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ABSTRACT 

In this paper a completion theorem for cone metric spaces and a completion theorem for cone normed 

space over a complete locally convex topological vector space E are proved. The completion spaces are de- 

fined by means of an equivalence relation obtained by convergence via the topology of the locally 

convex space E. Very recently some fixed point theorems obtained in cone Banach spaces are 

generalized to locally convex cone Banach spaces. These theorems can not be generalized or proved 

trivially by using  the  nonlinear scalarization function used very recently by Wei-Shih Du in ” A note 

on cone  metric  fixed point  theory and its equivalence, Nonlinear Analysis  Theory Methods and 

Applications 72 (5):2259-2261 (2010)”. 
 
Key Words:  Cone metric space, tvs- cone metric.space, tvs- cone Banach space, fixed point, normal 

cone. 

 

 

1. INTRODUCTION 

In 2007, Huang and Zhang [1] gave the definition of a 

cone metric space (CMS) by using the same idea, 

namely, by replacing real numbers with a ordering 

Banach space. In that paper,they proved the fixed 

point theorem of contractive mappings  for cone metric 

spaces: Any mapping T of a complete cone metric 

space X into itself that satisfies, for some 0 ≤ k < 1, 

the inequality  d(T x, T y) ≤ kd(x, y), for all x, y ∈ X, 

has a unique fixed point. Lately, many results on fixed 

point theorems have been extended to cone metric 

spaces [1-15]. Motivated by that most of those results 

have been proved in complete cone metric spaces, the 

author in [2] proved completion theorems for cone metric 

spaces and cone normed spaces, where the cone of the 

real Banach space was assumed to be normal. Recently, 

Du [16] gave the definition of generalized cone metric 

space, namely topological vector space-cone metric 

space (TVS-CMS), and proved some fixed point 

theorem on that class. The author showed also that 

Banach contraction principles in usual metric spaces 

and in TVS-CMS are equivalent. 

 

In this manuscript, motivated by all the above, we 

prove a completion theo- rem for TVS-cone metric 

spaces and a completion theorem for TVS-cone 

normed spaces. The topological space E under 

consideration will be assumed to be complete 

Hausdorff locally convex and its cone P will be 

normal.  Also, we prove some fixed point theorems in 

TVS-cone Banach spaces. The proofs will be adap 

tation to those in [2] and [8]. However, this will be 

possible after proving some technical Lemmas about 

convergence in TVS-cone metric spaces. 

Throughout this paper, E stands for real topological 
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vector space (t.v.s.) with zero vector. A non-empty 

subset P of E is called cone if P + P ⊂ P , λ P ⊂ P 

for λ ≥ 0 and  P ∩ (−P ) = {0}. The cone P will be 

assumed to be closed with nonempty interior as well.  

For a given cone P, one can define a partial ordering 

(denoted by ≤: or ≤P) with respect to P by x ≤ y if 

and only if y − x ∈ P. The notation x < y indicates 

that x ≤ y and x = y while x y will show y − x ∈ 

intP, where intP denotes the interior of P . Continuity 

of the algebric operations in a topological vector 

space and the properties of the cone imply the 

relations: 

I ntP + I ntP ⊆ I ntP  

and 

λI ntP ⊆ I ntP (λ > 0). 

We appeal to these operations in the following. 

Definition 1. (see [16-18]) For c ∈ IntP, the 
nonlinear scalarization function φc: E → R is 

defined by 

 

Lemma 2. (See [16-18]) For each and 

 the following are satisfied: 

(i) φc (y) ≤ t ⇔ y ∈ tc − P , 

(ii) φc (y) > t ⇔ y ∈/ tc − P , 

(iii) φc (y) ≥ t ⇔ y ∈/ tc − int(P ), 

(vi) φc (y) < t ⇔ y ∈ tc − int(P ), 

(v) φc (.) is positively homogeneous and continuous  

on E, 

( v i )  if y1  ∈ y2  + P , then φc (y2 ) ≤ φc (y1 ), 

(vii) φc (y1  + y2 ) ≤ φc (y1 ) + φc (y2 ), for all y1 , 

y2 ∈ E. 

Definition 3. [16] Let X be non-empty set. Suppose a 

vector-valued function 

p: X × X → E  satisfies: 

(M 1) 0 ≤ p(x, y) for all x, y ∈ X 

(M 2) p(x, y) = 0 if and only if x = y, 

(M 3) p(x, y) = p(y, x) for all x, y ∈ X 

(M 4) p(x, y) ≤ p(x, z) + p(z, y), for all x, y, z ∈ X  

Then, p is called TVS-cone metric on X, and the pair 

(X, p) is called a TVS- cone metric space (in short, 

TVS-CMS). 

Note that in [1], the authors considered E as a real 

Banach space in the definition of TVS-CMS.  Thus, a 

cone metric space (in short, CMS) in the sense of 

Huang and Zhang [1] is a special case of TVS-CMS 

Lemma 4. (See [16]) Let (X, p) be a TVS-CMS. 

Then, dp : X × X  → [0, ∞) defined by dp = φc (y)  p 

is a metric. 

Remark 5. Since a cone metric space (X, d) in the 

sense of Huang and Zhang [1], is a special case of 
TVS-CMS, then dp : X × X  → [0, ∞) defined by  

dp = φc (y)  d is also a metric 

Definition 6. (See [16]) Let (X, p) be a TVS-CMS, 

x ∈ X and {x
n 
}n=1

∞  a sequence in X. 

(i) {x
n 
}n=1

∞ TVS-cone converges to x ∈ X  whenever 

for every 0 << c ∈ E there  is a natural  number  M  

such that  p(x
n , x) << c for all n ≥ M  and denoted 

by cone − limn→∞ xn  = x (or  x
n → x as n → ∞) 

(ii) {x
n }

∞ 
TVS-cone  Cauchy  sequence in (X, p) 

whenever for every 0 << c ∈ E,  there  is  a  natural  

number  M  such  that  p(x
n , xm )  << c for  all n, m 

≥ M , 

(iii) (X, p) is TVS-cone complete if every TVS-cone 

Cauchy sequence in X is a TVS-cone convergent. 

Lemma 7 . (See [16]) Let (X, p) be a TVS-CMS, x ∈ X 

and {x
n }n=1

∞ 
a sequence in X. 

Set dp   = φc (y) ◦ p.  Then the following statements 

hold: 

(i) If {x
n
}

∞ n → ∞, converges to x in TVS-CMS (X, 

p), then dp (xn , x) → 0 as 

(ii) If {x
n
}

∞ is Cauchy  sequence in TVS-CMS  (X, 

p), then {x
n
}

∞ 
is a Cauchy sequence (in usual sense) 

in (X, dp ), 

(iii) If (X,p) is complete TVS-CMS, then (X, dp) is a 

complete metric space 

Regarding (iii) of Lemma 7 above see [19]. 

 

Proposition 8. (See [16]) Let (X, p) be a complete 

TVS-CMS and T: X → X satisfy the contractive 

condition p(T x, T y) ≤ kp(x, y)   (1) for all x, y ∈ X  and 

0 ≤ k < 1. Then, T has a unique fixed point in X.  

Moreover, for each x ∈ X , the iterative sequence {T n 

x}n=1

∞  
converges to fixed point. 

Definition 9. [20] A cone P of a topological vector 

space (X,τ) is said to be normal whenever τ has a 

base of zero consisting of P− full sets. A subset A of 

an order  vector  space via a cone P is said to be 

P−full if for each x,y∈A we have {a∈X: x≤a≤y}⊂A. 

Theorem 10. [20] (a) A cone P  of a topological 

vector space (X,τ) is normal  if and only if whenever 

{xα} and {yα}, α ∈ ∆ are two nets in X with 0 ≤ 

xα ≤ yα for each α ∈ ∆ and yα → 0, then xα → 0. 

(b) The cone of an ordered locally convex space (X, 



 GU J Sci., 24(2):235-240 (2011)/ Thabet ABDELJAWAD1  237 

 

 

6 

τ) is normal if and only 

if τ is generated by a family of monotone τ − 
continuous seminorms. Where a seminorm q on X is 

called monotone if q(x)≤q(y) for all x y ∈ X with 

0≤x≤y. 

As a particular case of (b) above, the cone P of a 

real Banach space E is called normal if there is a 

number K≥1 such that for all x,y ∈ E: 0≤x≤y⇒ 

IIxII ≤ K IIyII. The least positive integer K, satisfying 

this inequality, is called the normal constant of P . 

The following lemma generalizes Lemma 1 and 

Lemma 4 in [1]. 

Lemma 11. Let (X, d) be a cone metric space over a 

locally convex space (E, S), where S is the family of 

seminorms defining the locally convex topology. Let 

{x
n } be a sequence in E. Then 

(i) x
n → x in (X, d) if and only if d(x

n , x) → 0 in 

(E, S). 

(ii)x
n
is Cauchy in (X, d) if and only if lim 

m,n→∞ 

d(x
n , xm ) = 0 in (E, S) 

Proof.  (i) Suppose {x
n
} converges to x. Let ∈>0 and p 

∈ S be given, choose p (c) >> 0 such that p(c)<∈. 

This is possible by taking c=∈ c 0 /2P(c 0 ) , where c
0 

is an interior point  of P. Then there is n
0 such that 

d(x
n , x) << c, for all n > n

0 . Then by normality of 

the cone P we have p(d(x
n
, x))≤p(c)<for all n>n0. This 

means d(x
n
,x) →0 in (E,S). Conversely, suppose that 

d(x
n
,x)→0 in (E,S). For c ∈ E with c >> 0 find δ > 0 

and p ∈ S such that p(b) < δ implies b << c. For this δ 
and this p find n

0 such that p(d(xn , x)) < δ for all 

n>n
0 and so d(x

n , x) << c for all n > n
0
. Therefore 

x
n → x in (X,d). 

(ii) The proof is similar to that in (i) 

Definition 12. A TVS-cone normed space is an 

ordered pair (X, II. IIc ) where X is a vector space over R 

and II. IIc : X → (E, S) is a function satisfying: 

C1) II x IIc ≥ 0, for all x ∈ X. 

C2) II x IIc = 0 if and only if x = 0. 

C3) II x IIc = |α|kxkc , for each x ∈ X  and α ∈ R. 

C4) II x+y IIc ≤ II x IIc + II y IIc for all x, y ∈ X . 

It is clear that each TVS- cone normed space is TVS-

cone metric space. In fact, the cone metric is given by 
d(x, y) = II x – y IIc . Complete TVS-cone normed 

spaces are called TVS-cone Banach spaces. 

According to the definition of convergence in TVS-cone 

metric spaces and Lemma 11, we see that x
n → x in 

(X, II . IIc ) if and only if for all c >> 0 in  E there 

exists  n
0 such that II xn-x IIc << c for all n ≥ n

0 and, 

if the cone is  normal if and  only if limm,n→∞ 

q(kxn − xm kc ) = 0, for all q ∈ S 

Example 13. Let X = R2, P = {(x,y): x≥0, y≥0} 

⊂ R2 and II(x, y)IIc = (α|x|, β |y|), α>0, β> 0. Then, (X, 

II IIc ) is a cone normed  space over R2 

Example 14. Let X = ω: the vector space of all 
real sequences, E = ω and P = {x = {xi}:xi ≥ 0, for 

all i}. Then ω is a complete metrizable locally convex 

space (Fréchet space) when its topology is generated 

by the seminorms {qk  : k = 1, 2, 3, ..} where qk (x) 

=Σk
i=1  |xi |, x = {xi} ∈ ω. Clearly P is a normal 

cone in E. On X define d(x, y) = {|xi − yi |}i , x = 

{xi}, y = {yi} ∈ X. Then (X, d) is a TVS-cone metric 

space over E. 

    2. COMPLETION THEOREMS 

Before proceeding to prove a TVS-completion 

theorem, we first give the meaning of isometries of 

cone metric spaces. 

Definition 15. Let (X, d) and (Y, ρ) be TVS-cone 

metric spaces over the same TVS E. A mapping T of 

X into Y is said to be an isometry if it preserves cone 

distances, that is, if for all x1 , x2   ∈ X , 

ρ(T x
1 , T x

2 ) = d(x
1 , x2 )                                           (2) 

Throughout, we shall say that the TVS- cone metric 

space X is isometric with the TVS-cone metric space Y 

if there exists a bijective isometry of X onto Y . In the 

sequel, one has to note that every cone isometry is 

one to one. The following two lemmas are essential to 

prove the completion Theorems. 

Lemma 16. Let {xn} and {yn} be two Cauchy 

sequences in a cone metric space (X, d) over a normal 

cone of a complete locally convex space (E, S). Then, 

limn→∞ d(xn,yn) exists in (E,S). 

Proof. Since (E,S) is complete, it will be enough to 

show that the sequence {d(x
n
,y

n
)} is Cauchy in 

(E,S) To this end, let > 0 and p ∈ S be given, then 

choose c ∈ E with c >> 0 such that p(c) < (∈/6). 
Since {x

n
} and {y

n
} are Cauchy sequences, there 

exists a natural number n
0 such that  

d(xi ,xj) << c  and d(yi , yj ) << c                          (3) 

for all i, j > n0 . Then, we have, 

d(xi , yi ) ≤ d(xi , xj ) + d(xj , yj ) + d(yj , yi ) ≤ d(xj , 

yj ) + 2c                (4) 

and 

d(xj , yj ) ≤ d(xj , xi ) + d(xi , yi ) + d(yi , yj ) ≤ d(xi , 

yi ) + 2c                                                                        (5) 

and hence, (4) and (5) lead to 

0 ≤ d(xj , yj ) + 2c − d(xi , yi ) ≤ d(xi , yi ) + 2c + 2c 

− d(xi , yi ) = 4c                                                         (6) 
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Since the cone P is normal, then (6) implies that 

p(d(xj , yj ) + 2c − d(xi , yi )) ≤ 4p(c)                  (7)  

Finally, by the triangle inequality of the seminorm p and 

(7) we have 

p(d(xj,yj)−d(xi,yi))≤p(d(xj,yj)+2c−d(xi,yi)+2p(c)≤6p(c)<∈ 

                                                                                                 (8) 

Therefore, {d(xi,yi )} is Cauchy in (E,S) and hence 

convergent 

Lemma 17. Let {xn} {x'n}; {yn} {y'n} be sequences of a 

cone metric space (X; d) over a normal cone P in a 

locally convex space (E;S). If lim n d(xn; x'n) = 0 and 

lim n d(yn; y'n) = 0 in (E;S), then  

lim n d(xn; yn)=lim n d(x'n; y'n) in (E; S)                  (9) 

Proof. Let ∈> 0 and p ∈ S be given, then choose c ∈ E 

such that c >> 0 and p(c) < (∈/6)   . 

For this c >> 0 find  > 0 and q ∈ S such that  

q(b) <  implies c - b ∈ Int(P)                                      (10) 

By assumption, for the above  > 0 and q fin n0 such that 

for all n  n0 we have 

q (d(xn; x'n)) <  and q(d(yn; y'n)) <                            (11) 

But then (10) and (11) imply that  

d(xn; x'n)<< c and d(yn; y'n)<< c                                  (12) 

for all n > n0. Now, by the triangle inequality and (12), 

for all n  n0 we have 

d(xn; yn) ≤ d(xn; x'n) + d(x'n; y'n ) + d(y'n ; yn) ≤ d(x'n; y'n) 

+ 2c                                                                             (13) 

and 

d(x'n; y'n) ≤ d(xn; x'n) + d(xn; yn ) + d(y'n; yn) ≤ d(xn; yn) + 

2c                                                                               (14) 

and hence, (13) and (14) lead to  

0 ≤ d(x'n; y'n)+ 2c- d(xn; yn ) ≤ d(xn; yn )+2c+2c- d(xn; 

yn)= 4c                                                                       (15) 

Since the cone is normal, then (15) together with the 

choice of c >> 0 imply that 

p(d(xn;yn)- d(x'n;y'n)) ≤  p(d(x'n; y'n)) + 2c - d(xn; yn )) + 

p(2c)<∈                                                                     (16) 

for all n > n0, which completes the proof. 

Theorem 18. For a TVS-cone metric space (X, d) 

over a normal cone there exists a complete TVS-cone 
metric space (Xs, ds) which has a subspace W that is 

isometric with X and dense in Xs. The space (Xs, ds) is 

unique except for isometries, that is, if Z is any 

complete cone metric space having a dense subspace U 

isometric with X, then Z and Xs are isometric. 

Proof. The proof will be divided into four steps. We 

construct: 

(a) (Xs , ds), 

(b) an isometry  T of X  onto W , where W is dense in 

X s .  

Then, we prove  

(c) completeness of Xs, 

(d) uniqueness of Xs except  for isometries 

Here are the details of these steps: 

(a) Let (x
n ) and (x'n

 ) be Cauchy  sequences  in (X, 

d). Define (x
n
) to be equivalent to (x'n), written (x_n) 

(x'n), if 

lim n d(xn; x'n) = 0 in (E; S)                                      (17) 

Let X s be the set of all equivalence classes xs , ys , 

of Cauchy  sequences. We write {x
n
} ∈ xs to mean 

that {xn } is a member xs ( a representative of  

the class xs ).  We now set  

ds (x
s , ys )= lim n d(xn; yn)                                    (18) 

By Lemma 16, the limit in (18) exists and by Lemma 

17 it is independent of the particular choice of the 

representatives. The rest of the proof is the same as in 

[2]. 

As every TVS-cone normed space is TVS-cone metric 

space and TVS-cone metric spaces can be completed, 

as we have done above, we can also complete TVS- 

cone normed  spaces.  Before stating and proving this 

result we define the meaning of isometry of TVS- 

cone normed spaces. 
 
Definition 19. Two TVS-cone normed spaces (X, II.II 

c1 ) ,(Y, II.II c2 ), over the same TVS E are said  to be 

isometric if there exists a bijective linear operator T: 

X → Y such that, 

II Tx II c1 = II x II c2    for all x ∈ X 

Theorem 20. Let (X, II . IIc) be a TVS-cone normed 

space over a normal cone. Then there is a TVS- cone 

Banach space (Xs II . IIs) and an isometry T from X 

onto a subspace W of Xs which is dense in Xs. The 

space Xs is unique, except for isometries. 

The proof is the same as in [2] except we make use 

of Theorem 18 above. 

3. FIXED POINT THEOREMS 

The following lemma will be useful in proving the fixed 

point theorems in this section and elsewhere. 

Lemma 21. Let (X, d) be a TVS-cone metric space 

over a normal cone of a locally convex space (E, S), 

where is the family of seminorms defining the locally 
convex topology. Let {x

n
} and {y

n
} be two sequences 

in X and x
n
→x, yn→y. Then d(xn; yn) → d(x; y) in (E; S) 

Proof. Let ∈> 0 and p ∈ S be given. Choose c ∈ E 

with c>>0 such that p(c) < (∈ /6). From xn → x and 

yn→y, find n
0 such that for all n > n

0 , d(x
n , x) << c 
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and d(y
n , y)<<c. Then for all n > n

0 we have 

 

d(xn , yn ) ≤ d(xn , x) + d(x, y) + d(y, yn ) ≤ d(x, y) + 

2c  

and 

d(x, y) ≤ d(x, xn ) + d(xn , yn ) + d(yn , y) ≤ d(xn , yn ) 

+ 2c 

Hence 

0 ≤ d(x, y) + 2c − d(xn , yn ) ≤ 4c  

and so by the normality of P we obtain 

p(d(xn , yn ) − d(x, y)) ≤ p(d(x, y) + 2c − d(xn , yn )) + 

p(2c) ≤ 6p(c) < ∈ 

Therefore d(xn , yn ) → d(x, y) in (E, S) 

Theorem 22. Let a ∈ R with a > 1 and (X, d) be a 

complete TVS-complete cone metric space (the cone 

not necessary normal) and T: X → X an onto mapping 

which satisfies the condition 

d(T x, T y) ≥ ad(x, y) 

Then, T has a unique fixed point 

Proof. The proof is the same as in Theorem 13 [8]. 

However, in place we make use of Theorem 2.3 in 

[16]. 

From now on, throughout this section X = (X,k.kc) 

will be a TVS-cone Banach  space, P a normal cone in 

a locally convex Hausdorff topological vector space (E, 

S) and T a self-mapping  defined on a subset C of X. 

Also d will be the TVS-cone metric induced by the 
TVS-cone norm k.kc . The proof of the main results of 

this section will be generally adaptation to the proof 

of the main results  in [8] and by making use of Lemma 

21 which generalizes Lemma 5 in [1]. 

Theorem 23. Let C be a closed and convex subset of 

a TVS-cone Banach space X with the TVS-cone norm 
d(x, y) = kx − ykc and T : C → C a mapping which 

satisfies  the condition 

d(x, T x) + d(y, T y) ≤ qd(x, y)                                 (19) 

for all x, y ∈ C, where 2 ≤ q < 4.  Then, T has at least 

one fixed point. 

Proof. The proof is the same as in Theorem 16 in [8] 

except we make use of Lemma 21. 

Analogously as in [8] we can also state Theorem 24. 

Let C be a closed and convex subset of a TVS-cone 

Banach space X with the TVS-cone norm d(x, y) = kx − 
ykc and T : C → C a mapping which satisfies  the 

condition 

d(x, T x) + d(y, T y) ≤ qd(x, y)                           (20) 

for all x, y ∈ C, where 0 ≤ r < 2.  Then, T has at least 

one fixed point. 

Theorem 25. Let C be a closed and convex subset of 

a TVS-cone Banach space X with the TVS-cone norm 

d(x, y) = kx − ykc and T : C → C a mapping which 

satisfies  the condition 

 

d(Tx, Ty) + d(y, Ty) + d(x, Tx) ≤ rd(x,y)                                                                                       (21) 

for all x, y ∈ C, where 2 ≤ r < 5.  Then, T has at least 

one fixed point.  

Proof The proof is the same as in Theorem 16 in [8] 

except we make use of Lemma 21. 
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