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This paper focuses on the appointment scheduling mechanism of a physician or a diagnostic 
resource in a healthcare facility. Multiple patient types with different revenues use the 
facility. The facility observes the number of appointment requests arriving from each patient 
type at the beginning of each day. It decides on how to allocate available appointment slots 
to these appointment requests. Patients prefer a day in the booking horizon with a specific 
probability and they have only one preference. Patients are either given an appointment for 
their preferred days or their appointment requests are rejected. The facility wants to keep 
the rejection costs at a certain level, while maximizing its revenues. This process is modeled 
with a discrete time and constrained Markov Decision Process to maximize the infinite-
horizon expected discounted revenue. The constraint guarantees that the infinite-horizon 
expected discounted rejection cost is below a specific threshold. We have proved that the 
optimal policy is a randomized booking limit policy. To solve the model, we have implemented 
Temporal Difference (TD) Learning Algorithm, which is a well-known Approximate Dynamic 
Programming (ADP) method. We have compared the ADP results with other heuristics 
numerically.  
 

 

ÇOK TİPLİ HASTALAR İÇİN TERCİHLERİ BAZ ALAN BİR RANDEVU ÇİZELGELEME 
PROBLEMİ 

Anahtar Kelimeler Öz 
Sağlık hizmeti,  
randevu çizelgeleme, hasta 
tercihleri,  
Markov Karar Süreçleri, 
Yaklaşık Dinamik 
Programlama 

Bu makale, bir sağlık tesisindeki bir doktor ya da tanı cihazının randevu planlama 
mekanizmasına odaklanmaktadır. Bu tesisi, getirileri birbirinden farklı olan birden çok hasta 
tipi kullanmaktadır. Tesis, her hasta tipinden gelen randevu isteklerini her günün başında 
gözlemlemektedir. Müsait randevu saatlerini bu randevu isteklerine nasıl tahsis edeceğine 
karar vermektedir. Hastalar belli bir olasılıkla rezervasyon dönemindeki bir günü tercih 
etmektedirler ve sadece bir tercihleri vardır. Hastalara ya tercih ettiği güne bir randevu 
verilmektedir ya da randevu istekleri reddedilmektedir. Tesis, getirilerini maksimize ederken 
reddedilme maliyetlerini belli bir seviyede tutmak istemektedir. Bu süreç, sonsuz zamanlı 
beklenen indirgenmiş karı maksimize etmek için ayrık zamanlı ve kısıtlı Markov Karar Süreci 
ile modellenmektedir. Kısıt, sonsuz zamanlı beklenen indirgenmiş reddedilme maliyetlerinin 
belli bir eşik değerinin altında olmasını garanti etmektedir. En iyi politikanın rassallaştırılmış 
bir rezervasyon limiti politikasının olduğunu gösterdik. Modeli çözmek için iyi bilinen bir 
“Yaklaşık Dinamik Programlama” metodu olan “Geçici Farklarla Öğrenme Algoritmasını” 
uyguladık. “Yaklaşık Dinamik Programlama” sonuçlarını diğer buluşsal yöntemlerle sayısal 
olarak karşılaştırdık.  
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1. Introduction 

Improving the healthcare systems has been one of 
the most essential aims of the developed countries. 
According to OECD health statistics, healthcare 
expenditures constitutes 18% of the gross domestic 
product of US. Furthermore, health spending has 
increased by 5.4% in 2017 Existence of an aging 
population, a growing need for care and limited 
budgets for healthcare force the healthcare clinics to 
increase efficiency. 

Healthcare clinics adopt the strategy of shifting some 
inpatient services to an outpatient environment in 
order to decrease the cost and manage the capacity 
in a more efficient way. This has increased the 
demand for outpatient care and many new 
outpatient clinics has been founded to satisfy 
increasing demand. In this competitive environment, 
easy access to care, patient satisfaction and short 
wait times differentiates a health clinic from the 
others. These factors also contribute to an 
improvement in patients' health status.  

Appointment scheduling system plays the key role in 
efficiency of healthcare systems. Patients that 
request an appointment may have different urgency 
levels and the clinic may give more importance to 
those patients. In other words, patients may have 
different priorities. While requesting appointments, 
patients usually state their preferences about the 
appointment day, time slot or the physician. There is 
no doubt that considering patient preferences 
increases their satisfaction. Patients who are 
assigned to her preferred appointment day are less 
likely to cancel their appointment and no-show rates 
would be lower for those patients (Bowser, Utz, Glick 
and Harmon, 2010). 

This paper constructs a constrained Markov Decision 
Process (MDP) model for a healthcare facility which 
considers the revenues and preferences of the 
patients about the appointment day. In this system, 
each patient states only one preference. The facility 
either assigns the patient to her preferred day or 
rejects the patient. We assume that patients will 
always show up on their appointment day. To the 
best of our knowledge, this paper is a new 
contribution to the literature that models an 
advanced scheduling problem with patient 
preferences using constrained MDP. We also derive 
results about the structure of the optimal policy. 

The rest is organized as follows: Section 2 gives a 
detailed literature review about appointment 
scheduling. We introduce our problem and describe 

the model in Section 3. In Section 4, we derive the 
structure of the optimal policy and introduce 
solution methodologies. In Section 5, we compare 
our solution methods with other well-known policies 
numerically. Finally, we discuss the possible 
extensions that can be incorporated to our model in 
Section 6. 

 

2. Literature Review 

Our model falls into the field of interday advance 
scheduling problems that consider the preferences 
of patients with different priorities. In advance 
scheduling appointment systems, patients are given 
an appointment for a future day and they are 
informed about their appointment days beforehand. 
This section analyzes the existing literature on this 
area.  

We first focus on the literature about within-day 
appointment scheduling problems. Gupta and Wang 
(2008) solve a revenue management model for 
regular and walk-in patients. Regular patients arrive 
with a specific appointment slot and physician 
request. The clinic either schedules the patient to 
his/her preferred slot or rejects the request to 
preserve slots for walk-in patients. Unlike the model 
of Gupta and Wang (2008), Wang and Gupta (2011) 
assume that patients do not have a request for only 
one specific slot and physician but they have an 
acceptable set of appointment slots and physicians. 
They inform the clinic about their acceptable set. The 
clinic either assigns patients to one of the slots in 
their acceptable set or rejects them to preserve slots. 
Thus, patients’ acceptable set may include multiple 
appointment slot-physician pairs whereas in the 
model of Gupta and Wang (2008), patients’ 
acceptable set consists of only one element. In this 
manner, this model can be regarded as a 
generalization of the model of Gupta and Wang 
(2008). Wang and Fung (2015) consider a totally 
different appointment scheduling problem where 
the clinic offers a set of appointment slots and 
physicians to patients while the previous two papers 
assume that patients offer their acceptable set to the 
clinic. In this model, patients either select an option 
from the offered set or reject the offer. All of these 
papers consider the intraday scheduling process of a 
clinic whereas our paper focuses on interday 
scheduling. 

This paragraph explores the papers in interday 
advance scheduling. Patrick, Puterman and 
Queyranne (2008) consider the appointment 
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scheduling process of a diagnostic resource. They 
assume that patients may belong to different 
priorities and they incorporate the wait-time targets 
of those patients. Their objective function includes 
the waiting cost, diversion cost and the cost for 
neither diverting nor scheduling the patient. Saure, 
Patrick, Tyldesley and Puterman (2012) extend the 
model of Patrick et al. (2008) by incorporating multi 
appointments. Their model is a representation of 
appointment scheduling in radiation therapy. 
Gocgun and Puterman (2014) also consider 
scheduling the chemotherapy patients that require 
multiple appointments. Patients have target dates 
and tolerance limits as a must of their treatment. 
Scheduling a patient on an earlier date or on a later 
date than the tolerance limit incurs a penalty cost. 
Truong (2015) studies a multiple-resource 
appointment scheduling problem with random 
demand and capacity. He derives analytical results 
for an advanced appointment scheduling problem 
for the first time. Parizi and Ghate (2016) consider 
appointment scheduling problem with multiple 
resources and multiple patient classes. They take 
cancellation and no-show behavior of patients into 
account. The healthcare facility may adopt 
overbooking strategy to compensate no shows and 
cancellations. We note that none of the advance 

scheduling papers up to now consider the patient 
preferences. 

Feldman, Liu, Topaloglu and Ziya (2014) formulate 
an advance appointment scheduling system for a 
single resource and single patient type by 
incorporating patient preferences. They assume that 
the clinic offers each a patient a set consisting of 
appointment days. Patients either select a day from 
the set or reject the offer. They assume that patients' 
no-show and cancellation probability depends on the 
time between the call date and the appointment date. 
They use dynamic programming with the aim of 
maximizing the expected daily profit. Our model 
differs from the model of Feldman et al. (2014) in 
three aspects: Firstly, multiple patient types with 
different revenues use the clinic in our model. 
Secondly, instead of offering a portfolio of 
appointment days to the patients, each patient comes 
up with an appointment request for a specific day 
over the booking horizon. The clinic either allocates 
that specific day for the patient or rejects the patient. 
Lastly, our model is an infinite horizon discounted 
constrained MDP model in which we maximize the 
expected discounted revenue subject to the 
constraint that expected discounted rejection cost is 
lower than a predetermined threshold.  

 

Table 1 

Comparison Of Recent Papers In Appointment Scheduling 

Properties Patrick et 

al. (2008) 

Saure et 

al. 

(2012) 

Feldman 

et al. 

(2014) 

Gocgun and 

Puterman 

(2014) 

Truong 

(2015) 

Parizi and 

Ghate 

(2016) 

Our 

model 

Priority&Revenue + + - + - - + 

Overbooking - - + - - + - 

Multiple resource - - - - + + - 

Multiple patient classes + + - + + + + 

Random service 

time/random resource usage 
- - - - + - - 

Cancellations and no-shows - - + - - + - 

Deciding on assigning a 

patient to her day or time 

preference or not  

- - - - - - + 

Multiple appointments - + - - - - - 

Waiting list + + - + - - - 

Deciding on the optimal set of 

appointment days 
- - + - - - - 

Constraint in MDP - - - - - - + 
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To the best of our knowledge, the only paper that 

included patient preferences over multiple days 

while making appointment decision is that of 

Feldman et al. (2014). Ahmadi-Javid, Jalali and 

Klassen (2017) also emphasize this fact and the 

limited work in covering patient preferences for 

appointment days. Table 1 compares the most 

related papers in interday advance scheduling 

literature and our model. Moreover, in appointment 

scheduling literature, there is no paper that 

formulates an advanced scheduling problem using a 

constrained MDP. Magerlein and Martin (1978), 

Cayirli and Veral (2003), Gupta and Denton (2008) 

and Ahmadi-Javid et al. (2017) provide 

comprehensive reviews about appointment 

scheduling. 

 

3. Problem Description and Basic Model 

This paper considers a healthcare facility resource. 

There are multiple types of patients with different 

priorities who want to make an appointment for this 

resource. “Priority” and “type” are used 

interchangeably throughout the paper. The priority 

levels of these patients are based on the potential 

revenue they will bring to the hospital in our paper. 

The revenue is obtained after the patient receives the 

service. We assume that patients do not cancel their 

appointments and they always show up. 

Appointment requests for the resource are collected 

throughout the day and the decision makers make 

their decision about the appointments at the 

beginning of the following day before the operations 

begin. Therefore, the decision epochs correspond to 

the beginning of a day. The decision makers know the 

number of newly arriving appointment requests and 

the number of scheduled appointments for each day 

over an 𝑁-day booking horizon on a rolling basis, 

which will be crucial in constructing the model. 

Patients can prefer only one day for appointment. 

Each patient is either given an appointment for 

his/her preferred day or the patient’s request is 

rejected with two possible reasons: (1) There is no 

available appointment slot on the preferred day. (2) 

The system wants to protect appointment slots on 

the day she/he prefers for higher-priority patients.

  

In this part, we will introduce the notation of our 

model. The resource of the facility has the capacity to 

perform 𝐶 operations each day. The set of priority 

classes and the set of appointment days over an 𝑁-

day booking horizon can be expressed as ℐ =

{1, 2, … , 𝐼} and 𝒩 = {0,1, … , 𝑁}. The revenue 

obtained from each priority-𝑖 patient is 𝑟𝑖  and the 

penalty cost of rejecting a priority-𝑖 patient is 𝜋𝑖 . 

Lower 𝑖 represents higher priority patients, so 𝑟𝑖  

decreases as 𝑖 increases. The facility observes the 

newly arriving appointment requests from each 

patient type at the beginning of each day. The 

maximum number of type- 𝑖 appointment requests 

observed at a decision epoch from is 𝑌𝑖 . Furthermore, 

the number of type-𝑖 appointment requests observed 

at a decision epoch is a random variable and we 

denote it as 𝑊𝑖 . The random variables 𝑊𝑖 ’s are 

independent over 𝑖. In this manner, 𝑊𝑖  takes values 

between 0 and 𝑌𝑖 . In our numerical experiments, we 

assume that it has a truncated Poisson distribution.  

When 𝑊𝑖  is equal to 𝑤𝑖 , which occurs with 

probability 𝑃(𝑊𝑖 = 𝑤𝑖), each of these 𝑤𝑖  requests 

may prefer any of the days in the booking horizon. In 

fact, each priority-𝑖 patient prefers 𝑛𝑡ℎ day from 

today, which will be called day 𝑛, with probability 

𝑝𝑖𝑛 . We note that day preferences of each patient 

type are independent. In our notation, 𝑅𝑖𝑛 represents 

the random variable for the number of newly 

arriving appointment requests from priority 𝑖 

patients for day 𝑛. In the rest of the paper, we focus 

on the random vector  𝑅⃗ 𝑖 = (𝑅𝑖0, 𝑅𝑖1, … , 𝑅𝑖𝑛, … , 𝑅𝑖𝑁) 

since 𝑅𝑖0, 𝑅𝑖1, … , 𝑅𝑖𝑁 have joint probability 

distribution for a given 𝑖 value. Given the event that 

𝑊𝑖 = 𝑤𝑖 , 𝑅⃗ 𝑖 is equal to  𝑢𝑖  with probability 

𝑃(𝑅⃗ 𝑖 = 𝑢⃗ 𝑖|𝑊𝑖 = 𝑤𝑖), where 𝑢⃗ 𝑖 =

(𝑢𝑖0, 𝑢𝑖1, … , 𝑢𝑖𝑛 , … , 𝑢𝑖𝑁) and 𝑤𝑖 = ∑ 𝑢𝑖𝑛𝑛 . This means 

that 𝑤𝑖  appointment requests are partitioned over 𝑁 

days in the booking horizon. Moreover, the 

distribution of 𝑅⃗ 𝑖|𝑊𝑖  corresponds with the 

multinomial distribution: 

𝑃(𝑅⃗ 𝑖 = 𝑢⃗ 𝑖|𝑊𝑖 = 𝑤𝑖) =
𝑤𝑖!

𝑢𝑖0!𝑢𝑖1!…𝑢𝑖𝑁!
𝑝𝑖0

𝑢𝑖0𝑝𝑖1
𝑢𝑖1 …𝑝𝑖𝑁

𝑢𝑖𝑁  (1) 

The clinic observes the realization of 𝑅𝑖𝑛 at each 

decision epoch. Throughout the paper, 𝑢𝑖𝑛  and 𝑦𝑖𝑛 

are used to represent the realizations of 𝑅𝑖𝑛. The 

summary of the notation used in the model can be 

found in Table 2.  
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Table 2 
Notation Summary For the Model 

Notation Description 
ℐ = {1,2, … , 𝐼}  Set of priority classes      
𝒩 = {0,1, … , 𝑁}  Set of appointment days over an 𝑁-day booking horizon 
𝑌𝑖   
 
𝑊𝑖  

Maximum number of appointment requests observed at a decision epoch 
from type- 𝑖 patients 
Random variable that represents the number of type- 𝑖 appointment 
requests observed at a decision epoch 

𝑝𝑖𝑛   Probability that a priority i patient prefers 𝑛𝑡ℎ day from now 
𝑅𝑖𝑛  Random variable that represents the number of priority-𝑖 patients who 

prefer 𝑛𝑡ℎ day from now 

𝑃(𝑅⃗ 𝑖 = 𝑢⃗ 𝑖|𝑊𝑖 = 𝑤𝑖) Given that the number of type- 𝑖 appointment requests observed at a 
decision epoch is 𝑤𝑖 , the joint probability that the number of type-𝑖 patients 
who prefer day 𝑛 is 𝑢𝑖𝑛 for 𝑛 ∈ 𝒩 

𝐶  The number of available appointment slots each day 
𝑟𝑖   Revenue obtained from a priority-𝑖 patient 
𝜋𝑖   Penalty cost of rejecting a priority-𝑖 patient 
  

 
3.1 The State Space 

The state of the system can be written in the 
following way: 

 

where 𝑢𝑖𝑛 is the number of newly arriving 

appointment requests from priority-𝑖 patients for 

day 𝑛 and 𝑥𝑖𝑛 is the number of appointments for 

type-𝑖 patients already booked on day 𝑛. In this 

manner, 𝑥𝑖0 represents the number of type-𝑖 

appointments booked for today.  

 

                                                

3.2 The Action Set 

At each decision epoch, the set of actions is the 

number of priority i patients booked on day 𝑛, 𝑎𝑖𝑛 . 

The set of feasible actions at state 𝑠  is 

 

 

 

 

 

 

 

𝑠 = (𝑢⃗ , 𝑥 ) = (𝑢10, 𝑢20, … , 𝑢𝐼0, 𝑢11, 𝑢21, … , 𝑢𝐼1, … , 𝑢𝑖𝑛 , … , 𝑢1𝑁 , 𝑢2𝑁 , … , 𝑢𝐼𝑁; 

                             𝑥10, 𝑥20, … , 𝑥𝐼0, 𝑥11, 𝑥21, … , 𝑥𝐼1, … , 𝑥𝑖𝑛 , … , 𝑥1(𝑁−1), 𝑥2(𝑁−1), … , 𝑥𝐼(𝑁−1))           

 

(2) 

𝑆 = {
(𝑢⃗ , 𝑥 ) ∈ (ℤ𝐼

+ × ℤ𝑁+1
+ ) × (ℤ𝐼

+ × ℤ𝑁
+)| ∑ 𝑥𝑖𝑛 ≤ 𝐶,𝑖∈ℐ  0 ≤ 𝑛 ≤ 𝑁 − 1;

∑ 𝑢𝑖𝑛 ≤ 𝑌𝑖𝑛∈𝒩 , 1 ≤ 𝑖 ≤ 𝐼                                                                          
}  (3) 

𝐴𝑠 = {
𝑎 ∈ ℤ𝐼

+ × ℤ𝑁+1
+ | ∑ (𝑎𝑖𝑛 + 𝑥𝑖𝑛) ≤ 𝐶,𝑖∈ℐ  0 ≤ 𝑛 ≤ 𝑁 − 1;∑ 𝑎𝑖𝑁 ≤ 𝐶;𝑖∈ℐ  

𝑎𝑖𝑛 ≤ 𝑢𝑖𝑛 , 0 ≤ 𝑛 ≤ 𝑁, 𝑖 ≤ 𝑖 ≤ 𝐼                                                                 
}  (4) 



Endüstri Mühendisliği 30(2), 93-110, 2019 Journal of Industrial Engineering 30(2), 93-110, 2019 

 

98 

3.3 State Transition Probabilities and 

Preference Probabilities 

After the decision is made, new appointment 

requests occur throughout the day and that is the  

 

 

only random event in our model. As we defined 

earlier, the state of the system at the beginning of the 

day before the decision can be represented as below: 

 

𝑠 = (𝑢⃗ , 𝑥 ) = (𝑢10, 𝑢20, … , 𝑢𝐼0, 𝑢11, 𝑢21, … , 𝑢𝐼1, … , 𝑢𝑖𝑛 , … , 𝑢1𝑁 , 𝑢2𝑁 , … , 𝑢𝐼𝑁; 

                             𝑥10, 𝑥20, … , 𝑥𝐼0, 𝑥11, 𝑥21, … , 𝑥𝐼1, … , 𝑥𝑖𝑛 , … , 𝑥1(𝑁−1), 𝑥2(𝑁−1), … , 𝑥𝐼(𝑁−1))           

 

(5) 

By taking the rolling time horizon into account, the 

next state of the system at the beginning of the next 

decision epoch is

 

The transition from state 𝑠  to 𝑠 ′ occurs with the 

following probability: 

𝑃(𝑠 ′|𝑠 , 𝑎 ) = ∏ 𝑃(𝑅⃗ 𝑖 = 𝑦 𝑖)𝑖∈ℐ = ∏ 𝑃(𝑊𝑖 =𝑖∈ℐ

𝑤𝑖)𝑃(𝑅⃗ 𝑖 = 𝑦 𝑖|𝑊𝑖 = 𝑤𝑖)     

(7) 

In Equation (7), we remind that  𝑃(𝑅⃗ 𝑖 = 𝑦 𝑖|𝑊𝑖 = 𝑤𝑖) 

is given in Equation (1), 𝑤𝑖 = ∑ 𝑦𝑖𝑛𝑛  and 𝑅⃗ 𝑖 =

(𝑅𝑖0, 𝑅𝑖1, … , 𝑅𝑖𝑛, … , 𝑅𝑖𝑁) and 𝑦 𝑖 =

(𝑦𝑖0, 𝑦𝑖1, … , 𝑦𝑖𝑛 , … , 𝑦𝑖𝑁). The multiplication follows 

from the independence of 𝑊𝑖 ’s and day preferences 

over 𝑖. The transition from  𝑥  to 𝑥  is not random since 

it is a function of the action 𝑎 . The stochasticity 

emerges in the number of newly observed requests 

at the beginning of the next day. 

 

3.4 Cost Criteria 

We maximize the infinite horizon expected 

discounted revenue subject to the constraint that 

expected discounted rejection cost does not exceed a 

user-specified constant. Given the initial state 𝑠 ∈ 𝑆, 

expected discounted revenue under an arbitrary 

policy 𝜓 is 

where 𝑠 𝑡  is the state at time 𝑡 under policy 𝜓, 

𝐻(𝑠 𝑡 , 𝑎 𝑡) = 𝐻((𝑢⃗ 𝑡 , 𝑥 𝑡  ), 𝑎 𝑡) = ∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0)𝑖∈ℐ  is the 

immediate reward and 𝛽 is the discount factor. 

Similarly, given the initial state 𝑠 ∈ 𝑆, expected 

discounted rejection cost under an arbitrary policy 𝜓 

is 

𝐶𝜓(𝑠 ) = 𝐸(∑ 𝛽𝑡𝐷(𝑠 𝑡 , 𝑎 𝑡)
∞
𝑡=0 |𝑠 0 = 𝑠 )  (9) 

where  

𝐷(𝑠 𝑡 , 𝑎 𝑡) = 𝐷((𝑢⃗ 𝑡 , 𝑥 𝑡  ), 𝑎 𝑡) = ∑ 𝜋𝑖(𝑢𝑖𝑛 + 𝑎𝑖𝑛)𝑖∈ℐ,𝑛∈𝒩   

is the immediate penalty for rejecting patients. 

Therefore, our problem can be expressed in the 

following way: 

where 𝔸 = ∏ 𝐴𝑠 𝑠 ∈𝑆  is the set of all feasible actions.  

 

 

 

𝑠 ′ = (𝑦 , 𝑥 ′) = (𝑦10, 𝑦20, … , 𝑦𝐼0, 𝑦11, 𝑦21, … , 𝑦𝐼1, … , 𝑦𝑖𝑛 , … , 𝑦1𝑁 , 𝑦2𝑁 , … , 𝑦𝐼𝑁; 

                          𝑥11 + 𝑎11, 𝑥21 + 𝑎21, … , 𝑥𝐼1 + 𝑎𝐼1, … , 𝑥𝑖𝑛 + 𝑎𝑖𝑛 , … , 𝑥1(𝑁−1) + 𝑎1(𝑁−1), 𝑥2(𝑁−1) + 𝑎2(𝑁−1), …, 

  𝑥𝐼(𝑁−1) + 𝑎𝐼(𝑁−1), 𝑎1𝑁 , 𝑎2𝑁 , … , 𝑎𝑖𝑁 , … , 𝑎𝐼𝑁) 

                                     

 

 

(6) 

𝐾𝜓(𝑠 ) = 𝐸(∑ 𝛽𝑡𝐻(𝑠 𝑡 , 𝑎 𝑡)
∞
𝑡=0 |𝑠 0 = 𝑠 )    (8) 

sup
𝜓∈𝔸

𝐾𝜓(𝑠 )  

𝑠. 𝑡.  𝐶𝜓(𝑠 ) ≤ 𝑐                                                               

 

 

(10) 
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4. Solution Methodologies and the Structure of 
the Optimal Policy 

 
4.1. Relaxed Version of the Constrained Problem 

and Bellman Equations 

In order to analyze the structure of the optimal 
policy, we first introduce the Lagrangian multipliers 
and obtain an unconstrained MDP by relaxing the 
constraint with the Lagrangian multiplier 𝜃 ≥ 0. Our 
problem becomes 

where  

𝑉𝜃(𝑠 ) = 𝐸(∑ 𝛽𝑡(𝐻(𝑠 𝑡 , 𝑎 𝑡) − 𝜃𝐷(𝑠 𝑡 , 𝑎 𝑡))
∞
𝑡=0 |𝑠 0 =

𝑠 ) = 𝐾𝜓(𝑠 ) − 𝜃𝐶𝜓(𝑠 )                               

(12) 

From now on, we call problem (11) and (12) “relaxed 
problem.” The value function 𝑉𝜃(𝑠 ) represents the 𝜃-
optimal infinite horizon objective function of the 
relaxed problem given the initial state of the system 
is 𝑠 ∈ 𝑆. Moreover, 𝑠 ′ is determined using the 
transition in Equation (6). Given that 𝛽 is the 
discount factor, the value function of our model can 
be written for every 𝑠 ∈ 𝑆 in the following way: 

𝑉𝜃(𝑠 ) = max
𝑎⃗ ∈𝐴𝑠⃗ 

∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0) −𝑖∈ℐ

𝜃 ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛)𝑖∈ℐ,𝑛∈𝒩 + 𝛽 ∑ 𝑃(𝑦 )𝑦⃗ ∈𝕐 𝑉𝜃(𝑠 ′)             

 

(13) 

where 𝕐 = {𝑦 ∈ ℤ𝐼
+ × ℤ𝑁+1

+ | ∑ 𝑦𝑖𝑛 ≤ 𝑌𝑖 , 1 ≤ 𝑖 ≤ 𝐼𝑛 }. 

Any stationary policy that maximizes Equation (13) 
is called 𝜃-optimal policy. Assuming that there exists 
a policy 𝜓 satisfying 𝐾𝜓(𝑠 ) + 𝐶𝜓(𝑠 ) < ∞ for all 𝑠 ∈ 𝑆, 

𝜃-optimal value function, 𝑉𝜃(𝑠 ), is finite. We show in 
the appendix that this is a valid assumption for our 
problem. However, finding the optimal solution of 
(13) is impossible for large instances since the exact 
solution is intractable due to high-dimensional state 
space. 

Puterman (1994) shows that (13) is equivalent to the 
following LP formulation: 

min
𝑉𝜃⃗⃗ ⃗⃗  ⃗

∑ 𝛼(𝑢⃗ , 𝑥 )𝑉𝜃(𝑢⃗ , 𝑥 )

(𝑢⃗⃗ ,𝑥 )∈𝑆

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

max
𝑎⃗ ∈𝐴𝑠⃗ 

∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0) − 𝜃 ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛)𝑖∈ℐ,
𝑛∈𝒩

+𝑖∈ℐ

𝛽 ∑ 𝑃(𝑦 )𝑦⃗ ∈𝕐 𝑉𝜃(𝑦 , 𝑥 ′) ≤ 𝑉𝜃(𝑢⃗ , 𝑥 )        

 

(14) 

∀𝑎 ∈ 𝐴(𝑢⃗⃗ ,𝑥 ) 𝑎𝑛𝑑 (𝑢⃗ , 𝑥 ) ∈ 𝑆        

where 𝛼(𝑢⃗ , 𝑥 ) is the probability that initial state of 
the system is (𝑢⃗ , 𝑥 ). Furthermore, (𝑢⃗ , 𝑥 ) and (𝑦 , 𝑥 ′) 
are defined in Equation (5) and Equation (6), 
respectively. 

It is obvious that problem (14) also suffers from the 
curse of dimensionality for large instances since it 
has as many variables as the number of possible 
state-action pairs.  

In the following sections, the solution methodologies 
in reinforcement learning will be discussed to obtain 
a good solution to (13). 

 

4.2 Structure of the Optimal Policy 

In order to prove the structure of the optimal policy, 
we need to make the following assumptions given by 
Sennott (1991): 

Assumption 1: There exists a policy 𝜓 satisfying 
𝐾𝜓(𝑠 ) + 𝐶𝜓(𝑠 ) < ∞ for all 𝑠 ∈ 𝑆. 

Assumption 2: There exists a policy 𝛷 satisfying 
𝐾𝛷(𝑠 ) < ∞ and 𝐶𝛷(𝑠 ) < 𝑐 given that the initial state 
is 𝑠 . 

The detailed analysis about the assumptions can be 
found in Appendix. Below, we introduce the 
definitions of “booking limit policy” and “mixed 
policy”'. 

Definition 1: Let 𝜓 be a policy implemented in the 
following way: 

Suppose that 𝑏⃗ = (𝑏⃗ 1, 𝑏⃗ 2, … , 𝑏⃗ 𝑛 , … , 𝑏⃗ 𝑁+1) is the vector 

of thresholds, where each 𝑏⃗ 𝑛 is an 𝐼 dimensional 

vector such that 𝑏⃗ 𝑛 = (𝑏1𝑛, 𝑏2𝑛 , … , 𝑏𝑖𝑛 , … , 𝑏𝐼𝑛). Here, 
𝑏𝑖𝑛 is the strict booking limit implemented on day 𝑛 
for type-𝑖 patients. Furthermore, suppose that 𝑥𝑖𝑛 is 
the number of type-𝑖 patients already booked on day 
𝑛. A type-𝑖 patient preferring day 𝑛 accepted if 
∑ 𝑥𝑙𝑛

𝐼
𝑙=1 < 𝑏𝑖𝑛 . 

Then, 𝜓 is a strict booking limit policy with 

parameter 𝑏⃗ . 

Definition 2: In this paper, a mixed policy (𝑝, 𝑓, 𝑒) can 
be defined as a randomized stationary policy that 
chooses policy 𝑓 with probability 𝑝 and policy 𝑒 with 
probability 1 − 𝑝 at each stage for any 0 ≤ 𝑝 ≤ 1, 
where 𝑓 and 𝑒 are stationary polices. 

Proposition 1: Assume that Assumption 1 holds. 
The value function 𝑉𝜃(𝑠 ) satisfying the right-hand 
side of Equation (13) is concave in 𝑥 . This means that 

𝑉𝜃(𝑠 ) = sup
𝜓∈𝔸

𝑉𝜓
𝜃(𝑠 )    (11) 
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the following inequality holds for every (𝑢⃗ , 𝑥 ) ∈ 𝑆 
and every combination of 𝑖 and 𝑛: 

𝑉𝑡
𝜃(𝑢⃗ , 𝑥 + 2𝑒𝑖𝑛) − 2𝑉𝑡

𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖𝑛) + 𝑉𝑡
𝜃(𝑢⃗ , 𝑥 ) ≤ 0  

where 𝑒𝑖𝑛 is a matrix consisting of 1 in the (𝑖, 𝑛)𝑡ℎ 
position and zeros elsewhere. As a result, the optimal 
policy is the strict booking limit policy for the 
problem (11). 

It is important to note that the optimal booking limit 
policy has different booking limits for each day in the 
booking horizon. 

Application of the optimal policy: Let 𝜁𝑖𝑛 =

∑ 𝑃(𝑦)⃗⃗⃗⃗ 
𝑦⃗ ∈𝕐 𝛥𝑉 (𝑦 , 𝑥 + 𝑒𝑖𝑛 ) + 𝜃

𝜋𝑖

𝛽
. While applying the 

optimal policy, we first need to order (𝑖, 𝑛) pairs 
from the highest to the lowest according to their 𝜁𝑖𝑛 
values. It is required to start with the (𝑖, 𝑛) in the first 
rank, which represents type-𝑖 patients who prefer 
day 𝑛 and continue until the total number of 
accepted patients exceeds the capacity 𝐶 on day 𝑛. 
Then, we need to continue with (𝑖, 𝑛) in the second 

rank and continue until ∑ 𝑃(𝑦)⃗⃗⃗⃗ 
𝑦⃗ ∈𝕐 𝛥𝑉 (𝑦 , 𝑥 + 𝑒𝑖𝑛 ) <

−𝜃
𝜋𝑖

𝛽
 or the total number of accepted patients 

exceeds the capacity 𝐶 on day 𝑛. If 𝑛 = 0, there is no 
need to protect any slots for the subsequent days. 
Therefore, it is required to stop accepting the 
patients to day 0 only if the number of occupied slots 
reach 𝐶. The rest continues similarly. This procedure 
implies that there are booking limits 𝑏𝑖𝑛 such that 
one should accept a type-𝑖 patient preferring day 𝑛 
only if the number of occupied appointment slots is 
less than a prespecified threshold, ∑ 𝑥𝑙𝑛

𝐼
𝑙=1 ≤ 𝑏𝑖𝑛 .  

Theorem 1: Assume that Assumptions 1 and 2 hold. 
The optimal policy for problem (10) is the mixture of 
at most two booking limit policies. Furthermore, 
there exists at most one state for which those two 
stationary policies differ.  

The proofs of the Proposition 1 and Theorem 1 are 
given in Appendix. The proof mainly relies on the 
paper of Sennott (1991). 

Example: We conducted a numerical experiment for 
a small-instance. The parameters were set in the 
following way: 

𝑐 = 419, 𝑁 = 2, 𝐼 = 2, 𝐶 = 2, 𝑟1 = 200, 𝑟2 = 100, 𝜋1

= 37.5 𝑎𝑛𝑑 𝜋2 = 25 

Furthermore, the number of arriving type-1 and 
type-2 patients has Poisson distribution with means 
1 and 0.5, respectively. To protect the finiteness of 
the state space, we truncated the Poisson 

distribution such that the maximum number of type-
𝑖 patients requesting an appointment is twice the 
mean number of arrivals for type-𝑖 patients. We 
obtained the optimal solution by constructing the LP 
representation for the constrained MDP model. Note 
that for day 0, it can be easily seen that the following 
action is optimal: (1) Schedule type-1 patients who 
prefer day 0 until there are no available slots. (2) If 
there are still available slots, schedule type-2-
patients preferring day 0 until all of the slots become 
occupied. For stationary policy 1, the booking limit 

vector for day 1 was 𝑏⃗ 1
1 = [2, 2] and the booking limit 

vector for day 2 was 𝑏⃗ 2
1 = [2, 1]. For stationary policy 

2, the booking limit vector for day 1 was 𝑏⃗ 1
2 = [2, 2] 

and the booking limit vector for day 2 was 𝑏⃗ 2
2 =

[2, 2]. The randomization probability was 0.0586. 
According to the optimal policy, the state for which 
those two stationary policies differ was 𝑠 ∗ = (𝑢⃗ ∗, 𝑥 ∗), 

where 𝑢⃗ ∗ = [
0 1 0
0 0 1

] and 𝑥 ∗ = [
1 1
0 0

]. This means 

that the optimal action for the states other than 𝑠 ∗ 

will be determined using either 𝑏⃗ 1 or 𝑏⃗ 2. At state 𝑠 ∗, 
one should apply stationary policy 1 with the 
probability of 0.0586 and apply stationary policy 2 
with the probability of 0.9414. 

After that point, we implemented the methods given 
in the following sections to obtain good booking 
limits. 

 

4.3 Approximate Linear Programming 

We mainly use approximate LP in order to provide a 
good initial value functions to TD Learning. The 
performance comparison of this method with the 
others is given in the numerical experiments. In 
order to deal with the high-dimensional state, one of 
the methods is value function approximation, in 
which the value function is approximated with a 
parametric function. The optimal policy is 
determined given that the value function lies in the 
set of functions with that specific parametric form. In 
order to have an idea about the structure of the value 
function and start with a good approximation, we 
have calculated the exact solution for small instances 
by setting 𝐶 to 4, 𝐼 to 2 and 𝑁 to 3. We conducted 
regression where different features of the state are 
independent variables and the value function is the 
dependent variable. As a result, we decided on the 
following approximation: 

𝑉𝜃(𝑠 ) ≈ 𝑤0 + ∑ 𝑤𝑖
𝐼
𝑖=1 ∑ 𝑢𝑖𝑛

𝑁
𝑛=0 + ∑ ∑ 𝑣𝑖𝑛𝑥𝑖𝑛

𝑁−1
𝑛=0

𝐼
𝑖=1   (15) 
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R-square value of the regression was 91.42% when 
∑ 𝑢𝑖𝑛

𝑁
𝑛=0  and 𝑥𝑖𝑛 were taken as independent 

variables. When the interaction terms and second-
order terms were included, R-square increased to 
93.75%. Since the difference was small, the linear 

approximation was used for the sake of simplicity. 
When the approximation in (15) was plugged to LP 
model in (14), we obtain the primal LP below: 

 

With the approximated value function, we could 
decrease the number of variables to 𝐼 + 𝐼𝑁 + 1. 
However, since there exists a constraint for every 
state-action pair, there is still curse of dimensionality  

problem in the LP formulation (16) due to the large 

number of constraints. Given dual variable 𝑋 , the 
dual formulation of (16) is 

 

min
𝑣⃗ ,𝑤⃗⃗ 

𝑤0 + ∑𝑤𝑖

𝐼

𝑖=1

∑ 𝐸𝛼[𝑢𝑖𝑛]

𝑁

𝑛=0

+ ∑ ∑ 𝑣𝑖𝑛𝐸𝛼[𝑥𝑖𝑛]

𝑁−1

𝑛=0

𝐼

𝑖=1

 
 

𝑠. 𝑡.  (1 − 𝛽)𝑤0 + ∑ ∑ 𝑣𝑖𝑛 (𝑥𝑖𝑛 − 𝛽(𝑥𝑖(𝑛+1) + 𝑎𝑖(𝑛+1)))

𝑁−2

𝑛=0

+

𝐼

𝑖=1

∑(𝑥𝑖(𝑁−1) − 𝛽𝑎𝑖𝑁)

𝐼

𝑖=1

+ ∑ ∑ 𝑤𝑖(𝑢𝑖𝑛 − 𝛽𝐸[𝑦𝑖𝑛]) ≥ ∑𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0) − 𝜃 ∑ ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛)

𝑁

𝑛=0

𝐼

𝑖=1

𝐼

𝑖=1

𝑁

𝑛=0

𝐼

𝑖=1

 

 

                                    ∀𝑎 ∈ 𝐴(𝑢⃗⃗ ,𝑥 ) 𝑎𝑛𝑑 (𝑢⃗ , 𝑥 ) ∈  𝑆                                                                             

𝑣 , 𝑤⃗⃗ ≥ 0                    (16) 

max
𝑋⃗ 

∑ ∑ 𝑋 ((𝑢⃗ , 𝑥 ), 𝑎 )𝑎⃗ ∈𝐴(𝑢⃗⃗ ,𝑥⃗⃗ )(𝑢⃗⃗ ,𝑥 )∈𝑆 (∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0) − 𝜃 ∑ ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛)𝑁
𝑛=0

𝐼
𝑖=1

𝐼
𝑖=1 )    

 

𝑠. 𝑡.  (1 − 𝛽)∑ ∑ 𝑋 ((𝑢⃗ , 𝑥 ), 𝑎 )𝑎⃗ ∈𝐴(𝑢⃗⃗ ,𝑥⃗⃗ )(𝑢⃗⃗ ,𝑥 )∈𝑆 = 1   

∑ ∑ 𝑋 ((𝑢⃗ , 𝑥 ), 𝑎 )𝑎⃗ ∈𝐴(𝑢⃗⃗ ,𝑥⃗⃗ )(𝑢⃗⃗ ,𝑥 )∈𝑆 (𝑥𝑖𝑛 − 𝛽(𝑥𝑖(𝑛+1) + 𝑎𝑖(𝑛+1))) ≤ 𝐸𝛼[𝑥𝑖𝑛]       
 

∀𝑛 = 0,1, … , 𝑁 − 2 𝑎𝑛𝑑 ∀𝑖 = 1,2, … , 𝐼  

∑ ∑ 𝑋 ((𝑢⃗ , 𝑥 ), 𝑎 )𝑎⃗ ∈𝐴(𝑢⃗⃗ ,𝑥⃗⃗ )(𝑢⃗⃗ ,𝑥 )∈𝑆 (𝑥𝑖(𝑁−1) − 𝛽𝑎𝑖𝑁) ≤ 𝐸𝛼[𝑥𝑖(𝑁−1)]   ∀𝑖 = 1,2, … , 𝐼          

∑ ∑ 𝑋 ((𝑢⃗ , 𝑥 ), 𝑎 )𝑎⃗ ∈𝐴(𝑢⃗⃗ ,𝑥⃗⃗ )(𝑢⃗⃗ ,𝑥 )∈𝑆 ∑ 𝑤𝑖(𝑢𝑖𝑛 − 𝛽𝐸[𝑦𝑖𝑛])
𝑁
𝑛=0 ≤ ∑ 𝐸𝛼[𝑢𝑖𝑛]

𝑁
𝑛=0   ∀𝑖 = 1,2, … , 𝐼       

𝑋 ≥ 0  (17) 
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With the dual formulation, although the number of 
constraints decreases drastically, there are as many 
variables as the number of possible state-action 
pairs. Luckily, we can benefit from the column 
generation algorithm to solve LP model given in (16)  

and (17). When it is solved, the optimal 𝑣 , 𝑤⃗⃗  and 𝑤0 
are obtained for the approximate LP model. While 
comparing the performance of approximate LP in the 

simulation, it is necessary to obtain the approximate 
optimal policy. To achieve this, we plug 𝑤0 +
∑ 𝑤𝑖

𝐼
𝑖=1 ∑ 𝑦𝑖𝑛

𝑁
𝑛=0 + ∑ ∑ 𝑣𝑖𝑛𝑥𝑖𝑛

′𝑁−1
𝑛=0

𝐼
𝑖=1  for 𝑉𝜃(𝑠 ′) into 

Equation (13). As a result, one needs to solve the 
following MIP to obtain the approximate optimal 
policy at each decision epoch: 

 

max
𝑎⃗ ∈𝐴𝑠⃗ 

{∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0) − 𝜃 ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛)𝑖∈ℐ,𝑛∈𝒩 + 𝛽 ∑ 𝑃(𝑦 )𝑦⃗ ∈𝕐𝑖∈ℐ (𝑤0 + ∑ ∑ 𝑣𝑖𝑛(𝑥𝑖(𝑛+1) + 𝑎𝑖(𝑛+1))
𝑁−2
𝑛=0 +𝐼

𝑖=1

∑ 𝑣𝑖𝑁𝑎𝑖𝑁
𝐼
𝑖=1 + ∑ 𝑤𝑖 ∑ 𝑦𝑖𝑛

𝑁
𝑛=0

𝐼
𝑖=1 )}  

 

(18) 

Patrick et al. (2008) follow the same method as the 
one described in this section to solve their advance 
scheduling problem.  

 

4.4 TD Learning 

TD learning is one of the central algorithms of 
reinforcement learning. Using TD methods, one can 
directly learn from the experience without assuming 
a model family for the value function. In this method, 
the value function is updated at each iteration using 
the temporal difference, which is the difference 
between the estimated value of being in a particular 
state and the actual value. If one wants the weight of 
the recent updates to be higher than the earlier 
updates, an artificial discount factor, 𝜆, is introduced, 
where 0 ≤ 𝜆 ≤ 1. In addition to estimating the value 

function of a given policy, TD learning is also used to 
determine an approximately optimal policy. In TD 
learning algorithms designed for infinite horizon 
problems, while determining the next state to visit 
using value function approximation, we also update 
the value of being in the states visited up to then. 
Further information about TD learning can be found 
in Powell (2011), Sutton and Barto (2011) and 
Sugiyama (2015).  

Using TD learning, we tried to estimate the value 
function of a given booking limit policy. Algorithm 1 
gives the steps followed to determine the value of the 
booking limit policy 𝜙. This algorithm was one of the 
algorithms given by Powell (2011) with a slight 
modification. 

 

Algorithm 1 

TD(𝜆) Algorithm 

Step 0. Initialization 

Step 0a.         Initialize 𝑉0
𝜃(𝑢⃗ , 𝑥 ) for all (𝑢⃗ , 𝑥 ) ∈ 𝑆.  

 Step 0b.         Initialize the state (𝑢⃗ 0, 𝑥 0). 

Step 0c.          Set 𝑡 = 1. 

Step 1. Generate a sample for 𝑦 𝑡 . 

Step 2. Compute the temporal difference for this step: 

𝛾𝜙,𝑡 = ∑𝑟𝑖(𝑥𝑖0
𝑡 + 𝑎𝑖0

𝜙,𝑡
)

𝐼

𝑖=1

− 𝜃 ∑𝜋𝑖(𝑢𝑖𝑛
𝑡 − 𝑎𝑖𝑛

𝜙,𝑡
)

𝑖,𝑛

+ 𝛽(𝑉𝑡−1(𝑢⃗ 𝑡 , 𝑥 𝑡
′) − 𝑉𝑡−1(𝑢⃗ 𝑡 , 𝑥 𝑡)) 

where 𝑥 𝑡
′ is determined using the transition in Equation (6). 
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Step 3. Update 𝑉𝜃(. ) for 𝑚 = 𝑡, 𝑡 − 1,… , 1: 

𝑉𝑡(𝑢⃗ 𝑚, 𝑥 𝑚) = 𝑉𝑡−1(𝑢⃗ 𝑚, 𝑥 𝑚) + (𝛽𝜆)𝑡−𝑚𝛾𝜙,𝑡  . 

Step 4. Compute 𝑠 𝑡+1 = 𝑠 𝑡
′ = (𝑦 𝑡+1, 𝑥 𝑡

′) where 𝑦 𝑡+1 is generated in Step 1 and 𝑥 𝑡
′ is 

determined using the transition in Equation (6). 

Step 5. Set 𝑡 = 𝑡 + 1. If 𝑡 < 𝑇, return to Step 1. Otherwise, stop. 

In this algorithm, we first generate a sample for 𝑦 , 
which is the number of patients who prefer a 
particular day. In Step 2, we calculate the temporal 
difference. In Step 3, we update the value function of 
all visited states using the temporal difference found 
in Step 2. After calculating the next state in Step 4, we 
continue with the next iteration if the number of 
iterations executed does not exceed 𝑇, which is the 
maximum number of iterations allowed. We 
initialize TD learning algorithm using the 
approximate value function obtained by plugging the 
optimal 𝑣 , 𝑤⃗⃗  and 𝑤0 into Equation (15). 

 

5. Numerical Experiments 

In this section, we conducted experiments on the 
relaxed problem given in Equation (11) and (12). 
First, we tested the performance of approximate LP 
on a small instance. The experimental setting can be 
described in the following way: There are two 
patient types and three days in the booking horizon. 
The number of type-𝑖 patients requesting an 
appointment has Poisson distribution with mean 𝑔𝑖 . 
To protect the finiteness of the state space, we 
truncated the Poisson distribution such that the 
maximum number of type-𝑖 patients requesting an 
appointment is twice the mean number of arrivals 
for type-𝑖 patients. The parameter setting was 

𝛽 = 0.99, 𝜃 = 1, 𝑔1 = 1.5, 𝑔2 = 0.5, 𝐶 = 4, 𝑟1
= 200, 𝑟2 = 100, 𝜋1 = 37.5, 𝜋2

= 25 

For this small instance, the comparison between the 
solution of approximated LP and that of the exact DP, 
found using value iteration, showed that the average 
difference and maximum difference across all the 
states were 2.39% and 5.06%, respectively. 

Secondly, we tested the convergence performance of 
TD learning in the following experimental setting: 
There are three patient types and nine days in the 
booking horizon. The number of newly arrived type-
𝑖 patients has a truncated Poisson distribution with 
mean 𝑔𝑖 . Parameters were set as 

𝛽 = 0.99, 𝜃 = 1, 𝑔1 = 20, 𝑔2 = 15, 𝑔3 = 20, 𝐶
= 40, 𝑟1 = 200, 𝑟2 = 100, 𝑟3 = 50,
𝜋1 = 150, 𝜋2 = 100,  π3 = 75 

Given that 𝑏𝑖  is the strict booking limit for type-𝑖 
patients and the same booking limits are applied on 
each day over the booking horizon, you can see the 
convergence of the value function for 𝑏1 = 40, 𝑏2 =
16 and 𝑏3 = 3 in Figure 1.  

It converged in 200 iterations, which takes 
approximately 15 seconds. 

 

 

 

Figure 1. Value Function For The Strict Booking Limit [40 16 3] Through Iterations 
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Finally, we conducted a simulation study to compare 
the performance of the booking limit policy 
calculated using TD learning and the other policies. 
The simulation setting can be summarized in the 
following way: There are three patient types and 
nine days in the booking horizon, the number of 
newly arrived patient of type-𝑖 has Poisson 
distribution with mean 𝑔𝑖 . As before, in order to 
protect the finiteness of the state space, we truncated 
the Poisson distribution such that the maximum 
number of type-𝑖 patients requesting an 
appointment is three times the mean number of 
arrivals for type-𝑖 patients. The parameters were set 
as below: 

𝛽 = 0.99, 𝜃 = 1, 𝐶 = 30, 𝑟1 = 200, 𝑟2 = 100, 𝑟3
= 50,  𝜋1 = 150, 𝜋2 = 100,  π3

= 75 

We simulated the system for 6 different scenarios 
where 𝑔𝑖  values are given in the first column of Table 
3. The simulation length was 500 days and the warm-
up period was 10 days. We collected the statistics for 
the objective function value of the relaxed problem 
with 95% confidence interval, average percentage of 
diverted patients and average utilization of each 
policy. For the approximate LP, we coded the column 
generation algorithm in Matlab and used cvx-solver 
for the integer program in Equation (18). We used 
TD learning to determine a good simple strict-
booking limit policy such that the booking limits are 
the same for each day over the booking horizon. Such 
a policy is more preferable since implementing it is 
easier in practice. At this point, we found the 
approximate value function of a given simple strict 
booking limit policy using TD learning. It is also 
essential to emphasize that the value function was 
initialized using 𝑤0, 𝑤𝑖  and 𝑣𝑖𝑛 , obtained through 
approximate LP. After estimating the value functions 
for each booking limit policy, we selected the one 
with the highest approximate value function. You can 
see the results in Table 3. TD booking limit policy 
represents the strict booking limit calculated with 
TD learning algorithm. Expected booking limit policy 
represents the booking limit policy calculated using 
the expected number of arriving patients for each 
type. The booking limits calculated for each scenario 
using these two methods can be seen in the first 

column of Table 3. 𝑏⃗ 𝑒  represents the expected 

booking limit and 𝑏⃗ 𝑡  represents the TD booking limit. 
Finally, using 𝑤0, 𝑤𝑖  and 𝑣𝑖𝑛 values obtained by 
applying the column generation algorithm to 

approximate LP given in (16) and (17), we calculated 
the approximate LP policy by solving Problem (18). 
The results show that TD booking limit policy 
performs better than all other policies since under 
this policy, the objective function value of the relaxed 
problem is higher and the divergence rate is lower 
for higher-priority patient types.  

 

6. Conclusion  

This paper focuses on the appointment scheduling 
mechanism of a physician. Patients from multiple 
priority classes arrive at the facility and request an 
appointment by informing the clinic about their most 
preferred appointment day. The clinic either accepts 
the request or rejects the patient to protect slots for 
higher-priority patients. We model such a system 
using discrete time Markov decision process to 
maximize the long-run discounted revenue subject 
to the constraint that long-run discounted rejection 
cost is below a specific threshold. We prove that the 
optimal policy of this model is a randomized 
booking-limit policy. Since the problem  cannot be 
solved optimally due to high-dimensional state, we 
apply Approximate Dynamic Programming methods. 
First, we approximate the value function with a 
linear function and solve the resulting LP using 
column generation. Then, by initializing the TD 
learning algorithm with this solution, we 
approximately calculate the value function arising 
from implementing each possible booking limit 
policy. Our numerical results show that TD learning 
algorithm performs well in determining the value of 
a booking-limit policy. The booking limit calculated 
using TD learning gives higher value than other 
policies. 
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Table 3 
Summary of the Simulation Results 

Scenario Performance 
Measure 

Patient type TD Booking Limit 
Policy 

Expected Booking 
Limit Policy 

Approximate LP 

𝑔 = [10, 15, 20] 
Rate of diverted 

patients 

Type-1 0.0174∓0.0018 0.0168∓0.0018 0.1868∓0.0048 
 Type-2 0.1172∓0.0026 0.1214∓0.0051 0.3172∓0.0055 

𝑏⃗ 𝑡 = [30, 21, 9] Type-3 0.6499∓0.0030 0.6612∓0.0031 0.4194∓0.0020 

𝑏⃗ 𝑒 = [30, 20, 5] Utilization  0.9935∓0.0011 0.9937∓0.0007 0.9995∓0.0002 

 Objective func. value  309,960∓226.19 295,140∓299.77 230,320∓261.88 
𝑔 = [10, 20, 15]  

Rate of diverted 
patients 

Type-1 0.1306∓0.0067 0.0105∓0.0021 0.1920∓0.0037 

 Type-2 0.2959∓0.0052 0.1036∓0.0036 0.3319∓0.0031 

𝑏⃗ 𝑡 = [30, 27, 8]  Type-3 0.5008∓0.0016 0.8839∓0.0028 0.4277∓0.0037 

𝑏⃗ 𝑒 = [30, 20, 0] Utilization  0.9995∓0.0002 0.9840∓0.0016 0.9994∓0.0002 

 Objective func. value  325,090∓212.08 306,800∓278.49 238,660∓216.78 
𝑔 = [15, 10, 20] 

Rate of diverted 
patients 

Type-1 0.1071∓0.0036 0.0313∓0.0034 0.2185∓0.0058 
 Type-2 0.2620∓0.0032 0.1498∓0.0061 0.3375∓0.0052 

𝑏⃗ 𝑡 = [30, 27, 9] Type-3 0.5275∓0.0031 0.6606∓0.0041 0.4194∓0.0031 

𝑏⃗ 𝑒 = [30, 15, 5] Utilization  0.9990∓0.0004 0.9943∓0.0011 0.9994∓0.0002 

 Objective func. value  358,230∓259.73 344,170∓321.02 261,440∓297.13 
𝑔 = [15, 20, 10] 

Rate of diverted 
patients 

Type-1 0.2083∓0.0027 0.0436∓0.0023 0.2173∓0.0072 
 Type-2 0.3690∓0.0043 0.2449∓0.0063 0.3654∓0.0057 

𝑏⃗ 𝑡 = [30, 20, 14] Type-3 0.4229∓0.0045 0.9581∓0.0036 0.4391∓0.0080 

𝑏⃗ 𝑒 = [30, 15, 0] Utilization  0.9995∓0.0002 0.9944∓0.0009 0.9996∓0.0002 

 Objective func. value  359,140∓222.56 344,470∓307.46 266,080∓386.48 
𝑔 = [20, 10, 15] 

Rate of diverted 
patients 

Type-1 0.2145∓0.0034 0.0310∓0.0027 0.2426∓0.0051 
 Type-2 0.4086∓0.0046 0.1547∓0.0063 0.3697∓0.0056 

𝑏⃗ 𝑡 = [30, 14, 12] Type-3 0.4172∓0.0023 0.8840∓0.0029 0.4284∓0.0043 

𝑏⃗ 𝑒 = [30, 10, 0] Utilization  0.9993∓0.0003 0.9843∓0.0022 0.9995∓0.0002 

 Objective func. value  409,060∓270.07 392,510∓396.44 286,420∓317.28 
𝑔 = [20, 15, 10] 

Rate of diverted 
patients 

Type-1 0.1787∓0.0030 0.0595∓0.0032 0.2411∓0.0059 
 Type-2 0.3434∓0.0062 0.2908∓0.0059 0.3823∓0.0029 

𝑏⃗ 𝑡 = [30, 20, 4] Type-3 0.6024∓0.0023 0.9522∓0.0036 0.4365∓0.0034 

𝑏⃗ 𝑒 = [30, 10, 0] Utilization  0.9989∓0.0003 0.9933∓0.0010 0.9994∓0.0003 

 Objective func. value  412,850∓225.88 391,790∓366.77 299,120∓376.53 

 

While formulating this problem, we use some 
simplifications. First, it is assumed that patients have 
only one preference. Nevertheless, patients can be 
given a flexibility to inform the clinic about their 
acceptable set of appointment days and the clinic can 
assign the patients to one of the days in their 
acceptable set or reject them. The other possible 
extension is that the clinic can assign the patients to 
the other days than their preferred appointment day 
in case each patient has a single preference. Patients 
either reject this assignment or accept it. The 
probability of accepting the appointment day offered 
by the clinic is higher for closer days to the patient's 
preferred day. We can define such a probability 
function to reflect this behavior of the patient. 
Secondly, it is assumed that patients always show up 
and they do not cancel their appointment. However, 
one can incorporate the situation that patients may 
not show up or cancel their appointment. Patients 

assigned to a closer day to her preferred 
appointment day have lower probability of no-show 
and cancellation. The clinic can resort to 
overbooking to compensate the no-shows. 
Moreover, cancellations and overtime work comes 
into the stage. Thirdly, it is possible to introduce a 
random service time instead of assuming that each 
appointment takes one appointment slot with the 
same length. Finally, we can have a separate 
constraint for each patient type, which gives a 
multiple-constrained MDP. All of these extensions 
can be considered in future research. 
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Appendix 

Satisfaction of Assumption 1: Let 𝜓 be an arbitrary policy. We know that 𝐻(𝑠 𝑡 , 𝑎 𝑡) ≤ ∑ 𝑟𝑖𝐶
𝐼
𝑖=1  since total number of 

patients examined on day 0 cannot exceed 𝐶. Due to this fact and Equation (8), 𝐾𝜓(𝑠 ) ≤
∑ 𝑟𝑖𝐶

𝐼
𝑖=1

1−𝛽
< ∞. This shows 

that 𝐾(𝑠 ) is finite for all policies. Similarly, by Equation (9) and the definition of 𝐷(𝑠 𝑡 , 𝑎 𝑡), 𝐶𝜓(𝑠 ) ≤
∑ 𝜋𝑖𝑌𝑖

𝐼
𝑖=1

1−𝛽
< ∞, 

where 𝑌𝑖  is the maximum number of type-𝑖 patients that can arrive on a given day according to our state space 
definition. Therefore, our model satisfies Assumption 1. 

 

Proof of Proposition 1: We need to show that the following inequality holds for every (𝑢⃗ , 𝑥 ) ∈ 𝑆 and every 
combination of 𝑖 and 𝑛: 

𝑉𝑡
𝜃(𝑢⃗ , 𝑥 + 2𝑒𝑖𝑛) − 2𝑉𝑡

𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖𝑛) + 𝑉𝑡
𝜃(𝑢⃗ , 𝑥 ) ≤ 0 (A.1) 

We will use induction to show that (A.1) is satisfied for every (𝑢⃗ , 𝑥 ) ∈ 𝑆 and every (𝑖, 𝑛). Let us call the system in 
state 𝑠 1 = (𝑢⃗ , 𝑥 + 2𝑒𝑖𝑛) as system A, the systems in state 𝑠 2 = 𝑠 3 = (𝑢⃗ , 𝑥 + 𝑒𝑖𝑛) as system B and C and the system 
in state 𝑠 4 = (𝑢⃗ , 𝑥 ) as system D.  

Base case: We will prove that 

𝑉0
𝜃(𝑢⃗ , 𝑥 + 2𝑒𝑖𝑛) − 2𝑉0

𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖𝑛) + 𝑉0
𝜃(𝑢⃗ , 𝑥 ) ≤ 0 (A.2) 

It can be easily seen by inspection that the optimal action in a given state (𝑢⃗ , 𝑥 ) at 𝑡 = 0 is 

𝑎1𝑛
∗ (𝑢⃗ , 𝑥 ) = min {𝑢1𝑛, 𝐶 − ∑ 𝑥𝑙𝑛

𝐼
𝑙=1 }  

𝑎1𝑛
∗ (𝑢⃗ , 𝑥 ) = 𝑚𝑖𝑛{𝑢𝑖𝑛 , 𝐶 − ∑ 𝑥𝑙𝑛

𝐼
𝑙=1 − ∑ 𝑎𝑙𝑛

∗ (𝑢⃗ , 𝑥 )𝑖−1
𝑙=1 }   𝑓𝑜𝑟 𝑖 > 1 𝑎𝑛𝑑 ∀𝑛 ∈  𝒩  

Under this action, it is obvious that either  

𝑎𝑖𝑛
𝐴∗(𝑠 1) = 𝑎𝑖𝑛

𝐵∗(𝑠 2) = 𝑎𝑖𝑛
𝐶∗(𝑠 3) = 𝑎𝑖𝑛

𝐷∗(𝑠 4) or  

𝑎𝑖𝑛
𝐴∗(𝑠 1) + 2 = 𝑎𝑖𝑛

𝐵∗(𝑠 2) + 1 = 𝑎𝑖𝑛
𝐶∗(𝑠 3) + 1 = 𝑎𝑖𝑛

𝐷∗(𝑠 4) hold. 

The second case hold if there is not enough capacity on day 𝑛 of system A. In each case, we obtain the following 
equation:  

𝑉0
𝜃(𝑢⃗ , 𝑥 + 2𝑒𝑖𝑛) − 2𝑉0

𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖𝑛) + 𝑉0
𝜃(𝑢⃗ , 𝑥 )  

= 𝑉0
𝜃,𝐴(𝑠 1) − 𝑉0

𝜃,𝐵(𝑠 2) − 𝑉0
𝜃,𝐶(𝑠 3) + 𝑉0

𝜃,𝐷(𝑠 4)  

= (∑𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1))

𝐼

𝑖=1

− ∑𝜋𝑖 (𝑢𝑖𝑛 − 𝑎𝑖𝑛
𝐴∗(𝑠 1))

𝑖,𝑛

) − (∑𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0
𝐵∗(𝑠 2))

𝐼

𝑖=1

− ∑𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛
𝐵∗(𝑠 2))

𝑖,𝑛

)

− (∑𝑟𝑖 (𝑥𝑖0 + 𝑎𝑖0
𝐶∗(𝑠 3))

𝐼

𝑖=1

− ∑𝜋𝑖 (𝑢𝑖𝑛 − 𝑎𝑖𝑛
𝐶∗(𝑠 3))

𝑖,𝑛

)

+ (∑𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0
𝐷∗(𝑠 4))

𝐼

𝑖=1

− ∑𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛
𝐷∗(𝑠 4))

𝑖,𝑛

) 

= 0 

Induction Hypothesis:  Below inequality is satisfied for 𝑡 = 1, 2, … , 𝑡′. 

𝑉𝑡
𝜃(𝑢⃗ , 𝑥 + 2𝑒𝑖′𝑛′) − 2𝑉𝑡

𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′𝑛′) + 𝑉𝑡
𝜃(𝑢⃗ , 𝑥 ) ≤ 0    ∀𝑖′ ∈ ℐ (A.3) 

We need to show that Inequality (A.3) is satisfied for 𝑡 = 𝑡′ + 1. Assume that the definitions for states 𝑠 1, 𝑠 2, 𝑠 3, 𝑠 4 
and systems A, B, C and D are same as the base case. We let systems A and D follow the optimal policy. Without 
loss of generality, we may assume that there exists 𝑚𝑖𝑛 ∈  {… ,−1, 0, 1, … } for every 𝑖 ≠ 𝑖′, 𝑛 ∈  𝒩 and 𝑚𝑖′𝑛′ ∈
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 {0, 1, … } such that the relationship between the actions of system A in state 𝑠 1 and system D in state 𝑠 4 on day 𝑛 
can be expressed as 

𝑎𝑖𝑛
𝐴∗(𝑠 1) + 𝑚𝑖𝑛 = 𝑎𝑖𝑛

𝐷∗(𝑠 4) ∀𝑖 ∈  ℐ 𝑎𝑛𝑑 ∀𝑛 ∈  𝒩 (A.4) 

𝑚𝑖′𝑛′ ≥ 0 follows from the induction hypothesis. Let systems B and C in states 𝑠 2 and 𝑠 3 implement the following 
actions: 

 

𝑎𝑖𝑛
𝐵 (𝑠 2) = {

𝑎𝑖𝑛
𝐴∗(𝑠 1) + 1       𝑖𝑓 𝑖 = 𝑖′, 𝑛 = 𝑛′ 𝑎𝑛𝑑 𝑎𝑖𝑛

𝐴∗(𝑠 1) + 𝑚𝑖𝑛 > 0 

𝑎𝑖𝑛
𝐴∗(𝑠 1)               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       

 
(A.5) 

where 𝑥𝑖𝑛
𝐵  is the 𝑥𝑖𝑛 value of the state for system B. 

𝑎𝑖𝑛
𝐶 (𝑠 3) = {

𝑎𝑖𝑛
𝐴∗(𝑠 1) + 𝑚𝑖𝑛 − 1         𝑖𝑓 𝑖 = 𝑖′, 𝑛 = 𝑛′ 𝑎𝑛𝑑 𝑎𝑖𝑛

𝐴∗(𝑠 1) + 𝑚𝑖𝑛 > 0 

𝑎𝑖𝑛
𝐴∗(𝑠 1) + 𝑚𝑖𝑛                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       

 
(A.6) 

 

It is important to note that since systems A and B follow the optimal policy, their actions 𝑎𝑖𝑛
𝐴∗(𝑠 1) and 𝑎𝑖𝑛

𝐷∗(𝑠 4) are 
feasible. If they are feasible, then 𝑎𝑖𝑛

𝐵 (𝑠 2) and 𝑎𝑖𝑛
𝐶 (𝑠 3) given in Equation (A.5) and Equation (A.6) are also feasible. 

We inspect the following cases: 

 

Case 1: If 𝑛′ = 0 and 𝑎𝑖′𝑛′
𝐴∗ (𝑠 1) + 𝑚𝑖′𝑛′ = 0, none of the systems accept any patients. However, we will keep 𝑎𝑖′𝑛′

𝐴∗ (𝑠 1) 

and 𝑚𝑖′𝑛′  in our notation although both of them are zero. All systems reach the same state at 𝑡 = 𝑡′ + 1. (A.3) is 
satisfied as below: 

𝑉𝑡
𝜃(𝑢⃗ , 𝑥 + 2𝑒𝑖′0) − 2𝑉𝑡

𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′0) + 𝑉𝑡
𝜃(𝑢⃗ , 𝑥 )      

≤ 𝑉𝑡,𝐴
𝜃 (𝑢⃗ , 𝑥 + 2𝑒𝑖′0) − 𝑉𝑡,𝐵

𝜃 (𝑢⃗ , 𝑥 + 𝑒𝑖′0) − 𝑉𝑡,𝐶
𝜃 (𝑢⃗ , 𝑥 + 𝑒𝑖′0) + 𝑉𝑡,𝐷

𝜃 (𝑢⃗ , 𝑥 )      

= [∑ 𝑟𝑖 (𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1)) + 𝑟𝑖′ (𝑥𝑖′0 + 2 + 𝑎𝑖′0

𝐴∗ (𝑠 1)) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1))𝑖≠𝑖′    

−𝜃𝜋𝑖′ (𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1)) − 𝜃 ∑ ∑ 𝜋𝑖 (𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1))
𝑁
𝑛=1

𝐼
𝑖=1 + 𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′)𝑦⃗ ∈𝕐 ]  

− [∑ 𝑟𝑖 (𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1)) + 𝑟𝑖′ (𝑥𝑖′0 + 1 + 𝑎𝑖′0

𝐴∗ (𝑠 1)) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1))𝑖≠𝑖′   

−𝜃𝜋𝑖′ (𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1)) − 𝜃 ∑ ∑ 𝜋𝑖 (𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1))
𝑁
𝑛=1

𝐼
𝑖=1 + 𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′)𝑦⃗ ∈𝕐 ]  

−[∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1) + 𝑚𝑖0) + 𝑟𝑖′(𝑥𝑖′0 + 1 + 𝑎𝑖′0

𝐴∗ (𝑠 1) + 𝑚𝑖′0) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1) −𝑖≠𝑖′      

     𝑚𝑖0)−𝜃𝜋𝑖′(𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1) − 𝑚𝑖′0) − 𝜃 ∑ ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1) − 𝑚𝑖𝑛)
𝑁
𝑛=1

𝐼
𝑖=1 +      𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′)𝑦⃗ ∈𝕐 ]  

+[∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1) + 𝑚𝑖0) + 𝑟𝑖′(𝑥𝑖′0 + 𝑎𝑖′0

𝐴∗ (𝑠 1) + 𝑚𝑖′0) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1) − 𝑚𝑖0)𝑖≠𝑖′     

−𝜃𝜋𝑖′(𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1) − 𝑚𝑖′0) − 𝜃 ∑ ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1) − 𝑚𝑖𝑛)
𝑁
𝑛=1

𝐼
𝑖=1 + 𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′)𝑦⃗ ∈𝕐 ]  

= 0     

 

Case 2: If 𝑛′ = 0 and 𝑎𝑖′𝑛′
𝐴∗ (𝑠 1) + 𝑚𝑖′𝑛′ > 0, all systems reach the same state at 𝑡 = 𝑡′ + 1 by the transition in 

Equation (6). (A.3) is satisfied as below: 

    𝑉𝑡
𝜃(𝑢⃗ , 𝑥 + 2𝑒𝑖′0) − 2𝑉𝑡

𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′0) + 𝑉𝑡
𝜃(𝑢⃗ , 𝑥 )      

≤ 𝑉𝑡,𝐴
𝜃 (𝑢⃗ , 𝑥 + 2𝑒𝑖′0) − 𝑉𝑡,𝐵

𝜃 (𝑢⃗ , 𝑥 + 𝑒𝑖′0) − 𝑉𝑡,𝐶
𝜃 (𝑢⃗ , 𝑥 + 𝑒𝑖′0) + 𝑉𝑡,𝐷

𝜃 (𝑢⃗ , 𝑥 )      
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= [∑ 𝑟𝑖 (𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1)) + 𝑟𝑖′ (𝑥𝑖′0 + 2 + 𝑎𝑖′0

𝐴∗ (𝑠 1)) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1))𝑖≠𝑖′    

−𝜃𝜋𝑖′ (𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1)) − 𝜃 ∑ ∑ 𝜋𝑖 (𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1))
𝑁
𝑛=1

𝐼
𝑖=1 + 𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′)𝑦⃗ ∈𝕐 ]  

− [∑ 𝑟𝑖 (𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1)) + 𝑟𝑖′(𝑥𝑖′0 + 1 + 𝑎𝑖′0

𝐴∗ (𝑠 1) + 1) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1))𝑖≠𝑖′   

−𝜃𝜋𝑖′(𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1) − 1) − 𝜃 ∑ ∑ 𝜋𝑖 (𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1))
𝑁
𝑛=1

𝐼
𝑖=1 + 𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′)𝑦⃗ ∈𝕐 ]  

−[∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1) + 𝑚𝑖0) + 𝑟𝑖′(𝑥𝑖′0 + 1 + 𝑎𝑖′0

𝐴∗ (𝑠 1) + 𝑚𝑖′0 − 1) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1) −𝑖≠𝑖′

    𝑚𝑖0)−𝜃𝜋𝑖′(𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1) − 𝑚𝑖′0 + 1) − 𝜃 ∑ ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1) − 𝑚𝑖𝑛)
𝑁
𝑛=1

𝐼
𝑖=1 +     𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′)𝑦⃗ ∈𝕐 ]     

+[∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1) + 𝑚𝑖0) + 𝑟𝑖′(𝑥𝑖′0 + 𝑎𝑖′0

𝐴∗ (𝑠 1) + 𝑚𝑖′0) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1) − 𝑚𝑖0)𝑖≠𝑖′     

−𝜃𝜋𝑖′(𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1) − 𝑚𝑖′0) − 𝜃 ∑ ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1) − 𝑚𝑖𝑛)
𝑁
𝑛=1

𝐼
𝑖=1 + 𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′)𝑦⃗ ∈𝕐 ]  

= 0  

 

Case 3: If 𝑛′ > 0 and 𝑎𝑖′𝑛′
𝐴∗ (𝑠 1) + 𝑚𝑖′𝑛′ = 0, none of the systems accept any patients. (A.3) is satisfied as below: 

  𝑉𝑡
𝜃(𝑢⃗ , 𝑥 + 2𝑒𝑖′0) − 2𝑉𝑡

𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′0) + 𝑉𝑡
𝜃(𝑢⃗ , 𝑥 )      

≤ 𝑉𝑡,𝐴
𝜃 (𝑢⃗ , 𝑥 + 2𝑒𝑖′0) − 𝑉𝑡,𝐵

𝜃 (𝑢⃗ , 𝑥 + 𝑒𝑖′0) − 𝑉𝑡,𝐶
𝜃 (𝑢⃗ , 𝑥 + 𝑒𝑖′0) + 𝑉𝑡,𝐷

𝜃 (𝑢⃗ , 𝑥 )      

= [∑ 𝑟𝑖𝑥𝑖0 + 𝑟𝑖′(𝑥𝑖′0) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖𝑢𝑖0−𝜃𝜋𝑖′𝑢𝑖′0 − 𝜃 ∑ ∑ 𝜋𝑖𝑢𝑖𝑛
𝑁
𝑛=1

𝐼
𝑖=1𝑖≠𝑖′   

+𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′′ + 2𝑒𝑖′(𝑛′−1))𝑦⃗ ∈𝕐 ]  

−[∑ 𝑟𝑖𝑥𝑖0 + 𝑟𝑖′(𝑥𝑖′0) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖𝑢𝑖0−𝜃𝜋𝑖′𝑢𝑖′0 − 𝜃 ∑ ∑ 𝜋𝑖𝑢𝑖𝑛
𝑁
𝑛=1

𝐼
𝑖=1𝑖≠𝑖′   

+𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′′ + 𝑒𝑖′(𝑛′−1))𝑦⃗ ∈𝕐 ]  

-[∑ 𝑟𝑖𝑥𝑖0 + 𝑟𝑖′(𝑥𝑖′0) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖𝑢𝑖0−𝜃𝜋𝑖′𝑢𝑖′0 − 𝜃 ∑ ∑ 𝜋𝑖𝑢𝑖𝑛
𝑁
𝑛=1

𝐼
𝑖=1𝑖≠𝑖′   

+𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′′ + 𝑒𝑖′(𝑛′−1))𝑦⃗ ∈𝕐 ]  

+[∑ 𝑟𝑖𝑥𝑖0 + 𝑟𝑖′(𝑥𝑖′0) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖𝑢𝑖0−𝜃𝜋𝑖′𝑢𝑖′0 − 𝜃 ∑ ∑ 𝜋𝑖𝑢𝑖𝑛
𝑁
𝑛=1

𝐼
𝑖=1 + 𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′′

𝑦⃗ ∈𝕐 )]𝑖≠𝑖′   

≤ 0  

where the last inequality follows from the induction hypothesis. 

Case 4: If 𝑛′ > 0 and 𝑎𝑖′𝑛′
𝐴∗ (𝑠 1) + 𝑚𝑖′𝑛′ > 0, system B reaches the same state as system A at 𝑡 = 𝑡′ + 1. Similarly, 

system C reaches the same state as system D at 𝑡 = 𝑡′ + 1 and (A.3) is satisfied as below: 

  𝑉𝑡
𝜃(𝑢⃗ , 𝑥 + 2𝑒𝑖′0) − 2𝑉𝑡

𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′0) + 𝑉𝑡
𝜃(𝑢⃗ , 𝑥 )      

≤ 𝑉𝑡,𝐴
𝜃 (𝑢⃗ , 𝑥 + 2𝑒𝑖′0) − 𝑉𝑡,𝐵

𝜃 (𝑢⃗ , 𝑥 + 𝑒𝑖′0) − 𝑉𝑡,𝐶
𝜃 (𝑢⃗ , 𝑥 + 𝑒𝑖′0) + 𝑉𝑡,𝐷

𝜃 (𝑢⃗ , 𝑥 )      

= [∑ 𝑟𝑖 (𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1)) + 𝑟𝑖′ (𝑥𝑖′0 + 𝑎𝑖′0

𝐴∗ (𝑠 1)) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1))𝑖≠𝑖′    

−𝜃𝜋𝑖′ (𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1)) − 𝜃 ∑ ∑ 𝜋𝑖 (𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1))
𝑁
𝑛=1

𝐼
𝑖=1 + 𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′)𝑦⃗ ∈𝕐 ]  

− [∑ 𝑟𝑖 (𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1)) + 𝑟𝑖′ (𝑥𝑖′0 + 𝑎𝑖′0

𝐴∗ (𝑠 1)) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1))𝑖≠𝑖′   

−𝜃𝜋𝑖′ (𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1)) − 𝜃 ∑ ∑ 𝜋𝑖 (𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1))
𝑁
𝑛=1

𝐼
𝑖=1 + 𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′)𝑦⃗ ∈𝕐 ]  

−[∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1) + 𝑚𝑖0) + 𝑟𝑖′(𝑥𝑖′0 + 𝑎𝑖′0

𝐴∗ (𝑠 1) + 𝑚𝑖′0) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1) −     𝑚𝑖0)−𝜃𝜋𝑖′(𝑢𝑖′0 −𝑖≠𝑖′

𝑎𝑖′0
𝐴∗ (𝑠 1) − 𝑚𝑖′0) − 𝜃 ∑ ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1) − 𝑚𝑖𝑛)
𝑁
𝑛=1

𝐼
𝑖=1 +     𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′′)𝑦⃗ ∈𝕐 ]     
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+[∑ 𝑟𝑖(𝑥𝑖0 + 𝑎𝑖0
𝐴∗(𝑠 1) + 𝑚𝑖0) + 𝑟𝑖′(𝑥𝑖′0 + 𝑎𝑖′0

𝐴∗ (𝑠 1) + 𝑚𝑖′0) − 𝜃𝑖≠𝑖′ ∑ 𝜋𝑖(𝑢𝑖0 − 𝑎𝑖0
𝐴∗(𝑠 1) − 𝑚𝑖0)𝑖≠𝑖′     

−𝜃𝜋𝑖′(𝑢𝑖′0 − 𝑎𝑖′0
𝐴∗ (𝑠 1) − 𝑚𝑖′0) − 𝜃 ∑ ∑ 𝜋𝑖(𝑢𝑖𝑛 − 𝑎𝑖𝑛

𝐴∗(𝑠 1) − 𝑚𝑖𝑛)
𝑁
𝑛=1

𝐼
𝑖=1 + 𝛽 ∑ 𝑃(𝑦 )𝑉(𝑦 , 𝑥 ′′)𝑦⃗ ∈𝕐 ]  

= 0  

 

Furthermore, the following two equations also hold for our model: 

 

𝑉𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′𝑛′ + 𝑒𝑖′𝑛′′) − 𝑉𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′𝑛′) − 𝑉𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′𝑛′′) + 𝑉𝜃(𝑢⃗ , 𝑥 ) = 0 (A.8) 

The proofs of the Equations (A.7) and (A.8) is very similar to the concavity proof. Therefore, we skip these proofs. 
The optimality of the “strict booking limit policy” results from the concavity of the value function, Equation (A.7) 
and (A.8). 

Satisfaction of Assumption 2: Let 𝛷 be a policy that rejects all customers. Since Assumption 1 is satisfied, 𝐾(𝑠 ) < ∞ 
holds under each policy. From the proof of Proposition 1, it can be concluded that the booking limit policy 
minimizes the expected discounted rejection cost. Let 𝛷 the best booking limit policy for the expected discounted 
rejection cost. If 𝑐 is set by the user such that 𝐶𝛷(𝑠 ) < 𝑐, then Assumption 2 is satisfied. 

Proof of Theorem 1: The proof is the direct result of Sennott (1991). Our model always satisfies Assumption 1 and 
it also satisfies Assumption 2 given that 𝑐 is set conveniently. Our action space, 𝔸 = ∏ 𝐴𝑠 𝑠 ∈𝑆 , is compact since it is 
finite. Let 𝛾 = inf {𝜃 > 0|𝐶𝜃(𝑠 ) ≤ 𝑐}. By Lemma 3.8 of Sennott (1991), 𝛾 < ∞. 

 

Case 1: 𝛾 > 0: 

Case 1a: If there exists a 𝛾-optimal stationary policy 𝑓 such that 𝐶𝑓
𝜃(𝑠 ) ≤ 𝑐, by Lemma 3.7 of Sennott (1991), 𝑓 

optimally solves the constrained problem. Since 𝑓 is a 𝛾-optimal policy, it is a booking limit policy by Proposition 
1. 

Case 1b: Since 𝔸 is compact, we may find a sequence 𝜃𝑛 ↓ 𝛾 and a stationary policy 𝑓 such that 𝑓(𝜃𝑛) → 𝑓. There is 
also a sequence 𝛿𝑛 ↑ 𝛾 and a stationary policy e such that 𝑓(𝛿𝑛) → 𝑒. Since 𝑓(𝜃𝑛) is 𝜃𝑛-optimal policy (similarly 
𝑓(𝛿𝑛) is 𝛿𝑛-optimal policy), 𝑓(𝜃𝑛) and 𝑓(𝛿𝑛) are sequences of booking limit policies by Proposition 1. By the 
definition of convergence, they converge to a booking limit policy. Therefore, 𝑓 and 𝑒 are booking limit policies. By 
Lemma 3.6 of Sennott (1991), 𝑓 and 𝑒 are 𝛾-optimal. Furthermore, by Lemma 3.6 of Sennott (1991), 𝐶𝑓(𝜃𝑛)(𝑠 ) →

𝐶𝑓(𝑠 ) and 𝐶𝑓(𝛿𝑛)(𝑠 ) → 𝐶𝑒(𝑠 ). By the definition of 𝛾, 𝐶𝑓(𝑠 ) < 𝑐 and 𝐶𝑒(𝑠 ) > 𝑐. By Lemma 3.9 of Sennott (1991), the 

randomized policy (𝑝, 𝑓, 𝑒) is 𝛾-optimal since both 𝑓 and 𝑒 are 𝛾-optimal. Because by Lemma 3.9 of Sennott (1991), 
𝐶(𝑝,𝑓,𝑒)(𝑠 ) is a continuous function of 𝑝 for all 𝑠 ∈ 𝑆, we may choose 𝑝 such that 𝐶(𝑝,𝑓,𝑒)(𝑠 ) = 𝑐 since 𝐶𝑓(𝑠 ) < 𝑐 and 

𝐶𝑒(𝑠 ) > 𝑐. 

Then the optimal policy is the mixture of two booking limit policies. Our claim that there exists at most one state 
for which those two stationary policies differ directly follows from the proof of Theorem 2.1 in Sennott (1991). 

Case 2: 𝛾 = 0: 

There exists a sequence 𝜃𝑛 ↓ 𝛾 and a stationary policy 𝑓 such that 𝑓(𝜃𝑛) → 𝑓. Since 𝑓(𝜃𝑛) is 𝜃𝑛-optimal policy, 
𝑓(𝜃𝑛)is a sequence of booking limit policies by Proposition 1. By the definition of convergence, 𝑓(𝜃𝑛) converges to 
a booking limit policy. Therefore, 𝑓 is also a booking limit policy. It directly follows from the proof of Theorem 2.1 
in Sennott (1991) that 𝑓 optimally solves the constrained MDP. 

 

𝑉𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′𝑛′ + 𝑒𝑖′′𝑛′′) − 𝑉𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′𝑛′) − 𝑉𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′′′𝑛′′′ + 𝑒𝑖′′𝑛′′) + 𝑉𝜃(𝑢⃗ , 𝑥 + 𝑒𝑖′𝑛′) = 0 (A.7) 


