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On the Difference Sequence Space EP(T 1)

Pinar Zengin Alp* and Merve Ilkhan

Abstract A
In this study, we introduce a new matrix 77 = (¢!, ) by
dn f , k=n
Y q 1
te=9 ok~ Gong 0 k<n
, k>n.

where t, > 0 for alln € Nand (t,) € c\co. By using the matrix 7, we introduce the sequence space
£,(T9) for 1 < p < co. In addition, we give some theorems on inclusion relations associated with £,,(7)
and find the -, 8-, - duals of this space. Lastly, we analyze the necessary and sufficient conditions for
an infinite matrix to be in the classes (£,(7'%), \) or (), £,(T9)), where A € {¢1, co, ¢, £o0 }.
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1. Introduction and preliminaries

Let w denote the set of all real or complex sequences and X and p be subsets of w. We shall use sup,, instead
of sup,cy and Y, instead of )~ ), where N = {0, 1,2, ...} to provide convenience. Also, if u = (u;)}2, € w, we
simply denote it by u = (uy,). Further, e = (1,1, ...) and e*) is the sequence whose kth term is 1 and the other terms
are 0, that is, e(®) = (eék), egk), - e,(ck)7 ...)=1(0,0,...,1,...). Any vector subspace of w is called a sequence space. By
U, c,c0and £, (1 < p < 0), we denote the spaces of all bounded, convergent, null sequences and p—absolutely
convergent series, respectively.

A with a linear topology is called a K-space provided each of the maps p,, : A — C defined by p,(z) = z,, is
continuous for all n € N, where C is the set of all complex numbers. If a K-space )\ is a complete metric space, it is
said to be an F'K-space. A normed F K-space is defined as a BK-space, hence, a BK-space is a Banach sequence
space. For instance, the sequence space /. is a BK-space with the norm given by ||u||¢.. = sup;, |ug|. Further, ¢, is a
complete p—normed space with respect to the usual p-norm defined by

lulle, =D lugl? (0 <p<1)
k

and /¢, is a BK-space with respect to £,-norm defined by

1/p
lulle, = <Z IUkl”> (I1<p<oo).

k

Let B = (b,) be an infinite matrix of real or complex numbers b,,;,, where n, k € N. Then B defines a matrix
mapping from A into 1 and we write B : A — (1 if for every sequence u = (uy) € A, the sequence Bu = (B, (u)), the
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B—transform of v, is in p, where

Bp(u) =Y buruk (n €N). (1.1)
k

By (A, 1), we denote the class of all infinite matrices that map A into . Hence A € (A, i) if and only if the series
> & bnkuy, converges for each n € Nand every u € A, and Bu € p for all w € . If A and p are two arbitrary Banach
spaces, then B(A, ) denotes the set of all bounded linear operators from A into p.

The matrixz domain Ap of an infinite matrix B is defined by

Ap ={u=(ur) €w: Bu € \}

which is also a sequence space.

In the literature, there are many papers related to new sequence spaces constructed by means of the matrix
domain of a special triangle. See, for example [1]-[20]. For more information about matrix domains of triangles, one
can see [21].

A sequence (,,) in normed space A is called a Schauder basis for X if for every u € A there is a unique sequence
(o) of scalars such thatu = ) o, f,, ie.,

m
lim |ju— Z an Byl = 0.
m—r oo 70

By ¢so, cs and bs, we denote the set of all convergent to zero, convergent and bounded series, respectively, that

is, esg = {u = (ug) Ew: <k2n:0uk> € co}, cs ={u=(up) €w: (X ogur)io € c}and bs = {u = (u) € w:
= n=0

(Cr_ouk)g € ls}, and we define the norm on csg, ¢s and bs by [|[ul|cs, = [|ulles = [|ullos = sup,, |>_p_o ux|- For
all 2 € w, we write 27 ' x u = {z € w: 2z = (v2) € pu}. Theset Z = M(A\, ) = Nyeru L s p={a € w:au €
pforall w € A} is called the multiplier space of A and p. In the special case, where i = ¢1, u = cs or p = bs, the
multiplier spaces \* = M (), ¢1), A’ = M (), cs) and \Y = M (), bs) are called the a-, 3- and v- duals of \.

Throughout this paper, we assume that p, ¢ > 1 with % + % = 1 and denote the collection of all finite subsets of
Nby F.

The difference operator A : w — w is defined by Au = (Auy) = (up — uk—1) or Au = (Auy) = (ug—1 — ug) for
all v = (ux) € w. When X is a sequence space, the matrix domain A is called the difference sequence space. For the
first time, Kizmaz [22] gave the notion of difference sequence spaces as

AMA) = {u= (ug) € w: (up —ug—1) € \}
for A = {, cand cy. After Kizmaz, Et and Colak [23] defined the generalized difference sequence spaces

loo(A™) ={u = (ug) Ew: A™u € U},

c(A™) ={u=(up) Ew: A"u € ¢}
and
co(A™) = {u = (wy) € w: A™u € g},
where m € N, A™u = (A™uy) = (A™ tuy, — A™ 1y, ) and so that
Ay, = Z_io(—ni ( m )u,m.
The difference space
bup, = {u= (ug) €w: (up —ug—1) € £} (0 <p < 0)

was studied by Altay and Basar [24] for 0 < p < 1 and in the case 1 < p < oo Basar and Altay [25], and Colak et
al [26]. Recently, for A € {¢,,co,c,ls} (1 < p < 00), Kirisci and Basar [4] introduced the generalized difference
sequence space

A= {u=(up):€w:B(r,s)u=((B(r,s)u)) € A},
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where B(r, s)u is the sequence defined by (B(r, s)u); = ruy, + sug—1 for all k € Nand r, s € R\{0}.
In [27], the Fibonacci band matrix F' is defined by using Fibonacci numbers. Also, in [27] the Fibonacci difference

sequence spaces /,,(F') and £, (F') are introduced.
The Riesz matrix R, = () is defined by

9k , nggn
Fop = 4 @n
0 , k>n

for all k,n € N and where (gi) is the sequence of positive numbers and Q,, = >_}'_ qx for all n € N. In [28], the
paranormed Riesz sequence space is introduced.
In [29], the band matrix T' = (,) is defined by

t., , k=n
thk = —i , k<n
0 , k>n

where ¢, > 0foralln € Nand t = (t,,) € c\co. Also in [29] the difference sequence spaces are introduced as follows:

0,(T) = {u (un) Ew:

n

1
tnun - ?Un—l
n

p<oo} (1<p<o0)

<oo}.

For more information on some new difference sequence spaces we refer to [30]-[37].

The paper is organized so that this section is followed by three sections. In Section 2 we give the definition of a
new matrix and introduce the sequence spaces £,,(79) and £, (T?), where 1 < p < co. We prove that £,(79) and
{0 (T9) are Banach spaces with respect to the norm defined on these spaces. Further, we establish some inclusion
theorems related to the space ép(Tq), where 1 < p < oo. In section 3 we determine the a-, 5-, v- duals of the space
£,(T9) for 1 < p < occ. In the last section we characterize the classes (£,(7), A) and (X, £,(T'7)) for A € {£1,¢co, ¢, loo }.

and
0o (T) = {u = (up) € w: sup

tnun - run—l
n

2. The difference sequence space (,,(79)

In this section, we introduce a new matrix 79 by multiplying Riesz matrix and the band matrix 7' and introduce
the difference sequence space ¢,(17'?) derived by using this matrix, where 1 < p < co. Also, we give some theorems
which give inclusion relations corcerning this space. By multiplying these matrices we derive a new matrix
77 = (GIOEE

q,; tn , k=n
fg o _ are1 1
tglk - C%’:L by — CSZI oy 7 k<n
0 , k>n.
(T9)~1 = ((£9),}), the inverse of T can be easily computed as
1
Ol , k=n
Gn tn
pay—1 _ 1 noq 1 noq
() Qe | — |t Il 5| —— |thrr Il = , k<n
Qe \ =k t] Tr+1 j=k+1 tj
0 , k>n.

Now, let give the definitions of the difference sequence spaces ,(7) and £, (T?) derived by this matrix

(1) = {U = (up) Ew: Z & ZQk <tkuk - u’;:)

n k=0

<oo} (1<p< o)
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and

loo(T9) = {u = (up) Ew: s%p

1 - Uk—1
@qu (tkuk— t <00 .
k=0
For the T9-transform of a sequence u = (u,,), we will use the sequence @ = (i,,) defined as

i, =T (u) = Qi zn:% (tkuk - uz;—1) (n €N). (2.1)
" k=0

k

Theorem 2.1. For 1 < p < oo, £,(T) is a Banach space with the norm ||u||[p(Tq,) = ||T‘1u||gp, defined as,

. 1/p
(Sitger) L 1sp<o
H“ng(j“q) = n .
sup |74 (u)] , p=oo.

Proof. If we assume that ||u||zp(Tq) = 0. Then, ||Tqu||gp = 0 and since ||.||¢, is a norm we have T = 6. Since it is

known that 77 is invertiblAe, we have u = 6.
Leta € Cand u € ¢,(T7). Then,

ol o) = ITH @), = llaTul,
= lel[T%ulle, = lelllully, ga)-
Finally, for u,v € £,(T7) we have
[w+vllg, 0y = T (w +0)lle, = 1T + T,
< | T%ulle, + 1Tlle, = llully, 7y + 10l 70y

and so the triangle inequality holds.
This means that, (EP(T‘I), Il ZP(TQ)) is a normed sequence space for 1 < p < oco. To show that ép(Tq ) is a Banach

space, let (u,) be a Cauchy sequece in £, (7). Then, (,) is a sequence in £,. Obviously,
Hun - um”e Tay = ”Tq(un - “m)Hép
»(T7)
= ”Tqun - Tqum”&; = ||ty — ﬁmHlpa

hence, (i) is a Cauchy sequence in £,,. Since (¢}, ||.||¢,) is a Banach space, there exists @ € ¢, such that lim 4, = u
n—oo

in ¢,,. Since u = (T9)~ 4, we have

nlglolo llun — U||ep(:ﬁq) = nh_{fgo 7% (un = u)lle,
= lim HTqun - Tqu”ép = lim ||an - ﬁHzp =0.
n— 00 —00

Hence 1i_>m U, = uin £,(T9), where u € £,(T9).
Remark 2.1. Ep(if’q) isa BK-space for 1 < p < oo.

Theorem 2.2. The sequence spaces £,(T9) and {,, are linearly isomorphic; that is, £,(T9) = £, for 1 < p < co.

Proof. Tt must be shown that there exists a linear bijection between the spaces £,(79) and ¢, for 1 < p < co. Let T
be the transformation defined from £,(7%) to £, by u — @ = T% = (T%(u)). Then, we have T9u = 1 € /, for every
u € £,(T9). Hence, T is a linear transformation. Also, 7 is injective since u = § whenever T9u = 6.

Moreover, let v = (v,,) € £, be given for 1 < p < oo and define the sequence u = (u,,) as follows:

n

" 1 ol 1 1
Up = Z Qr | — | tk H ol B tht1 H 7z || o (n € N). 22)
k=0 j J

ak =k Ui k+1 ekt 1
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Then, by combining (2.1) and (2.2), we get for every n € N

. 1 <& k 1 b 1
Tg(u) = Qﬁ Z dk tk Z Qr ; H *2 r+1 H ? (S
™ k=0 r=0 r j=r J j=r41 J
1 n 1 k—1 1 — 1 k—1 1
_ @ ;)qk g ;0 Qr a 1;[ ? Grit r41 jzllrl E (S

This means that 7% = v. Since v € £,, we have T% € ,. Thus, we conclude that u € £,(T%) for any v € £,,.
Hence T is surjective.
Since H“”ep(:ﬁq) = [|T%ul|¢, for any u € £,(T'?), we have

[vlle, = IT%ulle, = llully, ()

which shows that 7% preserves the norm, where 1 < p < co. Hence, T4 is an isometry. As a result, the space Kp(Tq)
is isometrically isomorphic to £, for 1 < p < oo.

It is known that the space £, is not a Hilbert space with p # 2. The similar result is valid for the space £, (7%) and
the following theorem gives this result.

Theorem 2.3. The space £,,(T9) is not an inner product space in the case p # 2. Hence, £,(T9) is not a Hilbert space for
1<p<ocandp+#2.

Proof. We must show that the space £»(77) is a Hilbert space while £,(77) is not a Hilbert space for p # 2. By
Theorem 2.1, we know that £5(T%) is a Banach space with the norm [ullg,(ay = |T9u||s, and its norm can be
obtained as follows: L o
lleyray = () = (T, T0) % = | T,
for every u € £(T9). Hence £5(T?) is a Hilbert space.
Consider the sequences

% , n=20
1 1
s=(s)={ R W -
LA Tl Qite 77 1
toll+tll g-"21lz » n22@meN)
i=0 * i=1 " i=2 "
and
% , n=20
1 (Qo+@1) n=
t = (tn) — tot? q1t1 ’
n
tOHt% (Qoth)t H JrQlt?H% , n>2 (neN)
i=0 i =2

With the T-transforms of s and t, we have the following sequences
T = (1,1,0,0,...) and 79 = (1,-1,0,0,...).
Also, it can be easily seen that

”3 + t”jp(jﬂq) + HS - tHZ(Tq) =38 7é 4(22/1)) = 2(HSHZ(TQ + ”tHZ(T‘q))

for p # 2. This means that the parallelogram equality cannot be satisfied by the norm of the space ¢,,(7) for p # 2.

Therefore, this norm cannot be gained from an inner product. Therefore, the space ¢, (T%) with p # 2 is a Banach
space but it is not a Hilbert space, where 1 < p < co. The proof is completed.

Remark 2.2. Obviously, the space /(1) is also a Banach space but it is not a Hilbert space.
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Now, we give some theorems on inclusion relations associated with the space £,(7).

Theorem 2.4. For 1 < p < q < oo the inclusion relation £,(T9) C £,(1) strictly holds.

Proof. Let1 < p < q < oo. If u is any sequence in £,(79), then its T%transform 7% is in ¢,. Since the inclusion
¢, C £, holds, T is also in £,. Hence u € £,(T%) which means that £,(7%) C ¢,(T). Now, we must prove that the
inclusion holds strictly. For this, there should be a sequence © = (v,,) € ¢, butnotin ¢,, i.e., v € £,\¢,. The existence
of & € £,\(, is clear since, as a well known fact, ¢, C ¢, is a strict inclusion. Let define the sequence v = (v,,) in
terms of the sequence ¢ as follows:

Then, it is clear that

for every n € N. This shows that 79y = 4 and since © € £,\¢,, we have T% € £,\(,. Hence, the sequence v must be
in £,(79) but cannot be in £,(77), that is, the inclusion £, (7?) C £,(T9) is strict. The proof is completed.

Theorem 2.5. For 1 < p < oo the inclusion £,(T?) C Lo (T9) is strict.

Proof. Tfu € £,(T9), then T9u € £,,. Since £, C luo, T9u € Lo,. Hence, u € £ (T'7) which shows that £, (79) C £ (T'7).
To show that this inclusion is strict, we define the sequence v = (v,,) by

_tOHt2+Z z 1M (til H t12>_~_(_1)n(Qn—1+Qn) (nEN).
k

i=0 @ _ qi—1 i1 k qntn

Then, we have for every n € N that

Then, T% € (4, \£, since ((—1)") € Lo, but not in £,. Thus, v is in £, (79) but not in £, (T'?) which means that the
inclusion £,(T7) C o, (T9) strictly holds. The proof is completed.

3. The a-, 3- and ~-duals of the space £,(77)

In this section, we determine the a-, 5- and y-duals of the sequence space Ep(Tq), where 1 < p < oo. Also, we
give a sequence of the points of the space £,(7) which forms a basis for this space.
The following known results in [38] and [39] are fundamental for our investigation.

su bkl < oo. 3.1
np%] kl 3.1)
lim b,y exists for all k € N. (3.2)
n—roo
lim bnr =0 forall k € N. (3.3)
sup bnr| < o0. (3.4)
2 g; k
sup |bp| < 0. (3.5)
n,k

su bnk| < 00. 3.6
kpzn:| K (3.6)
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lim Z|bnk\ = Z lim byl - (3.7)
lim Zk: |bpi| = 0. (3.8)

Lemma 3.1. Let B = (by) be an infinite matrix. The following statements hold:
1.B € ({p,ls) < (3.1).

.Be (l1,l) <= (3.5).

U, lso) < (3.1) with g=1.

ly,c) < (3.1) and (3.2).

l1,¢) < (3.2) and (3.5).

4y,

N

,¢) < (3.2) and (3.7).
Co) < (3.1) and (3.3).
Uy, ¢0) & (3.3) and (3.5).
9. B 005 C0) < (3.3) and (3.8).
10. B € (£y,41) < (3.4).
11. B € (fl,él) & (3.6).
12. B € (boo, 1) < (3.4) with g=1.

3. B < (
4. B e (
5.B € (
6. B € (log
7.Be(
8. B < (
€ (¢

Now, let give two lemmas which are needed to determine the a—, - and ~-duals of the space £,(79), where
1<p<oo

Lemma 3.2. Let a = (a,,) € w and the matrix B = (b,y) be defined by B,, = a,,(T9)~", that is,

l; . 0 , k>n
nk = an(fq);kl , 0<k<n

forall k,n € N. Then, a € (£,(T9))* ifand only if B € (£,,¢,), where 1 < p < co.
Proof. Let @ be the T-transform of a sequence u = (u,,) € w. Then, we have
anttn = an(T7);(8) = By (@)
for all n € N. So, from this equality it can be easily seen that au = (a,uy) € ¢; withu € ép(Tq) if and only if Ba el

with @ € £,. This implies that a € (£,(77))* if and only if B € (£,,¢,). The proof is completed.

Lemma 3.3. [40, Theorem 3.1] Let C' = (cpr,) be defined via a sequence a = (ay) € w and the inverse matrix V = (vny,) of
the triangle matrix U = (uni) by
0 , k>n
Cnk = { Z?:k a;jVjk 0 S k S n
forall k,n € N. Then,
(p(U))" = {a=(ar) €w: C € (b, l)},

(6p(U))° ={a = (ar) €w: C € (4,0},
where 1 < p < 0.

Combining Lemmas 3.1-3.3 we have;

Corollary 3.1. Let the sets di,ds, ds, dy, ds and dg be defined as follows:

~ n 1 g
dl—{a—(ak)ew. supz T;(( [ (kjl_[ktf> —@ (tkﬂjgrlt?)])an <oo},

KeF 7

. > 71

dy=<a=(a) Ew: Qr tr trat a;j exists foreach k € N 3 |
j—zk ﬂc tl2 Qk+1 ’ i 1;!L1 Z !
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. . q

. Gy 1 1 1 I

ds =< a=(ag) € w:sup Qr | — tkl_[t—2 — —— |tk H o) aj| <oo,p,
" k=0 |j=k B\t Q1 i—k41 0

and

5 1 1 1 S|
dg = {a = (ag) Ew: S;l]};) jzk <Qk lqk (tki]‘l 2 " (tkﬂilgrl tf)]) aj| < oo} .
Then, the following statements hold:

(@) (£,(T9))* = dy and (£,(T9))* = ds, where 1 < p < co.

(b) (£,(T9))P = dy N ds, (£oo(T?))P = dy N dyand (0,(T7))? = dy N dg, where 1 < p < .

(©) (£,(T))" = d3 and (£,(T9))" = dg, where 1 < p < .

Now, we give the Schauder basis of the space £,(79) (1 < p < o).
Theorem 3.1. Let 1 < p < oo and define the sequence ¢'®) € £,,(T9) for every fixed k € N by

0 , n<k
(c®)y, = 1 no] 1 noo] (n € N). (3.9)
Ok a \ " jl;lk t2 G \ j:l;[+1 t;
Then the sequence (¢*)) is a basis for the space £,(T9), and every u € £,(T) has a unique representation of the form
u= Z T (u)c ™). (3.10)
k

Proof. Let1 < p < co. By (3.9), it is clear that T7(c(*)) = ¢®) ¢ ¢, and ¢*) € £,(T9) for all k € N.
Also, let u € £,(T9) given. For every non-negative integer m, we put

= Tiwe®.

k=0
Then, we obtain

(m) zm: (k) Z (k)

k=0 k=0

and so
. 0 (0<n<m)

Ty — (™)
(= u™) = {T%) (n > m).
Let € > 0 be given. Then, there exists a non-negative integer m, which satisfies

%] . e\p
> T < (5)
n=mo-+1

So, we obtain for every m > my that

oo 1/p o 1/p
Hu_u(m)||gp(fq):< > ITE(U)IP> S( > ITE(U)I’”>

n=m-+1 n=mo+1

IN
N
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which indicates that lim |ju — u(™)| ¢, (7a) = 0 and hence u is shown as in (3.10).
m—r o0

Finally, we must prove that the representation (3.10) of u € £,(79) is unique. Assume thatu = 3 o b (w)e®).
The continuity of the linear transformation 7 : £,(7) — £, which is defined in the proof of Theorem 2.2 is clear,

we have . .
Tow) = 3 (@) 72(e®) = 5 i @)oa = pralu) (n € N).
k k

Hence, the representation (3.10) of u € £,(79) is unique. The proof is completed.

~

4. Characterization of some matrix transformations on ¢,(7)

In this section of the study, we obtain the characterization of the classes (£,(7%), \), (A, £,(79)), where 1 < p < oo,
NS {fl, Cop, C, goo} and n e {fl,foo}

Throughout this section, we write b(n, k) = Z?:o b, for given an infinite matrix B = (byx), where n,k € N.

Firstly, we give a theorem which is essential for our results.

Theorem 4.1. Let 1 < p < co. Then, we have B = (byy,) € (£,(T9), \) if and only if

EMm) = (ef{,’;)) € (bp,c) foralln e N, 4.1)
E = (enk) € (p, M), 4.2)
0 , k>m
h (m) _ m 1 J 1 J
where e, Zj:k Qr [ (tk I tg) S (tk+1 I1 tg)] bpj , 0<E<m
dk i=k * k+1 i=k+1 *
00 1 J 1 1 J 1
and enr, =Y Qr | — |\t [[ =z ) ——— |thrr II 3= || bngforallk,mmneN.
=k dk i=k drk+1 i=k+1 *

Proof. For the proof, we follow the similar tecnique due to Kirisci and Basar [4]. Let B = (b)) € ({,(T), A) and
u = (ug) € £,(T9). By (2.2), we have

k=0 k=0 =0 4 i b Zj+1 ims1 b
m m 7 j
1 1 1 1 .
(S [ (wTTh) - (e TTE) )
k=0 \j=k K i—p v Ak+1 iy b
m
m)
- Z Cnk Uk
k=0
= EJ™(2)

for all m,n € N. Since Bu exists, E(™) belongs to the class (£,,c). Letting m — oo in the last equality, we obtain
Bu = U4 which gives the result E € (£, \).

Conversely, suppose the conditions (4.1), (4.2) hold and take any u € ¢,(T’). Then, we have (e,;)ren € Kg which
gives together with (4.1) that B,, = (b )ken € (Ep(Tq))ﬁ for all n € N. Thus, Bu exists. Therefore, we derive by the
above equality as 7 — oo that Bu = Ei, and this shows that B € (£,(T9), \).

The following conditions are necessary for our study:

supz lenk|? < oo. (4.3)
"ok

lim e, exists forall k € N. (4.4)

n—oo

lim e, =0 forall k € N. (4.5)
n—oo
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sup enk| < oo. (4.6)
2 5;
sup |enk| < 0o. 4.7)
n,k
su enk| < 00. 4.8
kp}ﬂj\ il 4.8)
nh—%lozk: lenk| = zk: nh_)rrgo enk| - (4.9)
lim_ > ekl =0. (4.10)
k
lim e(k) exists (Vn,k € N), (4.11)
m—0o0
sup egz)‘ < oo (VneN) (4.12)
m,k
supz (4.13)
; (m)| _
w}gnoo e ‘ = Z lenk| for eachn € N (4.14)
k=0 k
sup Z Z enk| < 00 (4.15)
NKEF |1 eN kek

We obtain the following results by combining Theorem 4.1 and previous conditions.

Theorem 4.2. The following statements hold:

1. B = (bu) € (el(Tq),em) & (4.7), (4.11) and (4.12).

2. B = (bui) € (65(T9), loo) > (4.3), (4.11) and (4.13).

3. B = (bnk) € ({oo (Tq) o) & (4.11), (4.14) and (4.3) with q=1.
4. B = (buy) € (£1(T9),¢) & (4.4), (4.7), (4.11) and (4.12).

5. B = (bux) € (6,(T9),¢) & (4.3), (4.4), (4.11) and (4.13).

6. B = (bnk) € (loo(T?),¢) & (4.4),(4.9), (4.11) and (4.14).
7. B = (bn) € ((1(19),co) & (4.5), (4.7), (4.11) and (4.12).
8. B = (bu) € (6,(T ), co) < (4.3), (4.5), (4.11) and (4.13).
9. B = (buk) € (boo(T9), co) & (4.5), (4.10), (4.11) and (4.14).
10. B = (buy) € (41(T9),01) < (4.8), (4.11) and (4.12).

11. B = (buy,) € (6,(19),01) < (4.6), (4.11) and (4.13).

12.B = (bpi) € ({o(T9),41) < (4.7), (4.11) and(4.14).
By using Theorem 4.2, we derive the following result:

Corollary 4.1. The following statements hold:

1. B = (bux) € (L1(T9), cs0) < (4.5), (4.7) and (4.11), (4.12).

2. B = (bu) € (4,(1), c50) & (43), (4.5) and (4.11), (4.13).

3. B = (bp) € (£oo(T9), c50) < (4.5), (4.10) and (4.11), (4.14).

4. B = (bny) € (£1(T9), cs) < (4.4), (4.7) and (4.11), (4.12).

5. B = (bui) € (£,(T7), cs) < (4.3), (4.4) and (4.11), (4.13).

6. B = (bpi) € (loo(T9), c5) < (4.4), (4.9) and (4.11), (4.14).

7. B = (bui) € (41(T9),bs) < (4.7) and (4.11), (4.12).

8. B = (bux) € (6,(T9),bs) < (4.3) and (4.11), (4.13).

9. B = (bpi) € (loo(T9), bs) < (4.3) with ¢ = 1 and (4.11), (4.14)
hold with d(n, k) instead of d,.
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Now, we introduce the matrix transformations from the space A € {¢1, o, ¢, o } to £,(T), where 1 < p < oo.
Before this, we give the necessary and sufficient conditions for the matrix transformation B is in (A, £,).

Lemma 4.1. The following statements hold:
(1) B € (boo, lp) = (c,p) = (co, £p) if and only if

P
sup bnk| < 0o, wherel < p < oco. (4.16)
2|2 b
(b) B € (loo, o) = (¢,0s0) = (co,loo) if and only if
supz [brk| < o0 (4.17)
"ok
(c) B € (41,4,) if and only if
supz |bri|? < 0o, where 1l < p < 0. (4.18)
k n

When we change the roles of the spaces £,(79) and £, with \ in Theorem 4.1, we obtain the following theorem.

Theorem 4.3. Assume that the terms of the infinite matrices B = (byy,) and B = (b,y) satisfies the following relation

n—1
7 qr qr+1 1 ) dn
bni = t, — bri + =—1tnbn 4.19

* 1;0 (Qn Qn tr+1 ¥ Qn * ( )

for all k,n € N and X be any given sequence space. Then, B € (X, £,(T9)) ifand only if B € (A, £,), where 1 < p < oo.

Proof. Letu = (ux) € A. Then, by using the relation (4.19) one can easily obtain the following equality

m m n—1

~ qr qr+1 1 n
E bty = E E <tr - > brr + =—tnbpr | up forallm,n € N
—0 ( Qn Qn tr+1 Qn

k=0 \r=0

which yields as m — oo that (B,,(u)) = (T4(Bu)). Therefore, we conclude that Bu € £,(T) for u € X if and only if
Bu € ¢, for u € A\, where 1 < p < co. The proof is completed.
By combining Lemma 4.1 and Theorem 4.3, we obtain the following results:

Corollary 4.2. Let the matrices B = (byy,) and B = (b,y) be connected by (4.19). Then, we obtain: )
(@) B = (buk) € (loo, (1(T7)) = (¢, (1(T7)) = (co, £1(T)) if and only if (4.16) holds with p = 1 and by, instead of byy,.
(b) B = (bni,) € (£1,01(T7)) if and only if (4.18) holds with p = 1 and by, instead of by,y..

Corollary 4.3. Let the matrices B = (by) and B= (Enk) be connected by (4.19). For 1 < p < 00, we obtain:
(@) B = (bui) € (Loo, £p(T9)) = (¢, £,(T9)) = (co, £,(T9)) if and only if (4.16) holds with by, instead of b,y
(b) B = (bui) € (£1,4,(T)) if and only if (4.18) holds with b,;, instead of byy..

Corollary 4.4. Let the matrices B = (byy,) and B = (b,y) be connected by (4.19). Then, we obtain:
(@) B = (buk) € (oo, Loo(T)) = (¢, Lo (T)) = (co, boo(T?)) if and only if (4.17) holds with by instead of by
(b) B = (bn) € (41, KOO(T‘?)) if and only if (3.5) holds with b, instead of b,,.
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