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ABSTRACT 

     In this study, new classification models were developed which can be used in the solution to the 
problems of Discriminant Analysis having two groups. For the solution of these type of problems, 
Lam, Choo and Moy (1996) proposed a model regarding the minimization of deviations from the 
group means. The model examined by these authors loses its efficiency in respect of the hit ratio as 
the distributions of populations of samples considered go away from the normal distribution. For the 
samples drawn from non normal or skewed distributions, the median is a much more suitable 
descriptive statistic than the mean. The aim of the study is to consider the models of two-group 
classification problems by minimizing the deviations from the group medians. When these proposed 
approaches are applied to the data of real life or of simulation drawn from different distributions, it is 
observed that the attained performance of classification is better than both some important 
classification approaches in the literature and especially the classification performance minimizing 
the deviations from group means proposed by Lam, Choo and Moy. 
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1. INTRODUCTION 

     The discriminant analysis is a technique interested in 
determining the groups of objects based on their observed 
scores. Fisher’s linear discriminant function is especially 
the most popular technique which is frequently used for 
the discriminant problem. As an alternative for the 
examination of classification problems using the statistical 
methods,  recently a number of new efficient mathematical 
programming approaches have been developed, Fred and 
Glover (1), Glover (2), Lam and Moy (3), Lam and Moy 
(4), among others. In two-group and multigroup 
classification problems, Lam, Choo and Moy (5), and Lam 
and Moy (6) developed a satisfactory model of 
classification based on cluster analysis. In two-group 
classification problems, their approach minimizes the sum  

of deviations of all object’s classification scores from the 
mean group classification scores.  

     The approach presented here examines the two-group 
classification problem by minimizing the sum of 
deviations between the classification scores of all objects 
and the group median scores of objects. The reason that the 
median is used in this situation is that it represents results 
more accurately than the arithmetic mean in cases of 
skewed distributions like in Exponential, Gamma, Chi 
Square and F distributions and that most of the real life 
data sets are of that nature.  The layout of the article is as 
follows; in the second part, linear programming 
approaches proposed previously in literature are explained, 
in the third part, the linear models based on median scores 
and in the fourth part goal programming approaches based 
on mean and median scores are proposed. In the fifth part, 
a real data set of economical variables from 91 countries is 
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illustrated and in the sixth part, a simulation study is 
performed to compare samples from different distributions 
based on their hit-ratios.  In the last part, we discuss the 
results and findings of the article and further research 
about this topic.  

2. LINEAR PROGRAMMING APPROACHES 

     Consider the two-group classification problem with k  
attributes. Let  x  be the k n×  matrix of attribute scores 
of the sample with size n  drawn from the groups 1G  and 

2G . If 1 2, ,. . . , kw w w  are the attribute weights, then 

the classification score is defined as 
1

k

i ij j
j

S x w
=

=∑ , 

( 1, 2,  . . . , i n= ). The assignment of an object into groups 
depends on the value of its classification score. The simple 
MSD (Minimum Sum of Deviations) classification score 
can be formulated as follows: 
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where 0,   ( 1, 2,  . . . , )id i n≥ = ,   ( 1, 2,  . . . , )jw j k=  

and c  are unrestricted (positive or negative) variables (2). 

Solving this model gives us the jw  and c  values, with 

which we can obtain the classification score of any object. 
An object will be classified into 1G  if its classification 
score is greater than or equal to c,  otherwise into 

2G . 

     Like this model, many of the other existing linear 
programming models determine the attribute weights and 
cut-off values taking place here at the same time. Lam, 
Choo and Moy (6) divide the process made by their model 
into two steps: the first constitutes the determination of 
attribute weights, and the second determines the cut-off 
values for the classification. Their model makes use of an 
objective function minimizing the sum of deviations from 
the group mean classification scores. The Modified model 
of Lam, Choo and Moy (6) can be formulated as follows 
(MLCM): 
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where 0,   ( 1,2,  . . . , )id i n≥ =  and   ( 1, 2,  . . . , )jw j k=  

is the unrestricted  variable and 1 jµ  is the median of the 
thj  variable in group 1G  and  2 jµ  is the median of thj  

variable in group 2G .  

     In this model, to the weights are reached by making 
object scores close to the mean score of the group in which 
they take place. Then the object scores are used in the 
following model [3] and the classification is made: 
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where 0,   ( 1, 2,  . . . , )ih i n≥ = , and c  is an unrestricted 
variable. As seen classification is made in two steps. These 
models are easily solved by  any simplex algorithm. 

3. NEW    LINEAR     PROGRAMMING 
FORMULATIONS BASED ON MEDIAN 
MINIMIZATON 

     As mentioned, the above modified model of Lam, Choo 
and Moy (6) minimizes the sum of deviations of the 
classification scores for each unit. The model we present 
minimizes the sum of deviations of the classification 
scores from the median classification scores for the units in 
the two-group classification problem. Similar to the model 
of Lam, Choo and Moy (6) our model can be formulated as 
follows: 
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where 0,   ( 1,2,  . . . , )id i n≥ =  and   ( 1, 2,  . . . , )jw j k=  is 

the unrestricted  variable and 1 jmed  is the median of the 
thj  variable in group 

1G  and  2 jmed  is the median of 
thj  variable in group 2G . In this model, in the first step 

the weights jw  are found after the solution to LMED1. 

Here the weights are found by making the object scores 
close to the median score of the group in which they take 
place. Using these weights the classification scores ( iS ) 
for each object are evaluated and then the designation of 
objects to groups are made by the LMED2 model.  
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where 0,   ( 1,2,  . . . , )ih i n≥ = , and c  is an unrestricted 
variable. These models are also solved by simplex 
algorithm.  

4. GOAL PROGRAMMING APPROACHES 

4.1. Goal programming approach based on the 
minimization of deviations from the mean 

     Since the goal programming is an extension of linear 
programming, we can consider the models MLCM1 and 
MLMC2 together as the priority linear programming 
models. In this model the first priority is to minimize the 
sum of deviations of objects’ classification scores from the 
group mean scores. The second priority is to minimize the 
sum of deviations between classification scores and cut-off 
values. In this case the goal programming approach based 
on the minimization of deviations from the mean (GPM) 
model is given as follows: 
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where , 0,   ( 1,2,  . . . , )i id h i n≥ = ,   ( 1, 2,  . . . , )jw j k=  

and c  are unrestricted variables. An object will be 
classified into 1G  if its classification score is greater than 

or equal to c, otherwise into 2G . This model is solved by 
lexicographic goal programming algorithm. 

4.2. Goal programming approach based on the 
minimization of deviations from the median 

     Similar to the foregoing model, we can solve the 
problems LMED1 and LMED2 by Pre-emptive goal 
programming model. Here the first priority is to minimize 
the sum of deviations of objects’ classification scores from 
the group median scores. The second priority is to 

minimize the sum of deviations between classification 
scores and cut-off values. The related GPM model is given 
as follows: 
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where , 0,   ( 1,2,  . . . , )i id h i n≥ = ,   ( 1, 2,  . . . , )jw j k=  

and c are unrestricted variables. This model is also solved 
by lexicographic (pre-emptive) goal programming 
algorithm. 

     The purpose of this paper is to bring up the 
classification performances of the new LMED, GPM and 
GMED approaches we proposed above by using both the 
data of real life or of simulation.  

5. AN APPLICATION 

     In order to evaluate the performances of the LMED and 
GMED models, we considered the real data set of 
91countries with six variables (7). The data of the year 
2002 are provided from T.R. Undersecreteriat of The 
Prime Ministry for Foreign Trade. The data used are as 
follows: 

1x : the portion of country in World export 

2x : the portion of country in World import 

3x : national income per capita ( in thousand $ ) 

4x : export / gross national product and national  
income per capita ( billion $ ) 

5x : import / gross national product and national 
income per capita ( billion $ ) 

6x : the annual inflation rate 

     All of the 91 countries are divided into two groups, 
those of export portion 1 and over to group 1 (

1G ; 23 
countries), and those of export portion less than 1 to group 
2 ( 2G ; 68 countries). 

     The attribute weights for six methods are given in Table 
1. 
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                     Table 1: Attribute weights of six approaches 

Method Samplea 

1x  2x  3x  4x  5x  6x  

FLDF W 2.583 0.824 0.0032 0.112 0.006 -0.024 

 D 2.231 0.926 0.0005 0.019 0.007 -0.001 

MSD W 0.625 0.215 -0.378 -0.012 0.175 -0.245 

 D 0.752 0.117 -0.214 -0.003 0.254 -0.179 

MLCM W 0.542 0.752 0.036 0.176 0.009 -0.063 

 D 0.687 0.621 0.078 0.162 0.002 -0.027 

LMED W 0.851 0.487 0.111 0.066 0.089 -0.108 

 D 0.692 0.520 0.093 0.101 0.051 -0.068 

GPM W 0.941 0.252 0.178 0.063 0.287 -0.117 

 D 0.827 0.178 0.134 0.057 0.195 -0.085 

GMED W 0.789 0.428 0.013 0.178 0.082 -0.024 

 D 0.782 0.303 0.092 0.090 0.110 -0.005 
                               a W: Whole sample ( 91n = )    D: Development sample ( 50n = ) 

     An examination of Table 1 gives the weight values 
of the inflation rate ( 6x ) for both the whole sample and 
the development sample as negative in all methods. It is 
an expected result for the weight value of this variable 
to become negative and the results obtained from all 
models also match this finding. While the weight values 

of variables 3x  and 4x  are expected to be positive, 
they are evaluated negatively in MSD model. This state 
of affairs does not answer the expectations.  

     The hit-ratios of classification obtained from six 
approaches are given in Table 2. 

            Table 2: Hit-ratios of six approaches 

Method Samplea Correctly 
accepted 

Erroneously 
Accepted 

Correctly 
rejected 

Erroneously 
rejected 

Hit-ratio 

 W 17 7 61 6 0.857 
FLDF D 8 5 33 4 0.820 

 H 8 5 25 3 0.804 
 W 18 4 64 5 0.901 

MSD D 10 4 34 2 0.880 
 H 8 4 26 3 0.829 
 W 19 2 66 4 0.934 

MLCM D 10 3 35 2 0.900 
 H 9 3 27 2 0.878 
 W 18 1 67 5 0.934 

LMED D 10 3 35 2 0.900 
 H 9 2 28 2 0.902 
 W 19 1 67 4 0.945 

GPM D 10 2 36 2 0.920 
 H 9 2 28 2 0.902 
 W 21 2 66 2 0.956 

GMED D 11 2 36 1 0.940 
 H 10 2 28 1 0.926 

                 a W: Whole sample ( 91n = ) ,  D: Development sample ( 50n = ), H: Holdout sample ( 41n = ) 

     Development sample: 12 countries from group 1 and 
38 countries from group 2, totally 50 countries. Holdout   
sample:  11 countries from group 1 and 30 countries 
from group 2, totally 41 countries. 

     When Table 2 is examined it can be observed that 
the model GMED model has the best hit-ratio of 
classification for both cases, the whole sample and the 
holdout sample. The GPM and LMED approaches give 
better results than the MLCM, MSD and FLDF 
approaches. 



G.U. J. Sci., 19(1) 49-55 (2006)/ Hasan BAL, H.Hasan ÖRKCÜ♣, Salih ÇELEBİOĞLU 
 

 

53

6. SIMULATION EXPERIMENT 

     We carried out a simulation work to compare the 
performances of the FLDF, MSD, MLCM, LMED, 
GPM and GMED methods for the two-group 
classification problem. All of the results for these 
methods are obtained by using the MATLAB 7 
program.  

     The distributions considered in this study and their 
parameters are as follows: 

Mult. Normal    1G ~ (6, 6, 6),  2G ~ (5, 5, 5) ,  Σ=I 
Uniform                1G ~ (1, 5), 2G ~ (1, 4)  
Exponential    1G ~ (2), 2G ~ (1)  
Gamma                1G ~ (1, 5), 2G ~ (1, 4) 
Chi-Square     1G ~ (2), 2G ~ (1) 
Fisher (F)                1G ~ (1, 4), 2G ~ (1, 5)  

     For each group a random sample of 100 objects 
having three attributes are drawn randomly from the 
above distributions. From totally 200 observations of 
objects, 100 of them are used as the development 
sample and the remaining 100 observations are used as 

the holdout sample. For example, in Table 3, for the 
case 1 2 50n n= = , 100 observations for group 1 and 
100 observations for group 2, making a total of 200 
observations is drawn from the related distribution and 
then 50 observations of the random sample of size 100 
for group 1 and so far group 2 are used as the 
development sample and the holdout sample, 
respectively. In Table 4, for the case 1 220, 80n n= = , 
again 100 observations for group 1 and 100 
observations for group 2, making a total of 200 
observations is drawn, but 80 observations of the 
random sample of size 100 are used as the development 
sample and the remaining 20 observations as the 
holdout sample for group 1. The same process is 
repeated for group 2. In Table 5, for the case 

1 280, 20n n= = , the process is applied in the reverse 
order.  

     To run the simulation experiments, 50 data sets are 
generated for each of the distributions. That is, 50 data 
of sample are used.  

     The hit-ratio numbers of 6 procedures based on 
different distributions are given in Table 3, 4 and 5.

            Table 3: Average hit-ratios of six approaches in the holdout samples ( 1 2 50n n= = ) 

 M   E   T   H   O   D 
Distribution MSD FLDF MLCM LMED GPM GMED 

Mult.Normal 77.85 
(6.31)∗ 

79.12 
(4.31) 

80.25 
(4.52) 

80.12 
(5.06) 

80.35 
(4.62) 

81.38 
(4.15) 

Exponential 70.12 
(6.55) 

73.23 
(4.37) 

74.81 
(5.41) 

75.27 
(4.92) 

76.36 
(3.68) 

77.61 
(3.96) 

Uniform 73.25 
(6.92) 

81.46 
(3.25) 

81.51 
(3.45) 

80.31 
(4.96) 

80.35 
(4.78) 

83.24 
(3.39) 

Gamma 71.09 
(5.61) 

69.12 
(5.42) 

74.01 
(3.25) 

74.12 
(4.93) 

74.57 
(4.36) 

76.91 
(4.80) 

Chi Square 75.13 
(5.22) 

68.32 
(4.38) 

73.76 
(3.83) 

76.02 
(5.11) 

76.86 
(4.43) 

78.12 
(3.62) 

Fisher (F) 75.01 
(4.61) 

68.82 
(3.86) 

75.24 
(2.36) 

75.11 
(5.06) 

77.13 
(4.12) 

78.49 
(4.12) 

∗ The values in parentheses are standard deviations. 

            Table 4: Average hit-ratios of six approaches in the holdout samples   (
1 220, 80n n= = ) 

 M   E   T   H   O   D 
Distribution MSD FLDF MLCM LMED GPM GMED 

Mult.Normal 78.21 
(4.02) 

81.88 
(4.85) 

82.75 
(4.52) 

78.45 
(4.23) 

81.65 
(3.72) 

83.89 
(3.59) 

Exponential 74.19 
(3.87) 

77.47 
(4.74) 

76.15 
(4.41) 

80.07 
(4.19) 

80.23 
(3.09) 

82.79 
(3.28) 

Uniform 76.96 
(4.78) 

82.63 
(4.12) 

82.46 
(3.91) 

83.31 
(3.17) 

83.43 
(3.78) 

85.12 
(3.14) 

Gamma 74.52 
(4.64) 

71.65 
(4.49) 

77.58 
(4.65) 

77.23 
(4.20) 

78.95 
(4.41) 

81.32 
(4.07) 

Chi Square 75.98 
(4.25) 

73.85 
(4.19) 

77.08 
(4.16) 

79.14 
(3.45) 

80.02 
(3.78) 

82.85 
(3.67) 

Fisher (F) 76.88 
(4.04) 

73.56 
(5.08) 

77.13 
(3.53) 

79.41 
(4.44) 

79.52 
(3.96) 

81.28 
(4.19) 
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            Table 5: Average hit-ratios of six approaches in the holdout samples ( 1 280, 20n n= = ) 

 M   E   T   H   O   D 
Distribution MSD FLDF MLCM LMED GPM GMED 

Mult.Normal 79.12 
(5.23) 

80.59 
(5.27) 

82.14 
(4.21) 

79.43 
(4.78) 

80.78 
(4.62) 

83.12 
(3.34) 

Exponential 73.59 
(4.25) 

76.32 
(4.89) 

77.25 
(5.11) 

79.27 
(5.24) 

79.23 
(3.68) 

81.75 
(3.09) 

Uniform 77.25 
(5.12) 

81.92 
(3.65) 

82.44 
(3.98) 

81.31 
(4.23) 

82.93 
(4.12) 

84.67 
(3.62) 

Gamma 73.19 
(5.02) 

71.32 
(4.41) 

76.87 
(3.87) 

78.66 
(4.93) 

79.98 
(5.23) 

80.08 
(4.33) 

Chi Square 76.23 
(4.59) 

71.23 
(3.88) 

76.13 
(4.34) 

79.70 
(4.23) 

79.83 
(3.25) 

81.45 
(2.94) 

Fisher (F) 76.71 
(4.28) 

71.56 
(4.01) 

76.37 
(3.25) 

78.11 
(5.12) 

80.13 
(3.72) 

82.78 
(4.36) 

     From tables 3, 4 and 5, the GMED model seems to 
have a larger hit-ratio than other 5 procedures.  In 
skewed distributions like Gamma, Chi Square and F, 
the superiority of GMED model is very obvious. 

     There are three main hypotheses to be tested and 
these hypotheses are used for 6 distributions and 
selected for development and holdout samples case 

1 2 50n n= = , 1 220, 80n n= =  and 1 280, 20n n= =  .  

The hypotheses are set up as follows. 0H : There is no 
difference between the mean hit-ratio of GMED and the 
mean hit-ratio of model i ; 1H : The mean hit-ratio of 

GMED is greater than the mean hit-ratio of model i  
( FLDF, MSD, MLCMi = ). 

     In Table 3, for example, 79.12 and 4.31 values 
pertaining to FLDF model for the multinormal 
distribution are the mean hit-ratio and the standard 
deviation of the FLDF model in 50 random samples. 
Similarly the values 81.38 and 4.15 of the GMED 
model are also the mean hit-ratio and the standard 
deviation in 50 samples, respectively. Using this 
knowledge, we perform the following hypothesis test. 

     H0 : There is no difference between the mean hit-
ratio of GMED and the mean hit- ratio of FLDF;  H1 :  
The mean hit-ratio of GMED is greater than the mean 
hit-ratio of FLDF. 

     Table 6 lists the results of hypotheses tests which 
claim the mean hit-ratio the GMED model is greater 
than the mean hit-ratios of FLDF, MSD and MLCM 
models. The value 2.67a in this table shows the value of 
test statistic t of the hypothesis that the mean hit-ratio of 
the GMED model is greater than the mean hit-ratio of 

the FLDF method for the multivariate normal 
distribution. a shows that the calculated p-value 
corresponding to 2.67 and is less than 0.01. We can 
infer the results of the hypothesis according to the value 
2.67 of the test statistic or the p-value. For the 
significance value 0.01, a p − value less than 0.01 
results in the hypothesis H0 being rejected. This means 
that statistically, the mean hit-ratio of GMED is found 
to be greater than the mean hit-ratio of FLDF. 

     When the results of the hypotheses tests are 
examined, it is observed that in the case of nonnormal 
distributions, the GMED model is superior to all models 
in respect of the average hit-ratio.  

7. CONCLUSION 

     In this study, for the without outlier cases, three new 
mathematical approaches have been developed in 
solving the two-group classification problem. When 
these new proposed approaches are applied to a real life 
problem or to a simulation data, it is seen that the 
approaches are practicable and efficient. Moreover, it is 
seen that the GMED approach is superior to all other 
models in respect of classification performance (the true 
hit-ratio obtained from holdout samples) for the case of 
nonnormal distributions. Meanwhile it is seen that the 
LMED, GPM approaches are also useful to the extent of 
the other models. For a furher study, the performances 
of the LMED and GMED approaches may be 
investigated for multi-group classification problems and 
for outlying cases in their group.  
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                        Table 6: Hypothesis test results (t-values of paired t-tests) of GMED and other (FLDF,   MSD, MLCM) 
using holdout samples 

 
1 250, 50n n= =  

1 220, 80n n= =  1 280, 20n n= =  

Test 1 (FLDF)    
Mult.Normal 2.67a 1.74 2.66a 

Exponential 5.25c 4.76c 6.18c 

Uniform 2.68a 2.53a 3.03a 

Gamma 7.60c 8.82c 8.06c 

Chi-Square 12.19c 8.79c 13.08c 

Fisher(F) 11.83c 6.31c 10.45c 

Test 2 (MSD)    

Mult. Normal 3.30b 5.76c 4.23c 

Exponential 6.92c 9.14c 9.75c 

Uniform 9.16c 7.23c 7.50c 

Gamma 5.57c 5.99c 6.16c 

Chi-Square 3.34b 6.63c 6.28c 

Fisher(F) 3.98c 4.35c 5.58c 

Test 3 (MLCM)    
Mult. Normal 1.30 1.08 1.11 
Exponential 2.95a 6.30c 5.03c 

Uniform 2.52a 2.83a 2.41a 

Gamma 3.53b 3.29b 3.02a 

Chi-Square 5.85c 5.67c 6.53c 

Fisher(F) 4.83c 4.52c 6.15c 

                                    a Reject 0H  ( . 0.01sig < ),  b Reject 0H  ( . 0.001sig < ),  c Reject 0H  ( . 0.0001sig < ) 
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