Applications Conference (2003).

[7] Yuan, E., Tong, J., “Attributed Based Access Control
(ABAC) for Web Services”, In ICWS’05: IEEE
International Conference on Web Services 569
(2005).

[8] Jrad, Z., Aufaure, M.A., “Personalized Interfaces for
a Semantic Web Portal”, Tourism Information
Search, In KES 2007/WIRN 2007, Part III, LNAI
4694, 695-702 (2007).

[9] Thuraisingham, B., “Building Trustworthy Semantic
Webs”, Auerbach Publications, ISBN:0849350808
(2007).

[10] Studer, R., Benjamins, V. R., Fensel, D.,
“Knowledge Engineering: Principles and Methods”,
Data Knowl. Eng., 25(1-2): 161-197 (1998).

[11] Rich, E., “Users are individuals: individualizing user
models”, International Journal of Man-Machine
Studies, 18: 99-214 (1983).

[12] Antoniou, G. and van Harmelen, F., “A Semantic
Web Primer”, The MIT Press, ISBN 0-262-01210-3
(2004).

 [13] Gauch, S., Speretta, M., Chandramouli, A., Micarelli,
A., “User Profiles for Personalized Information
Access”, The Adaptive Web 2007, 54-89 (2007).

[14] Dzbor, M., Motta, E., “Engineering and Customizing
Ontologies”, In Ontology Management, Semantic
Web, Semantic Web Services, and Business
Applications, 25-57 (2008).

[15] Kagal, L., “Rei: A Policy Language for the Me-
Centric Project”, TechReport, HP Labs, September
(2002).

[16] Lupu, E. C. and Sloman, M., “Conflicts in policy-
based distributed systems management”, IEEE
Transactions on Software Engineering,
November/December 25(6):852–869 (1999).

