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ABSTRACT 

In this paper, a new method based on adaptive neuro-fuzzy inference system (ANFIS) to estimate the phase 
inductance of linear switched reluctance motors (LSRMs) is presented. The ANFIS has the advantages of expert 
knowledge of fuzzy inference system and learning capability of neural networks. A hybrid learning algorithm, 
which combines the back-propagation (BP) algorithm and the least square method (LSM), is used to identify the 
parameters of ANFIS. The translator position and the phase current of the three-phase LSRM are used to 
estimate the phase inductance. The phase inductance results estimated by ANFIS are in very good agreement 
with the results of finite element analysis (FEA). 
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1. INTRODUCTION 

There has been widespread interest in the switched 
reluctance motor (SRM) drives in recent years. 
Although many articles have been published on 
modeling and analysis of the rotary switched reluctance 
motor (RSRM), there is a paucity of the literature on 
linear switched reluctance motors (LSRMs) [1-9]. 
LSRMs are the attractive alternative due to lack of 
windings on either the fixed or moved parts of the 
motor. Furthermore, the windings are concentrated 
rather than distributed, making them ideal for low cost 
manufacturing and maintenance. This paper presents 
inductance estimation of a double-sided LSRM by using 
adaptive neuro-fuzzy inference system (ANFIS). 

The LSRM is often operated with extreme saturation to 
achieve high force density. The inductance, flux-
linkage, and force of the LSRMs are highly nonlinear 
functions of both translator position and phase current 
due to the extreme saturation effects and the variation of 
magnetic reluctance. The nonlinearities make the 
analysis and design of LSRMs difficult. In LSRM 
designs, it is important to obtain the inductance of the 
motor accurately because the inductance is a critical 
performance parameter of LSRMs. A number of 
methods [1-11] using different levels of approximation 
have been proposed and used to compute the inductance 
of SRMs and LSRMs. These methods can be broadly 
classified into two categories: simple analytical 

methods and rigorous numerical methods. The 
analytical methods, based on some fundamental 
simplifying physical assumptions, are the most useful 
for practical design as well as providing a good intuitive 
explanation of the operation of the LSRMs. However, 
these analytical methods are not very accurate to 
compute the magnetic characteristics of the LSRMs. 
Most of the limitations of analytical methods can be 
overcome by using the numerical methods. The 
numerical methods such as finite element analysis 
(FEA) [6, 7, 9, 12-15] provide accurate results but 
usually require tremendous computational effort and 
numerical procedures. They suffer from a lack of 
computational efficiency, which in practice can restrict 
their usefulness due to high computational time and 
costs. For these reasons, in this paper the phase 
inductance of LSRMs is computed by using ANFIS. 

The ANFIS can simulate and analysis the mapping 
relation between the input and output data through a 
learning algorithm to optimize the parameters of a given 
fuzzy inference system (FIS) [16, 17]. It combines the 
benefits of artificial neural networks (ANNs) and FISs 
in a single model. Fast and accurate learning, excellent 
explanation facilities in the form of semantically 
meaningful fuzzy rules, the ability to accommodate 
both data and existing expert knowledge about the 
problem, and good generalization capability features 
have made neuro-fuzzy systems popular in the last few 
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years [16-21]. Because of these fascinating features, in 
this paper, a method based on ANFIS is presented for 
computing the phase inductance of LSRMs. First, the 
LSRM parameters related to the phase inductance are 
determined, and then the phase inductance depending 
on these parameters is calculated by using the ANFIS. 

Even though ANFIS was used for the position 
estimation [22], the control [23, 24] and the inductance 
estimation [25] of SRMs, there is no work about 
LSRMs in the literature to the best of our knowledge. In 
the following sections, the basic principles of the LSRM 
are given briefly, and the application of ANFIS to the 

calculation of the inductance of an LSRM is then 
explained. 

2. DESCRIPTION OF THE LSRM 

Figure 1 shows a cross-sectional figure of the double 
sided LSRM with three phases. Excitation windings are 
located on two outer stator laminated structures. The 
active stator (translator) is shown at the position of 
minimum reluctance in Figure 1. If phase C were 
excited, then the translator movement would be towards 
the left direction. Otherwise, phase B should be 
energized.

 

 
Figure 1. Cross-sectional figure of the double sided LSRM. 

The translator and rotor platforms of the LSRM are 
modeled with the use of M19 laminated steel sheet 
properties for FEA. The mechanical and electrical 
parameters of the LSRM designed by authors are 
summarized in Table 1. These parameters are obtained 
after the optimizing processes realized by using 
analytical calculations. According to the specifications 
listed in Table 1, the geometrical dimensions and three-
dimensional model of the LSRM is shown in Figure 2. 
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Table 1. Mechanical and electrical parameters of the LSRM. 

Phase numbers 3 

Stator (Translator) pole width 17 mm 

Stator slot width 17 mm 

Stator pole height 25 mm 

Stator depth 50 mm 

Rotor pole width 17.6 mm 

Rotor depth 50 mm 

Overall length 204 mm 

Overall width 112 mm 

Air gap width 1 mm 

Steel type M19 

Wire diameter 1 mm 

Total numbers of phase turns 320 

 
 
 
 
 

 
 

Figure 2. Three-dimensional model of the LSRM. 

Structure of the motor reduces the mass production cost 
because windings are located on the translator. In 
addition, the rotor parts do not need to be continuous 
because of the flux distribution of the motor as shown 

in Figure 3. However, the rotor parts have to be 
continuous for the flux flow and force production of the 
LSRM when the single sided structure is used. 
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Figure 3. Flux distribution of the LSRM in aligned position. 

 
Operation principle of the motor is based on forward 
force generation. Because of the double-sided structure, 
the lateral forces produced by two stator sides of the 
motor are eliminated by each other. 

3. ADAPTIVE NEURO-FUZZY INFERENCE 
SYSTEM (ANFIS) 

The FIS forms a useful computing framework based on 
the concepts of fuzzy set theory, fuzzy if-then rules, and 
fuzzy reasoning. The ANFIS [16, 17] is a FIS 
implemented in the framework of an adaptive fuzzy 
neural network. It combines the explicit knowledge 
representation of FIS with the learning power of ANNs. 
Usually, the transformation of human knowledge into a 
fuzzy system (in the form of rules and membership 
functions) does not give exactly the target response. So, 
the parameters of the FIS should be determined 
optimally. The main aim of the ANFIS is to optimize 
the parameters of the equivalent FIS by applying a 
learning algorithm using input-output data sets. The 
parameter optimization is realized in a way such that the 
error measure between the actual output and the target 
is minimized [25]. 

The ANFIS used in the paper implements a first-order 
Sugeno fuzzy model. Among many FIS models, the 
Sugeno fuzzy model is the most widely applied one for 
its high interpretability and computational efficiency, 
and built-in optimal and adaptive techniques. For a first-
order Sugeno fuzzy model, a common rule set with two 
fuzzy if-then rules can be expressed as: 

 

Rule 1: If x is A1 and y is B1, then 

1111 ryqxpz ++=                                         (3.1.a)   (1-a) 

Rule 2: If x is A2 and y is B2, then 

2222 ryqxpz ++=                                        (3.1.b)   (1-b) 

 

where Ai and Bi are the fuzzy sets in the antecedent, and 
pi, qi, and ri are the design parameters that are 
determined during the training process. The ANFIS 
consists of five layers:  

Layer 1: Every node i in the first layer employ a node 
function given by 
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where {ci, σi} is the parameter set that changes the 
shapes of the MF. Parameters in this layer are referred 
to as the “premise parameters”. 

Layer 2: Every node in this layer calculates the firing 
strength of a rule via multiplication:  

2,1),()(2 === iyxO iBiAii µµω  

     . (3.5) 

Layer 3: The i th node in this layer calculates the ratio 
of the ith rule’s firing strength to the sum of all rules’ 
firing strengths: 

2,1,
21

3 =
+

== iO i
ii ωω

ω
ω   ..(3.6) 



   G.U. J. Sci., 22(2):89-96 (2009)/Ferhat DALDABAN
♠

, Nurettin ÜSTKOYUNCU 93 
 

  

where iω  is referred to as the “normalized firing 
strengths”. 

Layer 4: In this layer, every node i has the following 
function: 

2,1,)(4 =++== iryqxpzO iiiiiii ωω    (3.7) 

where iω  is the output of layer 3, and {pi, qi, ri} is the 
parameter set. Parameters in this layer are referred to as 
the “consequent parameters”. 

Layer 5: The single node in this layer computes the 
overall output as the summation of all incoming signals, 
which is expressed as: 
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In the paper, the hybrid learning algorithm [16, 17], 
which combines the least square method (LSM) and the 
back-propagation (BP) algorithm, is used to rapidly 
train and adapt the FIS. The algorithm converges faster 
since it reduces the dimension of the search space of the 
BP algorithm. 

From the architecture of ANFIS, it is observed that if 
the values of the premise parameters are fixed, the 
overall output can be expressed as a linear combination 
of the consequent parameters: 

 

222222111111 )()()()()()( rqypxrqypxz ωωωωωω +++++=
                      (3.9) 

The LSM can be used to obtain the optimal values of 
the consequent parameters.  When the premise 
parameters are not fixed, the search space becomes 
larger and the convergence of training becomes slower. 
The hybrid learning algorithm is adopted to solve this 
problem. The algorithm has a two-step process. First, 
the consequent parameters are identified using LSM 
when the values of premise parameters are fixed. After 
that, the consequent parameters are held fixed while the 
error is propagated from the output end to the input end, 
and the premise parameters are updated by the standard 
BP algorithm. 

 

 

 

 

4. CALCULATION OF THE PHASE 
INDUCTANCE  

ANFIS has been adapted to calculate the phase 
inductance of the LSRMs. For the ANFIS, the inputs 
are the phase current I  and the translator position x , 
and the output is the phase inductance L .  

Training the ANFIS by using the hybrid learning 
algorithm to calculate the phase inductance involves 
presenting it sequentially with different sets ),( xI  and 
corresponding desired L values. Differences between 
the desired output L and the output of the ANFIS are 
evaluated by the hybrid learning algorithm. The 
adaptation is carried out after the presentation of each 
set ),( xI  until the calculation accuracy of the network 
is deemed satisfactory according to some criterion (for 
example, when the error between the desired L and the 
actual output for all the training set falls below a given 
threshold) or when the maximum allowable number of 
epochs is reached. 

There are two types of data generators, namely 
measurement and simulation for LSRMs. The selection 
of a data generator depends on the application and the 
availability of the data generator. In the paper, FEA was 
used to generate the data set for training the ANFIS 
because FEA is a useful method for obtaining accurate 
magnetic characteristics of SRMs and LSRMs [7-15]. 
2D FEA was used to analyze the motor structure, 
because of the increasing computing time and efforts of 
3D FEA. The name of the used software is FEMM and 
15566 nodes are used in the analysis. The active 
translator of the LSRM is moved from the unaligned 
position with respect to the rotor to the aligned position 
for different excitation currents. Therefore, static 
inductance profile is obtained as a function of position 
and current. The excitation currents are chosen to be in 
steps of 5 A from 0 to 45 A. 

The parameter values of the LSRM used in the paper 
are given in Table 1. Out of 2100 data sets generated, 
1575 data sets were used for training and the rest were 
used for test the ANFIS. The ranges of training data sets 
are among AI 450 ≤≤  and mmx 250 ≤≤ .  

The number of epochs was 100 for training. The 

number of MFs for the input variables I  and x  is 9 
and 9, respectively. The number of rules is then 81 
(9x9=81). The phase inductance rule surface versus the 
translator position and the phase current is shown in 
Figure 4. 
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Figure 4. The phase inductance rule surface versus the translator position and current. 

 
5. RESULTS 

The phase inductance test results of the ANFIS for the 
different phase currents were compared with the results 
of FEA in Figure 5. It can be seen from the Figure 5 

that the ANFIS test results are in very good agreement 
with the results of FEA. This very good agreement 
supports the validity of ANFIS proposed in this work. 
The test root mean square (RMS) error obtained from 
the ANFIS is 3.910x10-5. 

 

 
Figure 5. Comparison of the FEA results and the ANFIS test results. 

The phase inductance can be calculated by using FEA. 
This method is very complex and requires high 
performance large-scale computer resources and a very 
large number of computations. A distinct advantage of 
ANFIS computation is that, after proper training, the 
ANFIS completely bypasses the repeated use of 

complex iterative processes for new cases presented to 
it. 

6. CONCLUSIONS 

The ANFIS is presented to accurately compute the 
phase inductance of the LSRM. The optimal values of 
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premise parameters and consequent parameters are 
obtained by the hybrid learning algorithm. It was shown 
that the results of ANFIS are in excellent agreement 
with the results of FEA. Other methods such as look-up 
table with interpolation also can be used for this aim but 
results of these methods are not accurate enough 
because of the saturation effects and nonlinear nature of 
the motor. In addition, using of the ANNs can be an 
alternative to ANFIS. 

The ANFIS is a very powerful approach for building 
complex and nonlinear relationship between a set of 
input and output data. It combines the benefits of ANNs 
and FISs in a single model. Accurate, fast, and reliable 
ANFIS models can be developed from 
measured/simulated LSRM data. Once developed, these 
ANFIS models can be used in place of computationally 
intensive numerical models to speed up LSRM design. 
The ANFIS offers an accurate and efficient alternative 
to previous methods for to calculate the phase 
inductance. 
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