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ABSTRACT 

In this study a finite element analysis of elastoplastic contact-impact has been carried out. Newmark, Wilson-θ, 
Central Difference and Houbolt Methods have been used as direct integration methods. Impact analysis includes 
elastoplastic and large deformation based upon updated Lagrangian including buckling check. The results show 
that the direct integration methods give different results due to different contact-impact cases. Plastic analysis is 
more stable than the elastic analysis.  
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1. INTRODUCTION 

The solution of elastoplastic finite strain contact-impact 
problems requires a transient analysis using some 
numerical methods called as direct integration methods 
[1-3]. Direct integration methods are based on two 
approaches. The first approach is to satisfy the 
equilibrium equation at time intervals t∆ . In the second 
approach, a variation of displacements, velocities, and 
accelerations in a time interval t∆  is assumed. Velocities 
and accelerations are approximated in terms of 
displacements based on finite difference expressions. In 
each method, a different finite difference approximation 
is used to predict the velocity and acceleration for each 
time interval. The well-known dynamic equation is given 
as follows: 

M C K Fδ δ δ+ + =  (1) 

where δ ,δ , δ  and F are displacement, velocity, 

acceleration and force vectors. M , K  and C  are the 
mass, damping, and stiffness matrices [4]. The equation 
(1) is solved using the direct integration methods such as 

Newmark, Wilson-θ, Central Difference and Houbolt 
Methods.  

A finite strain elastoplastic contact-impact problem is a 
highly non-linear problem due to geometry, material and 
boundary conditions. These non-linearities can be handled 
using a finite strain elastoplastic analysis in the solution 
algorithm. This solution algorithm has been designed for 
impact problems considering the contact and buckling 
analysis based upon finite element approach. Algorithm 
contains the incremental elastoplastic finite strain 
procedure in each time increment. Each time increment 
also contains elastoplastic contact analysis, large 
deformation and buckling check in direct integration 
methods. This solution algorithm has been shown in the 
preceeding sections. The related components of this 
algorithm have also been given in finite strain 
elastoplastic contact-impact analysis section. 

In this study, an attempt has been made to investigate the 
transient analysis of finite-strain elastoplastic contact-
impact problems using Finite Element Method (FEM). 
Algorithms have been tested for some contact-impact 
cases. Buckling check has also been included in the 
algorithm for further studies. 
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2. FINITE STRAIN ELASTOPLASTIC CONTACT-
IMPACT ANALYSIS 

Updated Lagrangian Approach has been used in this study 
for finite strain analysis. Elastoplastic equations are 
adapted for finite strain analysis [4, 5, 6].  

2.1.1. Finite Strain Elastoplastic Equations 

Consider an engineering structure in equilibrium under an 
initial mechanical loading. Applying a virtual 
displacement, then the following equation is obtained 
according to the principle of virtual work: 

0d dU dWχ = − =                                                    (2) 

where dχ , dU  and dW  represent the variations of 
total potential energy, strain energy and work done by 
external force, due to the applied virtual displacement. An 
equivalent nodal force vector F  may be defined such 
that: 

tdW d Fδ=  (3) 

where dδ  represents the variation of the nodal 
displacement vector, and the strain energy can be expressed 
as follows: 

 tdU d dxdydzε σ
Ω

= ∫∫∫  (4) 

where Ω represents the domain of the component. 
Displacement components can be interpolated over each 
finite element, and it is possible to derive a matrix B such 
that: 

d Bdε δ=  (5) 

over every finite element. If the domain Ω  is discretised 
into n finite elements, then the equation (4) may be rewritten 
as follows: 

 
1 e

n

e

t tdU d  dx dy dzB σδ
= Ω

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑∫∫∫   (6) 

Substituting from equation (3) and (6) into (2), then it can be 
shown that: 

1

0
e

n

e

t td d  dx dy dz FBχ σδ
= Ω

⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦
∑∫∫∫                (7) 

Since Equation (7) is valid for any arbitrary virtual 
displacement, then, it can be deduced that: 

1

0
e

n

e

t  dx dy dz FB σ
= Ω

− =∑∫∫∫                                        (8) 

which represents the generalized equation of equilibrium. 

From the definition of Green's strain tensor, the 
engineering strain components for two-dimensional 
problems may be expressed in terms of the following 
form: 

S Lε ε ε= +                                                                    (9) 

where 

{ }  x y xyε ε ε γ=  

and Sε  represents the Cauchy's strain vector and Lε  
represents the high order terms in Green's strain components 
[4, 5]. The variation of the above vectors can be expressed in 
terms of displacement components (u, v) and their variations 
as follows. 

S

du
x

dvd  
y

du dv
y x

ε

⎡ ⎤∂
⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂

= ⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ∂

+⎢ ⎥
∂ ∂⎣ ⎦

                                                   (10) 

and  

L

u du v dv
x x x x

u du v dvd    
y y y y

u du u du v dv v dv
x y y x x y y y

ε

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
⎢ ⎥

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
(11) 

Defining a slope vector θ  such that: 

u v u v=
x x y y

θ
⎧ ⎫∂ ∂ ∂ ∂
⎨ ⎬
∂ ∂ ∂ ∂⎩ ⎭

                                        (12) 

then equation (11) may be rewritten as follows: 

Ld Ad d A  θ θε = ≡                                                     (13) 

where 

0 0

0 0

u v
x x

u vA  
y y

u v u v
y y x x

⎡ ⎤∂ ∂
⎢ ⎥
∂ ∂⎢ ⎥
⎢ ⎥∂ ∂

= ⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂ ∂⎣ ⎦

                                          (14) 

Writing displacement components at any point inside an 
element in terms of nodal values and shape functions, i.e.  

( , ) ( , )i i
i

u x y u N ξ η=∑  and ( , ) ( , )i i
i

v x y v N ξ η= ∑     (15) 

where iN  represents Lagrangian shape functions in terms 

of intrinsic coordinates , ξ η , then it can be proved that: 



 GU J Sci, 23(3):327-338 (2010)/ Ahmet ERKLİĞ, İbrahim H. GÜZELBEY, Abdülkadir ÇEVİK 329 

 

 

SSd dB δε =                                                                (16) 

d Gdθ δ=                                                                      (17) 

LLd =A  G d = dBδ δε                                              (18) 

where 

0

0

i

i
S

i i

N
x

N
B

y
N N
y x

⎡ ⎤∂
⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂

= ⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂⎣ ⎦

                                  (19) 

and  

0

0

0

0

i

i

i

i

N
x

N
x

G
N
y

N
y

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥∂⎢ ⎥=
⎢ ⎥∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂⎣ ⎦

                   (20) 

L A  GB =                                                                       (21) 

Hence, it can be deduced from equations (5), (9), (16) and 
(18) that: 

S LB  B B= +                                                                  (22) 

Notice also that, the variation of the B  matrix due to a 
virtual displacement is: 

Ld B d B=                                                                      (23) 

and the total strain vector is: 

( )
0

1
2S L S LdB B B B

δ

ε δ δ⎛ ⎞= + = +⎜ ⎟
⎝ ⎠∫                        (24) 

Generally speaking, equation (8) represents a non-linear 
system of equations. If an approximate solution is found, in 
terms of , , Bδ σ  then: 

 
ee

tR F  dxdydzB σ
Ω

= −∑∫∫∫                                       (25) 

represents the residual force vector from such an 
approximation. If the exact solution is represented by 

ex σ σσ = +∆                                                                 (26) 

ex B BB = +∆                                                                 (27) 

then from Eq. (8): 

( ) ( ) 0
ee

tB B  dxdydz Fσ σ
Ω

+∆ +∆ − =∑∫∫∫  

i.e. by neglecting tB σ∆ ∆  term: 

  
e ee

t tdxdydz dxdydz RB Bσ σ
Ω Ω

⎡ ⎤
∆ + ∆ ≈⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∫∫∫ ∫∫       (28) 

The value of σ∆  may be approximated as follows: 

 t t B D Dσ ε δ∆ = ∆ = ∆                                                  (29) 

where tD  may represent a tangential stress-strain matrix, 

and eptD D=  for elastoplastic analysis. 

The term tB σ∆ ∆  may be simplified as follows: 

L
tt t AGB Bσ σ σ∆ = ∆ = ∆  i.e.   tt S GGB σ δ∆ = ∆    (30) 

where 

0 0
0 0

0 0
0 0

x xy

x xy

xy y

xy y

S   

σ τ
σ τ

τ σ
τ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

       (31) 

Using equations (29) and (30), then equation (28) may be 
rewritten in the following matrix form: 

 
( )t RK K σ δ+ ∆ =            (32) 

where 

ee
t

tDBdx dy dzK B
Ω

= ∑∫∫∫       (33) 

 
ee

t= S Gdx dy dzGK σ
Ω

∑∫∫∫                         (34) 

Equation (32) represents the linearised finite element 
equations of equilibrium, and an iterative algorithm is 
required in order to obtain an accurate solution.  

 

2.1.2. Finite-Element Finite Strain Elastoplastic Solution 
Algorithm 

The suggested solution algorithm has been introduced based 
upon initial stress approach [5]. For this purpose, consider a 
complex structure, at an initial state of equilibrium under a 
force 0F , with displacement, stress and strain vectors being 

0 0,  δ σ  and 0ε . Applying a force increment F∆ , the 
following algorithm may be employed to find the 
corresponding accurate answers with finite strain 
elastoplasticity taken into consideration. 
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a) Initial Calculations: 

(i) From equation (32), the finite element equations 
required to be solved are: 

( )0 0 FK K σ δ+ ∆ = ∆  

where 

( )0 0 00
e

ep
e

t D  dxdydzK B B
Ω

= ∑∫∫∫  

0
ee

t G dxdydzG SK σ
Ω

= ∑∫∫∫   

The matrix 0B  is defined as follows: 

( )0 0S LB B B δ= +   

and 0,  epD S  matrices are based upon ( 0 0,σ ε ). Hence 

1 0 0δ δ δ= + ∆  

(ii) Calculate the corresponding strain increment ε ′∆ , 
from 

( ) ( )
1

0

0 0 1 1 0 0
1 1
2 2

t
S L LBd B B B

δ

δ

ε δ δ δ δ δ δ∆ = = ∆ + −∫
The corresponding stress increment is 

( )0 0ep  Dσ ε′ ′∆ = ∆  

b) Elastoplastic Stress-Strain Corrections: 

If the total stress at any point has not exceeded the yield 
point of the material, then: t

o oε ε∆ = ∆  and t
oo σσ ∆=∆  

otherwise t
o oε ε∆ = ∆  and the initial-stress approach is 

used to find the corrected stress increment 0σ∆ , Hence 

1 0 0ε ε ε= + ∆  and 1 0σσ σ= +∆  

The residual force vector is obtained as follows: 

( )1 1  
e

S L
e

t tF dxdydzR B B σδ
Ω

⎡ ⎤∆ = ∆ − + ∆⎣ ⎦∑∫∫∫  

c) rth Iteration, r=1,2,.. 

(i) Find updated ,  ,  r rrD S B such that: 

( ),r ep r rD D σ ε=  

( )r rSS σ=  

( )r S L rB B B δ= +  

(ii) Hence find the corresponding stiffness matrices: 

 
e

r r r r
e

t  dxdydzK B D B
Ω

= ∑∫∫∫

e

r
e

t G dxdydzG SK σ
Ω

= ∑∫∫∫  

Notice that, in the modified Newton-Raphson scheme, 
rD is taken as the elastic stress-strain matrix and rB  is 

replaced by the SB  matrix. 

(iii) Solve 

r rr( + ) =K K Rσ δ∆ ∆   

then find: 

1r r rδ δ δ+ = + ∆  and ( )11( )L L rrB B δ ++ =  

(iv) Calculate the corresponding strain increment: 

( ) ( )11

1
2S L Lr r r rr rB B Bε δ δ δ++
⎡ ⎤∆ = ∆ + −⎣ ⎦  

(v) Calculate non-corrected stress increment 

` rr r=  Dσ ε∆ ∆    r+1 r r= +ε ε ε∆    ` `r+1 r r= +σ σ σ∆  

(vi) Use elastic-plastic initial-stress approach to find the 
corrected stress increment rσ∆ , hence: 

1r r rσ σ σ+ = + ∆  

(vii) The new residual force vector is: 

1 1 1 
e

r r r
e

tF dxdydzR B σ+ + +
Ω

∆ = −∑∫∫∫  

where  

0F FF= + ∆  

(viii) Find the following convergence measures: 

1 1

r r

r r

t

t
  
 δ

δ δ
ε

δ δ+ +

∆ ∆
=  and 1 1r r

F

t

t
  R R
FF

ε + +∆ ∆
=  

and stop the iteration if the value of each of them is less than 
a given permissible value. 

2.1.3. Nonlinear Buckling Analysis 

There are two nonlinearities in the large deflection 
problems. The first one is the strain-displacement 
equations. The second comes from the equilibrium 
equations. In the solution algorithm, these are taken into 
account at each step.  

A linearized stability analysis is convenient from a 
mathematical viewpoint but quite restrictive in practical 
applications. It is required to determine the nonlinear 
load-deflection behavior of a structure. Two 
approaches:have evolved for determining load deflection 
beahviour of the structure: incremental and iterational 
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methdos. In the incremental method, the load is applied as 
small increments so that the structure can be assumed to 
respond linearly during each increment. For each 
increment of load, increments of displacements and 
corresponding stress and strain are computed. A 
subsequent increment of load is applied and the process is 
continued until the desired number of increment. This part 
has been included in algorithm. In this method, it can be 
possible to obtain a reasonable results and convergence if 
a suitably small increment of load is choosen. Nonlinear 
buckling analysis has been included in algorithm for 
further studies (see Figure 1). 

2.1.4. Contact, Impact and Release Condition  

For an incremental contact algorithm, contact zones are 
discretised in terms of a system of pairs of surface or 
interface elements. Each pair has the first element with 
nodes on the first surface whilst the second element has 
nodes on the second surface. In flexible contact, each pair 
of the interface elements should have matching nodes. 
Whenever the contact occurs, interface elements will be 
remeshed. So the coordinates of every pair of nodes in 
contact will be same. In each load increment, the nodal 
coordinates are updated. Load should be applied in 
proportional increments. If Xi is defined as the load ratio, 
then the load increment becomes; 

İF X F∆ =                                                        (35) 

where F is the total loading vector, which includes 
prescribed tractions or displacements. 

According to the characteristics of the problem the load 
increment can be applied fully or in terms of 

subincrements. If the subincrements are used, load 
increment becomes 

( ) ij jF X Fα∆ =                                                (36) 

where 1α =∑ .   

To prevent nodes becoming in contact or separation with 
more than one node during loading the subincrements 
must be adjusted automatically. All the nodes in contact 
zones are checked so as to find a value of α  which brings 
the nearest node to contact or separate. A new load 
subincrement Fα∆  will be applied if the value of α  is 
acceptable (i.e. 1α ≤∑ ). When α α<  permissible value, 
then the nearest value has come into contact or separation, 
and a modification for the BCs should be carried out 
before applying the next subincrement. The total previous 
value can be used to start the next subincrement, which 
led to a change to BCs, unless: 1α >∑  and the value of 
final load ratio is determined for such case as 1α =∑ and 
then, no more modification is done [7]. When impacting 
body touches to target with a velocity, contact is 
considered to be started. Until contact forces turn to the 
negative, deformation carries on. Contact forces and 
elastic buckling are checked at each time increment. Once 
contact forces equal to negative value, then release is 
started. Contact BCs of related FE nodes are released. 
When all contacting nodes have negative forces,  
impacting body leaves the target [8]. This procedure has 
been given in Figure 1.  
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Figure 1. General Solution Algorithm for Finite strain Elastoplastic Contact-Impact 
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3. CASE STUDIES AND DISCUSSION 

3.1. Impact of conical-end rectangular bar 

Conical end rectangular bar with initial velocity V=0.5 
m/sec collides with a fixed rectangle block, as shown in 
Figure 2. For simplicity, the bar and block have been 
selected from the same material. Material properties of 
the rectangular bar and block are: ρ = 1000 kg/m3, E = 
5000 Pa, ν = 0.3 and σy = 500 Pa 

The FE model has 115 4-noded rectangular elements, as 
shown in Figure 3. Time increment is taken as ∆t = 
0.001 sec. The deformations, velocities and stresses of 
contact point and deformation of whole model have 
been given in Figure 4-13 for elastic and plastic 
analysis. 

 
Figure 2. Impact of conical end rectangular bar 

 
 

Figure 3. FE model of conical end rectangular bar 
 

 

 

 
 

 

 

 

 

  
Figure 4 Vertical deformation at contact point of the         Figure 5 Vertical deformation at contact point of the  

        conical end rectangular bar for elastic analysis        conical end rectangular bar for elastoplastic analysis 
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Figure 6 Vertical velocity at contact point of the     Figure 7 Vertical velocity at contact point of the   
conical end rectangular bar for elastic analysis         conical end rectangular bar for elastoplastic analysis 
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Figure 8. Vertical stress at contact point of the conical   Figure 9. Vertical stress at contact point of the end   

rectangular bar for elastic analysis.                   conical end rectangular bar for elastoplastic analysis. 
 
 

 
 a-) Central Difference        b-) Houbolt        c-) Newmark  d-) Wilson-θ e-) Ansys/LS-Dyna  

Figure 10. Deformation of the conical end rectangular bar at time t=0.06 sec (Elastic Analysis). 
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   a-) Central Difference      b-) Houbolt        c-) Newmark   d-) Wilson-θ e-) Ansys/LS Dyna 

Figure 11. Deformation of the conical end rectangular bar at time t=0.06 sec (Elastoplastic Analysis). 

 
 

         
   a-) Central Difference  b-) Houbolt       c-) Newmark          d-) Wilson-θ                e-) Ansys/LS-Dyna 

Figure 12. Deformation of the conical end rectangular bar at time t=0.15 sec (Elastic Analysis). 
 

         
           a-) Central Difference     b-) Houbolt        c-) Newmark   d-) Wilson-θ   e-) Ansys/LS-Dyna 

Figure 13. Deformation of the conical end rectangular bar at time t=0.15 sec (Elastoplastic Analysis). 
 
3.2. Impact of ball 

In this case round-end rectangular bar with initial 
velocity V=0.5 m/sec collide with the fixed block as 
shown in Figure 14. Same material properties are used 
as in previous case. The FE mesh with 182 4-noded 
rectangular elements is shown in Figure 15. The time 
increment ∆t = 0.001 sec is employed. The 
deformations, velocities and stresses of contact point 
and deformation of whole model have been given in 
Figure 16-25 for elastic and plastic analysis. 

 
Figure 14 Impact of a ball with initial velocity    

 

 
Figure 15 FE mesh of the ball 
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Figure 16 Vertical deformation at contact point  Figure 17 Vertical deformation at contact point 
                  of the ball for elastic analysis                                     of the ball for elastoplastic analysis 
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Figure 18 Vertical velocity at contact point of  Figure 19 Vertical velocity at contact point of    
  the ball for elastic analysis                    the ball for elastoplastic analysis 
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Figure 20 Vertical stress at contact point of    Figure 21 Vertical stress at contact point ofthe ball for 
elastic analysis                                                                  the ball for elastoplastic analysis 
 

 

 

         
     a-) Central Difference      b-) Houbolt        c-) Newmark   d-) Wilson-θ    e-) Ansys/LS-Dyna 
Figure 22 Deformation of the ball at time t=0.024 sec (Elastic Analysis) 
 

         
     a-) Central Difference      b-) Houbolt        c-) Newmark   d-) Wilson-θ    e-) Ansys/LS-Dyna 
Figure 23 Deformation of the ball at time t=0.024 Sec (Elastoplastic Analysis) 

        
     a-) Central Difference      b-) Houbolt        c-) Newmark   d-) Wilson-θ    e-) Ansys/LS-Dyna 
Figure 24 Deformation of the ball at time t=0.1 sec (Elastic Analysis) 
 

        
     a-) Central Difference      b-) Houbolt        c-) Newmark   d-) Wilson-θ    e-) Ansys/LS-Dyna 
Figure 25 Deformation of the ball at time t=0.1 Sec (Elastoplastic Analysis) 
 



338 GU J Sci, 23(3):327-338 (2010)/ Ahmet ERKLİĞ, İbrahim H. GÜZELBEY, Abdülkadir ÇEVİK 

 
4. DISCUSSION 

Case studies prove that the developed program has a 
stable solution algorithm. Non-conforming contact is 
very accurate and stable for developed programs but 
ANSYS/LS-DYNA has large fluctuations due to 
iteration number, time increment and number of 
element. But conforming contact results follow the 
same trend with ANSYS/LS-DYNA.  

Generally, plastic solutions are more stable than elastic 
solutions. For conforming and nonconforming contact 
impact cases, deformation, velocity and stress have 
been examined against to ANSYS/LS-DYNA with 
same increment and iteration number used in developed 
program. The most important advantage of ANSYS/LS-
DYNA is the automatic time and load increment 
algorithm for the non-linear problems, which adjusts 
itself due to outcoming results.  

This stability of plastic analysis results in the developed 
program is due to designed algorithm. As it is expected, 
the values of the displacement, velocity and stress of the 
plastic cases are smaller than the values of elastic cases 
due to dissipated energy. Hence the plastic analysis of 
conforming and non-conforming contact is very stable 
when they are compared with elastic case.  

Deformation: For conforming contact cases, central 
difference and Houbolt deformation results are better 
than Newmark and Wilson-θ direct integration methods. 
But, Newmark and Wilson-θ are better than central 
difference and Houbolt for non-conforming contact 
cases. However, they gave quite similar results with 
each other and trace the same trend with ANSYS/LS-
DYNA.   

Velocity: Newmark and Wilson-θ are more stable than 
central difference and Houbolt methods. Among them, 
central difference gave the worst result. This difference 
is related with the formulations of methods. In spite of 
the fluctuation of velocity in central difference, it still 
follows the same trend of the other methods. Moreover, 
four direct integration methods gave similar results with 
ANSYS/LS-DYNA.             

Stress: Generally, all the methods gave similar results. 
But there is an important difference between four direct 
integration methods and ANSYS/LS-DYNA due to 
using the same iteration number, time increment and 
element size in the developed program’s cases. 
However ANSYS/LS-DYNA’s results close to the 
developed program’s results when the iteration number, 
time increment and number of element are increased.  

The results and the accuracy of the direct integration 
methods mostly depend upon the case and parameter, 
which have been considered. This result is due to the 
formulation of these methods. Central difference is an 
explicit method but all of the three are implicit methods.  

5. CONCLUSIONS 

Generally, all the direct integration methods gave quite 
acceptable results. Due to case and parameter 
(deformation, velocity and stress), they have some 
differences. Newmark and Wilson-θ methods are quite 

stable for non-conforming contact. Houbolt method is 
moderate but Central Difference is less accurate for the 
non-conforming contact case. However, Central 
Difference delivers better result for conforming contact.   

The developed program gave better results than 
ANSYS/LS-DYNA for the non-conforming contact cases. 
But the contact algorithm requires a further improvement 
for conforming contact case. Finite strain elastoplastic 
algorithm is accurate and stable. 
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