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Abstract 
 
Graphs are probably one of the few fastest growing subjects due to their applications in 
many areas including Chemistry, Physics, Biology, Anthropology, Finance, Social 
Sciences, etc. One of the ways of classifying graphs is according to the number of faces. 
A graph having no cycle is called acyclic, and a graph having one, two, three, faces are 
respectively called unicyclic, bicyclic, tricyclic. Recently, a new graph invariant 
denoted by Ω(D) for a realizable degree sequence D is defined. Ω(D) gives a list of 
information on the realizability, number of faces, components, chords, multiple edges, 
loops, pendant edges, bridges, cyclicness, connectedness, etc. of the realizations of D 
and is shown to have several explicit applications in Graph Theory. Acyclic, unicyclic 
and bicyclic graphs have been studied already in relation with Ω invariant. In this 
paper, we study tricyclic graphs by means of Ω invariant. 
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Üç yüzlü grafların doğru graflarının omega invaryantı 
 
 
Özet 
 
Kimya, Fizik, Biyoloji, Antropoloji, Finans, Sözel Bilimler vb alanlardaki uygulamaları 
nedeniyle graflar en hızlı gelişen alanlardan birisidir. Grafları sınıflandırma 
yollarından birisi grafların yüz sayılarıdır. Hiçbir yüzü olmayan grafa yüzü olmayan 
graf (acyclic), bir, iki, üç yüzü olan graflara sırasıyla bir yüzlü (unicyclic), iki yüzlü 
(bicyclic) ve üç yüzlü (tricyclic) graflar denir. Son zamanlarda çizilebilir bir derece 
dizisi için adına omega invaryantı denilen bir sayı tanımlanmıştır. Ω(D), çizilebilirlik, 
yüz sayısı,  bileşen, kiriş, katlı kenar, döngü, sallanan kenar, köprü sayıları, döngüsellik 
ve bağlantılılık gibi D nin çizimlerinin sahip olduğu çeşitli özelliklerle ilgili bilgi 
vermektedir ve graf teorinin çeşitli uygulamalarında faydalıdır. Yüz bulundurmayan, bir 
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ve iki yüze sahip graflar Ω invaryantı ile bağlantılı olarak çalışılmıştır. Bu çalışmada 
üç yüze sahip grafları Ω invaryantı yardımıyla inceleyeceğiz.     
 
Anahtar Kelimeler: Omega invaryant, derece dizisi, üç yüzlü graf. 
 
 
1. Introduction 
  
Let ( , )G V E  be a graph having order n and size m. Let ( )v V G  be a vertex of G . 

The degree of v  is denoted by vd . A vertex of degree one will be called a pendant 

vertex and an edge having a pendant vertex will be called a pendant edge. The largest 
vertex degree in a graph is denoted by  . If u and v are two adjacent vertices of G , 
then the edge e connecting these vertices will be denoted by e uv  and also the vertices 
u and v are called adjacent vertices. e will be said to be incident with the vertices u and 
v. A graph is said to be connected if there is a path between every pair of vertices and 
disconnected if not. 
 
In many occasions, we shall classify our graphs under consideration according to 
whether they have at least one cycle or not. Those graphs having no cycle will be called 
acyclic. For example, all trees are acyclic. The remaining graphs are called cyclic 
graphs. A grapgh having one, two, three cycles is called unicyclic, bicyclic and tricyclic, 
respectively. The relation between omega invariant and acyclic graphs is studied in [5], 
between omega invariant and caterpillar trees is studied in [6]. In this work, we study 
the tricyclic graphs in a similar manner. 
 
An edge connecting a vertex to itself is called a loop, and at least two edges connecting 
two vertices will be called multiple edges. When there are no loops nor multiple edges, 
the graph will be called simple.   
 
A degree sequence written with multiplicities is given as  

 31 2 ( )( ) ( ) ( )
1 2 3, , ,...,aa a aD d d d     

where ia 's are positive integers. It is also possible to state a degree sequence as 

 

 31 2 ( )( ) ( ) ( )1 , 2 ,3 ,...,aa a aD     

 
where some of ia 's  could be zero. 

 
Let  1 2 3, , ,...,D d d d   be a set of non-decreasing non-negative integers. If the 

degree sequence of a graph G  is equal to D , then D  is said to be realizable and G is a 
realization of D . 
 
For a realizable degree sequence, there is at least one graph with this degree sequence. 
Usually their number is quite big and there is no formula for it yet. The most well-
known realizability test is known as Havel-Hakimi. 
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The degree sequence of some graphs are as follows:  (2) ( 2)1 ,(P ) 2n
nD  , 

( )( ) {2 }n
nD C  ,  ( 1) (1),( ) 1 ( 1)n

nD S n  , ( )( ) {( 1) }n
nD K n  , ( ) ( )

,( ) { , }s r
r sD K r s  and 

(1) ( 2) (1)
,( ) {1 ,2 ,3 }r s

r sD T   .    

 
 
2.  Ω invariant 
 
In this section, for a realizable degree sequence D or for a given graph G , we recall the 
definition and some fundamental properties of the number Ω(D) or Ω(G),  respectively, 
which are defined and studied in [2]. The number 1a  of pendant vertices of a tree T is 

given by  
 

1 3 4 5 62 2 3 4 ( ,2)a a a a a a                                                                           (1) 

 
where ia  is the number of vertices of degree i. Note that Eqn. (1) can be restated as 

 
𝑎ଷ ൅ 2𝑎ସ ൅ 3𝑎ହ ൅ 4𝑎଺ ൅ ⋯ ൅  ሺ∆ െ 2ሻ𝑎∆  െ 𝑎ଵ  ൌ  െ2.                                             (2) 
 
Generalizing this, Ω(D) is defined in [2] as follows: 
 
Definition 1. Let  31 2 ( )( ) ( ) ( )1 , 2 ,3 ,...,aa a aD  

 
be a set with a realization G . The Ω(G) 

of the graph G  is defined only in terms of the degree sequence as 
 

Ωሺ𝐺ሻ ൌ 𝑎ଷ ൅ 2𝑎ସ ൅ 3𝑎ହ ൅ 4𝑎଺ ൅ ⋯ ൅  ሺ∆ െ 2ሻ𝑎∆  െ 𝑎ଵ ൌ ෍ሺ𝑖 െ 2ሻ𝑎௜.

∆

௜ୀଵ

  

 
Ω(G) of some graphs such as T, 𝑃௡ ,𝐶௡ , 𝑆௡ , 𝐾௡ , 𝑇௥,௦ , 𝐾௥,௦ where 𝑛 ൌ 𝑟 ൅ 𝑠 which 
respectively denote a tree, path, cycle, star, complete, tadpole and complete bipartite 
graphs with n vertices are  
 
Ωሺ𝐶௡ሻ ൌ 0        
Ωሺ𝑃௡ሻ ൌ െ2  
Ωሺ𝑆௡ሻ ൌ െ2  
Ωሺ𝑇ሻ ൌ െ2  
Ωሺ𝐾௡ሻ ൌ 𝑛ሺ𝑛 െ 3ሻ  
Ωሺ𝐾௥,௦ሻ ൌ 2ሾ𝑟𝑠 െ ሺ𝑟 ൅ 𝑠ሻሿ 
Ωሺ𝑇௥,௦ሻ ൌ 0. 
 
The most useful graph classes in the study of Ω are the path, cycle and tree graphs. Note 
that the Ω of a path, star or tree is equal to -2. This is true for all trees as stated in [2]. 
 
We now recall some basic properties of Ω.. In many cases, we study with disconnected 
graphs. The following useful result shows that Ω of G is additive on the components of 
G: 
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Theorem 1. [2]  Let G be a disconnected graph with components 𝐺ଵ ,𝐺ଶ , … , 𝐺௖ . Then 
Ωሺ𝐺ሻ ൌ ∑ Ωሺ𝐺௜ሻ.௖

௜ୀଵ  
 
The following relation is useful in calculating Ω(G): 
 
Theorem 2. [2]  For a graph  
 
G Ωሺ𝐺ሻ ൌ 2ሺ𝑚 െ 𝑛ሻ. 
 
That means, for any graph G , Ω(G) is even. Therefore if Ω(D) is odd for a set D of 
non-negative integers, then D is not realizable, which can be taken as a new realizability 
test. 
 
The number 𝑟 of non-overlapping cycles in a given connected planar graph G  is known 
as the cyclomatic number of G.  r  is stated in terms of Ω(G):  
 
Theorem 3. [2]  Let  31 2 ( )( ) ( ) ( )1 , 2 ,3 ,...,aa a aD   . If D is realizable as a connected 

planar graph G , then the number 𝑟 of faces is given by  
 

𝑟 ൌ Ωሺீሻ

ଶ
൅ 1. 

 
This result is useful in many applications. The following is a direct generalization of 
Theorem 3 to disconnected graphs:  
 
Corollary 1. [2]  Let  31 2 ( )( ) ( ) ( )1 , 2 ,3 ,...,aa a aD    be realizable as a graph G  with 

𝑐 components. 𝑟 of G is given by 
 

𝑟 ൌ Ωሺீሻ

ଶ
൅ 𝑐. 

 
For the definitions of the fundamental notions in Graph Theory, see [1], [3], [4], [7], [8]. 
 
 
3.  Line graphs 
 
Let G  be a simple undirected graph. A graph obtained by associating a new vertex onto 
each edge of G  and connecting two such new vertices with an edge iff the 
corresponding edges of G  have a vertex in common is called the line graph of G  and 
denoted by 𝐿ሺ𝐺ሻ. 𝐿ሺ𝐺ሻ is one of the derived graphs with many useful properties. It is 
known that the order of the line graph is equal to the size of the graph, and the size of 
the line graph is given by the formula  
 

𝑚൫𝐿ሺ𝐺ሻ൯ ൌ ଵ

ଶ
∑ 𝑑௨

ଶ
௨∈௏ሺீሻ െ 𝑚ሺ𝐺ሻ.  

 
In [19] this formula is restated as 
 

𝑚൫𝐿ሺ𝐺ሻ൯ ൌ ଵ

ଶ
𝑀ଵሺ𝐺ሻ െ 𝑚ሺ𝐺ሻ.  
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where 𝑀ଵሺ𝐺ሻ denotes the first Zagreb index of G . It is clear that 𝐿ሺ𝑃௡ሻ ൌ 𝑃௡ିଵ, 
𝐿ሺ𝐶௡ሻ ൌ 𝐶௡ and 𝐿ሺ𝑆௡ሻ ൌ 𝐾௡ିଵ. 
 
The following result was obtained for characterization of connected unicyclic graphs: 
 
Lemma 1. [5] Let G  be a connected graph. G  is unicyclic iff  𝑚ሺ𝐺ሻ ൌ 𝑛ሺ𝐺ሻ.  
 
That is, the necessary and sufficient condition for a connected graph to be unicyclic is 
that the order and size are equal. As 𝑛൫𝐿ሺ𝐺ሻ൯ ൌ 𝑚ሺ𝐺ሻ, Lemma 1 immediately gives the 
following result which characterises all the graphs G  such that the orders of G  and 
𝐿ሺ𝐺ሻ are equal: 
 
Theorem 4. [5]  Let G  be a connected graph. G  is unicyclic iff  𝑛ሺ𝐿ሺ𝐺ሻሻ ൌ 𝑛ሺ𝐺ሻ. 
 
By Theorem 4, the number of vertices are the same in G  and 𝐿ሺ𝐺ሻ whenever the graph 
G  is unicyclic, and vice-versa. Of course, the line graph is rarely unicyclic. First we 
characterize all graphs having the property that 𝑛ሺ𝐿ሺ𝐺ሻሻ ൌ 𝑛ሺ𝐺ሻ.  Actually even if the 
graph is unicyclic or acyclic, its line graph may have a large number of faces. The 
structure of the line graph of a tree is given as follows: 
 
 
Theorem 5. [5]  Let G  be a connected simple acyclic graph with degree sequence 

 31 2 ( )( ) ( ) ( )1 , 2 ,3 ,...,aa a aD   .  Then its line graph 𝐿ሺ𝐺ሻ consists of 𝑎ଶ times 𝐾ଶ′𝑠, 𝑎ଷ 

times 𝐾ଷ′𝑠, …,  𝑎∆ times 𝐾∆′𝑠 where 𝐾௥ and 𝐾௦ have a unique common vertex in 𝐿ሺ𝐺ሻ 
for 𝑑௩೔

ൌ 𝑟 and 𝑑௩ೕ
ൌ 𝑠 iff  𝑣௜ and 𝑣௝ are adjacent in G . 

 
In the following result, for a graph G , the necessary and sufficient condition for  𝐿ሺ𝐺ሻ 
to have a pendant vertex was given: 
 
Theorem 6. [5]   Let G  be any graph. G  has a support vertex of degree 2 iff 𝐿ሺ𝐺ሻ has 
a pendant vertex. 
 
 
4.  Omega invariant of the line graphs of tricyclic graphs 
 
In this section, we will determine all the integer values that can be attained by the 
omega of the line graphs of tricyclic graphs. In our results, we shall need two new 
notions: 
 
Definition 1. Two graphs will be called adjacent if they have a common cutvertex. Two 
graphs will be called neighbor if they have an edge in common. 
 
In Fig. 1, 𝐺 and H are adjacent and H and 𝐼 are neighbour.  
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Figure 1. Adjacent and neighbor graphs. 
 
Our aim is to find the lowest possible 𝑟 ሺ𝑎𝑛𝑑  Ω ሻ for the line graph of a connected 
tricyclic graph.  

 
 

Figure 2. Adding a new pendant vertex 𝑣 to G . 
 
It is clear that pendant vertices do not change the number of faces of the graph G . 
Therefore Ω does not change as well. But a pendant vertex 𝑣 increases the degree of its 
support vertex 𝑢 resulting in an increase on the number of faces of the line graph 𝐿ሺ𝐺ሻ, 
see Fig. 2. If the degree of  𝑢 in G  is 𝑑ீ𝑢, after adding a new pendant edge  𝑢𝑣, it will 
become 𝑑ீ𝑢 ൅ 1 and the increase in the number of faces of  𝐿ሺ𝐺ሻ will be  
 
𝑇ௗಸ௨ାଵିଶ െ ൫𝑇ௗಸ௨ିଶ൯ 
ൌ 𝑇ௗಸ௨ିଵ െ 𝑇ௗಸ௨ିଶ 

ൌ
ሺ𝑑ீ𝑢 െ 1ሻሺ𝑑ீ𝑢ሻ

2
െ

ሺ𝑑ீ𝑢 െ 2ሻሺ𝑑ீ𝑢 െ 1ሻ
2

 

ൌ
𝑑ீ𝑢 െ 1

2
൫𝑑ீ𝑢 െ ሺ𝑑ீ𝑢 െ 2ሻ൯ 

ൌ 𝑑ீ𝑢 െ 1. 
 
Therefore to find the connected tricyclic graph G  with lowest possible number 𝑟ሺ𝐿ሺ𝐺ሻሻ 
of faces and hence lowest ΩሺL(Gሻሻ, we need to look for the connected tricyclic graphs 
without pendant edges. 
 
Next, we consider possible connected tricyclic graph structures. As we can omit pendant 
edges, we need only to consider those graphs with 𝛿 ൒ 2. By Theorem 5, for each 
vertex 𝑣 of degree 𝑑௩ in G , we have a complete graph 𝐾ௗಸ௩ in 𝐿ሺ𝐺ሻ. Because of this, 
the number of faces in a caterpillar tree was given in  [6] by  
 
𝑟ሺ𝐿ሺ𝐺ሻሻ ൌ ∑ 𝑎௜𝑇௜ିଶ.∆

௜ୀଷ    
 
We extend this result to tricyclic graphs as follows: 

u u

v 

G 

I
H 
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Theorem 7.  Let G  be a connected tricyclic graph. The number of faces of  𝐿ሺ𝐺ሻ  is 
given by  
 
𝑟ሺ𝐿ሺ𝐺ሻሻ ൌ 3 ൅ ∑ 𝑎௜𝑇௜ିଶ

∆
௜ୀଷ .  

 
Proof. For a vertex 𝑣 of degree 2 in G  lying between two edges 𝑒ଵ and  𝑒ଶ, there is an 
edge ሺ𝐾ଶሻ between 𝑒ଵ and  𝑒ଶ in 𝐿ሺ𝐺ሻ  . For a vertex 𝑣 of degree 3 in G  lying between 
three edges 𝑒ଵ, 𝑒ଶ and 𝑒ଷ,  there is a triangle ሺ𝐾ଷሻ around 𝑣 in 𝐿ሺ𝐺ሻ . For a vertex 𝑣 of 
degree 𝑘 ൒ 4 in G  lying between k edges 𝑒ଵ, 𝑒ଶ,…, 𝑒௞,  there is a complete graph ሺ𝐾௞ሻ 

around 𝑣 in 𝐿ሺ𝐺ሻ. As 𝐾௡ has 
ሺ௡ିଵሻሺ௡ିଶሻ

ଶ
 faces, the contribution of each vertex  𝑣 of 

degree 𝑘 ൒ 2 to the number of faces in 𝐿ሺ𝐺ሻ is  
ሺ௞ିଵሻሺ௞ିଶሻ

ଶ
. Also as G  is tricyclic and 

for each cycle 𝐶௡, there is another cycle 𝐶௡ in 𝐿ሺ𝐺ሻ with each vertex lying on an edge of 
G , we have three more faces each one is lying inside a cycle. So the result follows. 
 
Next we shall find all the values of 𝑟ሺ𝐿ሺ𝐺ሻሻ for all connected tricyclic graphs: 
 
Theorem 8. Let G  be a connected tricyclic graph. 𝑟ሺ𝐿ሺ𝐺ሻሻ can take all integer values 
൒ 7. That is, the line graph of a connected tricyclic graph can have at least 7 faces. 
 
Proof. First we prove that for a connected tricyclic graph G ,  𝑟ሺ𝐿ሺ𝐺ሻሻ ൒ 7. Note that 
by Theorem 7, 𝑟ሺ𝐿ሺ𝐺ሻሻ ൌ 3 ൅ ∑ 𝑎௜𝑇௜ିଶ

∆
௜ୀଷ . Therefore for the minimum value of  

𝑟ሺ𝐿ሺ𝐺ሻሻ, we must find the minimum value of the sum 
 

෍ 𝑎௜𝑇௜ିଶ

∆

௜ୀଷ

ൌ 𝑎ଷ ൅ 3𝑎ସ ൅ 6𝑎ହ ൅ 10𝑎଺ ൅ 15𝑎଻ ൅ ⋯ ൅ 𝑎∆𝑇∆ିଶ. 

 
To achieve this, we consider all possible connected tricyclic graph structures without 
pendant edges. We obtain the lowest number of faces in 𝐿ሺ𝐺ሻ which is 7 for the 
following graphs. Note that there are infinitely many other graphs with similar 
structures for which this minimum number is attained:  
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Connected tricyclic graphs with lowest number of faces in their line graphs. 
 
 
 
 
 

𝒏𝟑 െ 𝒈𝒐𝒏 

 

𝒏𝟐 െ 𝒈𝒐𝒏 

 

𝒏𝟏 െ 𝒈𝒐𝒏 
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Figure 3. (continued). 

 
To prove that 𝑟ሺ𝐿ሺ𝐺ሻሻ can take all integer values ൒ 7, we define an operation as in Fig. 
4 where we add a new pendant vertex to  𝐺.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4. Effect of adding a new pendant vertex. 

             ᇣᇧᇧᇤᇧᇧᇥ
𝒌 𝒕𝒊𝒎𝒆𝒔

 

                  ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
𝒌ି𝟏  𝒕𝒊𝒎𝒆𝒔

 

                   ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
𝒌 𝒕𝒊𝒎𝒆𝒔

 

𝒏𝟑 െ 𝒈𝒐𝒏 
𝒏𝟏 െ 𝒈𝒐𝒏 

𝒏𝟐 െ 𝒈𝒐𝒏 

 

𝒏𝟑 െ 𝒈𝒐𝒏 ᇣᇧᇤᇧᇥ
𝒌𝟐

 𝒏𝟏 െ 𝒈𝒐𝒏 𝒏𝟐 െ 𝒈𝒐𝒏                  ᇣᇧᇧᇤᇧᇧᇥ
𝒌𝟏

 



BAUN Fen Bil. Enst. Dergisi, 21(2), 657-665, (2019) 

665 

 
 
 

 
 
 
 
 

Figure 4. (continued). 
 
 
This operation increases 𝑟ሺ𝐿ሺ𝐺ሻሻ by 1 when the pendant vertex is added to be adjacent 
to a vertex of degree 2. Recall that if the added pendant vertex is adjacent to a vertex of 
degree k, then by the proof of Theorem 4, we know that 𝑟ሺ𝐿ሺ𝐺ሻሻ increases by k-1. As 
this can be repeated many times by adding a new pendant vertex to another vertex of 
degree 2. The result then follows. 
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