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Abstract

Graphs are probably one of the few fastest growing subjects due to their applications in
many areas including Chemistry, Physics, Biology, Anthropology, Finance, Social
Sciences, etc. One of the ways of classifying graphs is according to the number of faces.
A graph having no cycle is called acyclic, and a graph having one, two, three, faces are
respectively called unicyclic, bicyclic, tricyclic. Recently, a new graph invariant
denoted by Q(D) for a realizable degree sequence D is defined. Q(D) gives a list of
information on the realizability, number of faces, components, chords, multiple edges,
loops, pendant edges, bridges, cyclicness, connectedness, etc. of the realizations of D
and is shown to have several explicit applications in Graph Theory. Acyclic, unicyclic
and bicyclic graphs have been studied already in relation with Q invariant. In this
paper, we study tricyclic graphs by means of Q invariant.

Keywords: Omega invariant, degree sequence, tricyclic graph.

Ug yiizlii graflarm dogru graflarinin omega invaryant

Ozet

Kimya, Fizik, Biyoloji, Antropoloji, Finans, Sozel Bilimler vb alanlardaki uygulamalart
nedeniyle graflar en hizli gelisen alanlardan birisidir. Graflart simiflandirma
vollarindan birisi graflarin yiiz sayilaridir. Hi¢bir yiizii olmayan grafa yiizii olmayan
graf (acyclic), bir, iki, ii¢ yiizii olan graflara sirasiyla bir yiizlii (unicyclic), iki yuizlii
(bicyclic) ve ii¢ yiizlii (tricyclic) graflar denir. Son zamanlarda c¢izilebilir bir derece
dizisi i¢in adina omega invaryanti denilen bir sayi tammlanmistir. Q(D), cizilebilirlik,
yiiz sayisi, bilesen, kiris, katli kenar, dongii, sallanan kenar, képrii sayilari, dongiisellik
ve baglantililik gibi D nin c¢izimlerinin sahip oldugu cesitli ozelliklerle ilgili bilgi
vermektedir ve graf teorinin ¢esitli uygulamalarinda faydalidir. Yiiz bulundurmayan, bir
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ve iki yiize sahip graflar Q invaryanti ile baglantili olarak ¢alisimistir. Bu ¢alismada
ti¢ yiize sahip graflari Q invaryanti yardimiyla inceleyecegiz.

Anahtar Kelimeler: Omega invaryant, derece dizisi, ii¢ yiizlii graf-

1. Introduction

Let G=(V,E) be a graph having order n and size m. Let veV (G) be a vertex of G.
The degree of v is denoted by d,. A vertex of degree one will be called a pendant

vertex and an edge having a pendant vertex will be called a pendant edge. The largest
vertex degree in a graph is denoted by A. If u and v are two adjacent vertices of G,
then the edge e connecting these vertices will be denoted by e =uv and also the vertices
u and v are called adjacent vertices. e will be said to be incident with the vertices u and
v. A graph is said to be connected if there is a path between every pair of vertices and
disconnected if not.

In many occasions, we shall classify our graphs under consideration according to
whether they have at least one cycle or not. Those graphs having no cycle will be called
acyclic. For example, all trees are acyclic. The remaining graphs are called cyclic
graphs. A grapgh having one, two, three cycles is called unicyclic, bicyclic and tricyclic,
respectively. The relation between omega invariant and acyclic graphs is studied in [5],
between omega invariant and caterpillar trees is studied in [6]. In this work, we study
the tricyclic graphs in a similar manner.

An edge connecting a vertex to itself is called a loop, and at least two edges connecting
two vertices will be called multiple edges. When there are no loops nor multiple edges,
the graph will be called simple.

A degree sequence written with multiplicities is given as
— (a1) (ay) (a3) (an)
D={d“,d,",d",. ., A"}

where a,'s are positive integers. It is also possible to state a degree sequence as
D ={1,20%), 3 A
where some of ag,'s could be zero.

Let D:{d1 ,d, ,d; ..., A } be a set of non-decreasing non-negative integers. If the

degree sequence of a graph G is equal to D, then D is said to be realizable and Gis a
realization of D.

For a realizable degree sequence, there is at least one graph with this degree sequence.

Usually their number is quite big and there is no formula for it yet. The most well-
known realizability test is known as Havel-Hakimi.
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The degree sequence of some graphs are as follows: D(Pn):{l(z),2(”’2)},
D(C)={2"}, D(S,)={1"",(n-1)"}, D(K,)={(n-1)"}, DK, ,)={r",s"} and
D(T ): {1(1) 2(r+S72) 3(1)} )

2. Qinvariant
In this section, for a realizable degree sequence D or for a given graph G, we recall the

definition and some fundamental properties of the number Q(D) or Q(G), respectively,
which are defined and studied in [2]. The number g, of pendant vertices of a tree T is

given by

a,=2+a,+2a,+3a,+4a,+---+(A-2)a,, (1)
where g, is the number of vertices of degree i. Note that Eqn. (1) can be restated as

as +2a, +3as +4ag+-- + (A—2)ap, — a; = —2. (2)
Generalizing this, (D) is defined in [2] as follows:

Definition 1. Let D = {1(“‘),2(“2),3(“3),...,A(“A)} be a set with a realization G . The Q(G)
of the graph G is defined only in terms of the degree sequence as

A
Q(G) =az +2a, +3as +4ag+- + (A—2)ap, — a; = Z(i - 2)a;.
i=1

Q(G) of some graphs such as T, B, ,C, , S, , K, , T;-5s ., K, s where n =r + s which
respectively denote a tree, path, cycle, star, complete, tadpole and complete bipartite
graphs with n vertices are

Q(c,) =0

Q) = -2
Qes,) = -2
Q) = -2

Q(K,) =n(n-—3)
Q(Kys) = 2[rs — (r + 5)]
O(T,.5) = 0.

The most useful graph classes in the study of Q are the path, cycle and tree graphs. Note
that the Q of a path, star or tree is equal to -2. This is true for all trees as stated in [2].

We now recall some basic properties of Q.. In many cases, we study with disconnected

graphs. The following useful result shows that Q of G is additive on the components of
G:
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Theorem 1. [2] Let G be a disconnected graph with components G; G, ..., G.. Then
Q(G) = Xi-1 AGY).

The following relation is useful in calculating Q(G):
Theorem 2. [2] For a graph
GQ(G) =2(m—n).

That means, for any graph G, Q(G) is even. Therefore if Q(D) is odd for a set D of
non-negative integers, then D is not realizable, which can be taken as a new realizability
test.

The number r of non-overlapping cycles in a given connected planar graph G is known
as the cyclomatic number of G. r is stated in terms of Q(G):

Theorem 3. [2] Let D={l(“'),Z(”Z),S(”-’),...,A(”A)}. If D is realizable as a connected

planar graph G, then the number r of faces is given by

)
2

+1.

This result is useful in many applications. The following is a direct generalization of
Theorem 3 to disconnected graphs:

Corollary 1. [2] Let D:{1(“‘),2(”2),3(“3),...,A(”A)} be realizable as a graph G with
¢ components. r of G is given by

_ 2@
T2

+ c.

For the definitions of the fundamental notions in Graph Theory, see [1], [3], [4], [7], [8]-

3. Line graphs

Let G be a simple undirected graph. A graph obtained by associating a new vertex onto
each edge of G and connecting two such new vertices with an edge iff the
corresponding edges of G have a vertex in common is called the line graph of G and
denoted by L(G). L(G) is one of the derived graphs with many useful properties. It is

known that the order of the line graph is equal to the size of the graph, and the size of
the line graph is given by the formula

1
m(L(6)) =5 Zuev(c) 3% — m(G).
In [19] this formula is restated as

m(L(6)) =My (G) —m(G).
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where M;(G) denotes the first Zagreb index of G. It is clear that L(P,) = P,_4,
L(C,) = C,and L(S,) = K;,_4.

The following result was obtained for characterization of connected unicyclic graphs:
Lemma 1. [5] Let G be a connected graph. G is unicyclic iff m(G) = n(G).

That is, the necessary and sufficient condition for a connected graph to be unicyclic is
that the order and size are equal. As n(L (G)) = m(G), Lemma | immediately gives the
following result which characterises all the graphs G such that the orders of G and
L(G) are equal:

Theorem 4. [5] Let G be a connected graph. G is unicyclic iff n(L(G)) = n(G).

By Theorem 4, the number of vertices are the same in G and L(G) whenever the graph
G is unicyclic, and vice-versa. Of course, the line graph is rarely unicyclic. First we
characterize all graphs having the property that n(L(G)) = n(G). Actually even if the
graph is unicyclic or acyclic, its line graph may have a large number of faces. The
structure of the line graph of a tree is given as follows:

Theorem 5. [5] Let G be a connected simple acyclic graph with degree sequence
D :{1(“‘),2(“2),3(”3),...,A(“A)}. Then its line graph L(G) consists of a, times K,'s, a;

times K3's, ..., a, times K)'s where K, and K have a unique common vertex in L(G)
ford,, = r and d,,j = s iff v; and v; are adjacentin G .

In the following result, for a graph G, the necessary and sufficient condition for L(G)
to have a pendant vertex was given:

Theorem 6. [5] Let G be any graph. G has a support vertex of degree 2 iff L(G) has
a pendant vertex.

4. Omega invariant of the line graphs of tricyclic graphs

In this section, we will determine all the integer values that can be attained by the
omega of the line graphs of tricyclic graphs. In our results, we shall need two new

notions:

Definition 1. Two graphs will be called adjacent if they have a common cutvertex. Two
graphs will be called neighbor if they have an edge in common.

In Fig. 1, G and H are adjacent and H and I are neighbour.
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Figure 1. Adjacent and neighbor graphs.

Our aim is to find the lowest possible r (and (1) for the line graph of a connected
tricyclic graph.

Vv

Figure 2. Adding a new pendant vertex vto G .

It is clear that pendant vertices do not change the number of faces of the graph G.
Therefore () does not change as well. But a pendant vertex v increases the degree of its
support vertex u resulting in an increase on the number of faces of the line graph L(G),
see Fig. 2. If the degree of u in G is dsu, after adding a new pendant edge uwv, it will
become d;u + 1 and the increase in the number of faces of L(G) will be

TdGu+1—2 - (TdGu—Z)

= TdGu—l - TdGu—Z

_ (deu —1)(dgu) _ (deu—2)(dgu — 1)
2 2

deu—1
= dGu_ 1

Therefore to find the connected tricyclic graph G with lowest possible number r(L(G))
of faces and hence lowest (L(L(G)), we need to look for the connected tricyclic graphs
without pendant edges.

Next, we consider possible connected tricyclic graph structures. As we can omit pendant
edges, we need only to consider those graphs with § > 2. By Theorem 5, for each

vertex v of degree d,, in G, we have a complete graph K;_,, in L(G). Because of this,
the number of faces in a caterpillar tree was given in [6] by

r(L(G)) = iA=3 a;Ti—».

We extend this result to tricyclic graphs as follows:
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Theorem 7. Let G be a connected tricyclic graph. The number of faces of L(G) is
given by

r(L(6)) =3+ Xi;a;Ti;.

Proof. For a vertex v of degree 2 in G lying between two edges e; and e,, there is an
edge (K,) between e; and e, in L(G) . For a vertex v of degree 3 in G lying between
three edges e;, e, and e5, there is a triangle (K3) around v in L(G) . For a vertex v of
degree k = 4 in G lying between k edges e, ,,..., ey, there is a complete graph (Kj)

around v in L(G). As K,, has (n—1)2¢—2) faces, the contribution of each vertex v of

degree k > 2 to the number of faces in L(G) is (k_l)zﬂ Also as G is tricyclic and

for each cycle C,, there is another cycle C,, in L(G) with each vertex lying on an edge of
G, we have three more faces each one is lying inside a cycle. So the result follows.

Next we shall find all the values of (L (G)) for all connected tricyclic graphs:

Theorem 8. Let G be a connected tricyclic graph. r(L(G)) can take all integer values
> 7. That is, the line graph of a connected tricyclic graph can have at least 7 faces.

Proof. First we prove that for a connected tricyclic graph G, r(L(G)) = 7. Note that
by Theorem 7, r(L(G)) =3 + Y2 .a;T;_,. Therefore for the minimum value of
r(L(G)), we must find the minimum value of the sum

A

Z a;Ti_, = az +3a, + 6as + 10ag + 15a; + -+ a,Ta_,.
i=3

To achieve this, we consider all possible connected tricyclic graph structures without
pendant edges. We obtain the lowest number of faces in L(G) which is 7 for the
following graphs. Note that there are infinitely many other graphs with similar
structures for which this minimum number is attained:

Figure 3. Connected tricyclic graphs with lowest number of faces in their line graphs.
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n; —gon sec &—@ n; —gon
[ —

o

Figure 3. (continued).

To prove that r(L(G)) can take all integer values > 7, we define an operation as in Fig.
4 where we add a new pendant vertex to G.

Ao N

k times
k—1 times
k times

Figure 4. Effect of adding a new pendant vertex.
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k—1 times

Figure 4. (continued).

This operation increases r(L(G)) by 1 when the pendant vertex is added to be adjacent
to a vertex of degree 2. Recall that if the added pendant vertex is adjacent to a vertex of
degree k, then by the proof of Theorem 4, we know that r(L(G)) increases by k-1. As
this can be repeated many times by adding a new pendant vertex to another vertex of
degree 2. The result then follows.
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