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ABSTRACT 

Longitudinal forced vibration behavior of non-uniform rods subjected to dynamic axial load is studied. Exact 
displacement solutions are obtained using the Laplace transformation method. Free vibration behavior is readily 
obtained in the analysis. Natural frequencies available in the literature for the cases considered are fully 
recovered. Inverse transformation into the time domain is performed using calculus of residues. Closed-form 
displacement expressions are tractable and efficiently implemented. Their efficiency is demonstrated by 
comparing the results with those obtained using Mode Superposition Method. 
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1. INTRODUCTION

Longitudinal vibrations of non-uniform bars have 
attracted considerable scientific and practical attention in 
the study of composite structures subjected to high 
velocity impact and the study of foundations [1]. The use 
of variable cross-section members can help the designer 
reduce the weight; improve strength and stability of 
structures [2]. Free vibration analysis and presentation of 
fundamental frequencies along with mode shapes 
constitute most of the archival works. The researchers are 
expected to subsequently obtain the forced vibration 
response through methods such as Mode Superposition 
Method. Recent works on free vibration analysis of non-
uniform rods include works by Abrate [3], Li, et al. [4], 

Li [5], Qiusheng, et al.[6] , Raj and Sujith [7], Nachum 
and Altus [8],  Horgan and Chan [9] where exact 
solutions are obtained either in closed-form or by using 
methods such as lumped parameters and finite elements.  

In the present paper forced vibration analysis of non-
uniform rods subjected at the end point to various time-
dependent axial forces will be presented in closed-form 
equations. The need for exact solutions is obvious: they 
give adequate insight into the physics of the problem as 
well as establishing the accuracy of the approximate or 
numerical solutions. In optimization problems using 
closed-form solutions will greatly reduce the solution 
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time. Laplace transformation will be employed in the 
analysis. The inversion into the time domain is performed 
exactly using calculus of residues. Free vibration 
behavior is readily obtained since substituting the 
complex Laplace parameter in the governing equation 
directly gives natural frequencies [10]. Uniform mass and 
stiffness are assumed along the rod. The cross section is 
assumed to vary along the non-dimensional axial 
coordinate η in the forms ][sin)( 2 baAA o += ηη , 

2)1()( ηη aAA o +=  and ηη a
o eAA −=)( . Natural 

frequencies for these cross sections are given in tabular 
form and good agreement with the benchmark results 
presented by Kumar and Sujith [1], Abrate [3] and Li, et 
al. [4], is displayed. The first ten fundamental frequencies 
are listed. Using only the first ten frequencies provided 
six-digit accuracy in the forced vibration analysis. The 
results are compared to those obtained via Mode 
Superposition Method (MSM). Among other advantages, 
the efficiency of analytical results is obvious: for some 
cases, up to a hundred frequencies were needed in MSM 
to achieve the same accuracy.  

2. THEORY 

The longitudinal motion of a rod with varying cross-
section )(xA , uniform density and Young’s modulus is 
governed by the differential equation 
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The above equation will be solved for rods with cross-
sections varying as ][sin)( 2 baAA o += ηη ,  

2)1()( ηη aAA o +=  and ηη a
o eAA −=)( . Axial end 

forces to be considered are: ])cos[1()( 01 τγτ −= PP , 

02 )( PP =τ , )1()( 03
γττ −−= ePP . 

2.1 Solutions for the Cross Section Varying 
as ][sin)( 2 baAA o += ηη  
A detailed analysis for the load type 

])cos[1()( 01 τγτ −= PP  will be presented, and 
subsequently, the outline of analyses and results for other 
cases will be listed. A fixed-free rod with the axial force 
applied at the free end 0.1=η  will be considered. Initial 

and boundary conditions accompanying the governing 
differential equation (3) are 
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where E is Young’s modulus. 

Substituting ][sin)( 2 baAA o += ηη  and taking the 
Laplace transform of  Eqs. (3-4) yields  
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where { }),(),( τηη vLpy = , p being the complex 
Laplace parameter. Introducing a new variable z defined 
as [1] 
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into Eq. (5) results in  

0)( 22'' =−+ zpaz             (8) 

At this stage free vibration analysis can easily be 
performed and determination of fundamental frequencies 
would be in order. The Laplace parameter p in Eq. (8) is 
now replaced by  αi  to get 

0)( 22'' =++ zaz α                            (9) 

Note that α  now corresponds to the natural frequency 
whose determination will not require inverse 
transformation [10]. The general solution of Eq. (9) is 

]cos[]sin[ 21 ηη kckcz +=          (10) 

where 
222 α+= ak            (11) 

Therefore, 
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Imposing boundary conditions 0)0( =y  and 

0)/( 1 =∂∂ =ηηy  gives the following transcendental 

equation for natural frequencies 
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For arbitrary 1c , the mode shape corresponding to each 

nα  found from Eq. (13) is  
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First ten frequencies are listed in Table 1. for a=0, 1, 2 
and b=1 which match the results in reference [1].  

Table1. First ten natural frequencies for 
b]aηAA(η o += [sin) 2  

Mode a=0 a=1 a=2 

1 1.57079 1.51764 2.14856 

2 4.71239 4.70214 5.53576 

3 7.85398 7.84831 8.63281 

4 10.9956 10.9916 11.6946 

5 14.1372 14.1341 14.7579 

6 17.2788 17.2763 17.8306 

7 20.4204 20.4183 20.9137 

8 23.5619 23.5601 24.0062 

9 26.7035 26.7019 27.1064 

10 29.8451 29.8437 30.2129 

To determine the dynamic response in the Laplace     
space due to ])cos[1()( 01 τγτ −= PP  

with 

{ } )(/P )( 222
01 γγτ += ppPL , boundary conditions 

given by Eq. (6) are applied to Eq. (12) yielding 
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and the complex Laplace parameter p has been 
maintained in the formulation.  

Using the inversion theorem we may write the 
displacement function v in the real time space as 
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Applying the residue theorem yields 

),( τηv = ∑iπ2 Residues at the poles of v                 (19) 

The singular points of Eq. (18) are γξ i±=  and the 
zeros of the equation 0)( =ξG  and 0=ξ .  

The residues at the pole γi and γi−  can be obtained 
readily. They are 
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Noting that F(-iγ)= F(iγ) and G(-iγ)= G(iγ)  sum of the 
residues becomes 
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As for the roots of 0)( =ξG ; in view of Eq. (17), 

replacing ξ  with αi  and setting )()( αα iGiG −=  
equal to zero gives 
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The roots ,...2,1 , =ssα  of Eq.(22) correspond to 
natural frequencies given by Eq. (13). Without resorting 
to lengthy discussions, based on this observation, it can 
be concluded that these are all real and simple.  

The residues of the integrand at the simple poles 
siαξ ±= are 
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The residue sum is expressed explicitly as  
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The sum of the residues at the poles of the zeros of 
)(ξG is 

∑
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For 0=ξ the residue is as follows: 
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Final form of the displacement can now be written as  
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Table 2. lists these results along with displacement due to 

02 )( PP =τ and )1()( 03
γττ −−= ePP . 
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Table 2. End displacements due to )( and )(),( 321 τττ PPP for b][aηAA(η o += 2sin) .
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2.2. Solutions for the Cross Section Varying as 
2)1()( ηη aAA o += and ηη a

o eAA −=)(  
Following the same steps as in the preceding section the 
natural frequencies can be found for 2)1()( ηη aAA o +=  
and ηη a

o eAA −=)(  . 

For 2)1()( ηη aAA o += , natural frequencies and the 
mode shape are given by Abrate [3] as 
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a
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where a new variable z is introduced as 
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For  ηη a
o eAA −=)(  , natural frequencies and the mode 

shape are given by Li, et al. [4] as 
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which is valid for 04 22 <−=∆ na α  
The displacement solutions can be obtained following the 
same steps as in the preceding section. Tables 3. and 4. 
show the axial displacement expressions of the end point   
( 1=η ) for 2)1()( ηη aAA o +=  and  ηη a

o eAA −=)(  
, respectively. 

3. COMPARISION WITH MODE SUPERPOSITION 
METHOD (MSM) 

In this section, efficient implementation of the presented 
results will be demonstrated by comparing them with 
those from MSM. It is common knowledge that MSM is 
comprised of three main steps [11]: 

1) Determining natural frequencies )( nα and mode 
shapes )( ny  as discussed in preceding sections 
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2) Computing generalized mass )( nM  and loading )( nP  by  
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1
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3) Evaluating displacement by 
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where )(τnR  is the normal-coordinate response for an 
undamped single-degree-of-freedom system subjected to 
any form of dynamic loading. It can readily be calculated 
through the Duhamel Integral as 
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First ten frequencies have been taken in the calculations. 
Figs. 1-3 show the results for  b][aηAA(η o += 2sin)  

subjected to dynamic loads ])cos[1()( 01 τγτ −= PP , 

02 )( PP =τ and )1()( 03
γττ −−= ePP , respectively. A γ 

value of 0.6 has been used throughout. Increasing 
a causes an increase in the displacement. In all loading 
cases, for 2=a , a noticeable difference was present 
between the exact and MSM results. To achieve the 
accuracy of the exact results, up to a hundred frequencies 
have been needed in MSM. 
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Table 4. End displacements due to )( and )(),( 321 τττ PPP for 2)1()( ηη aAA o += . 

)(
)1(

),1( 321
00

2
0 RRR

aAE
P

v ++
+

=
γ

τ  

1R  
)(

]cos[)(
2 γγ

τγγ
iG

iF
−  

2R  
])sin[)1(](cos[)(

]cos[)(2

1 22
sssss

ss

a
iF

s αααααγ
ταα
+−−

∞

=
Σ  

)(1 τP  

3R  2/1 γ  

)(
)1(

),1( 321
00

0 RRR
aAE

P
v ++

+
=τ  

1R  0  

2R  
)]sin[)1(](cos[

]cos[)(2

1 ssss

ss

a
iF

s αααα
ταα

+−

∞

=
Σ  

)(2 τP  

3R  1  

)(
)1(

),1( 321
00

0 RRR
aAE

P
v ++

+
=

γ
τ  

1R  
)(

)(
γγ

γ γτ

−
−

−
−

G
eF  

2R  
])sin[)1(](cos[)(

])cos[2]sin[2)((

1 22
sssss

ssss

a
iF

s αααααγ
ταγτααα

+−+

+∞

=
Σ  

)(3 τP  

3R  
γ
1  

 

4. CONCLUSIONS 

Closed-form solutions for free and forced vibration 
analyses of a rod with varying cross-section have been 
performed using Laplace transform technique. The 
problem is solved in the Laplace domain and the 
inversion into the time domain is done exactly by the 
residue theorem. The numerical results obtained from the  

 

residue theorem are compared with those from Mode 
Superposition Method (MSM). It is seen that when use of 
first ten frequencies in the analytical solutions gives six-
digit accuracy, up to a hundred frequencies are needed in 
MSM. In addition to their efficient use, exact solutions 
give adequate insight into the physics of the problem. In 
optimization problems using closed-form solutions will 
greatly reduce the solution time. 

 

 

Figure 1. End displacement for b][aηAA(η o += 2sin)  
under ))cos(1()( 01 γττ −= PP .

 

 

Figure 2. End displacement for b][aηAA(η o += 2sin)  
under 02 )( PP =τ

. 
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Figure 3. End displacement for b][aηAA(η o += 2sin)  
under )1()( 03

γττ −−= ePP .
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