Extensions of Baer and Principally Projective Modules

Burcu UNGOR ${ }^{1}$, Sait HALICIOGLU ${ }^{1, \star}$, Abdullah HARMANCI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Ankara University, Ankara, Turkey
${ }^{2}$ Department of Mathematics, Hacettepe University, Ankara, Turkey

Received: 25.02.2012 Accepted:10.08.2012

Abstract

In this note, we investigate extensions of Baer and principally projective modules. Let R be an arbitrary ring with identity and M a right R-module. For an abelian module M, we show that M is Baer (resp. principally projective) if and only if the polynomial extension of M is Baer (resp. principally projective) if and only if the power series extension of M is Baer (resp. principally projective) if and only if the Laurent polynomial extension of M is Baer (resp. principally projective) if and only if the Laurent power series extension of M is Baer (resp. principally projective).

Key words: Abelian modules, Baer modules, principally projective modules.
2010 Mathematics Subject Classification: 13C11, 13C99.

1. INTRODUCTION

Throughout this paper R denotes an associative ring with identity, and modules are unitary right R-modules. In [3], Baer rings are introduced as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. A ring R is called right (left) principally projective if the right (left) annihilator of every element of R is generated by an idempotent [2]. For a module M, $S=\operatorname{End}_{R}(M)$ denotes the ring of endomorphisms of M. Then M is a left S-module, right R-module and (S, R)bimodule. In this work, for any rings S and R and any (S, R)-bimodule $M, r_{R}($.$) and l_{M}($.$) denote the right annihilator$ of a subset of M in R and the left annihilator of a subset of R in M, respectively. Similarly, $l_{S}($.$) and r_{M}($.$) will be$ the left annihilator of a subset of M in S and the right annihilator of a subset of S in M, respectively. According to Rizvi and Roman [5], M is called a Baer module if the
right annihilator in M of any left ideal of S is generated by an idempotent of S, i.e., for any left ideal I of S, $r_{M}(I)=e M$ for some $e^{2}=e \in S$ (or equivalently, for all R-submodules N of $M, l_{S}(N)=S e$ with $e^{2}=e \in S$). In [5], it is proved that any direct summand of a Baer module is again a Baer module, and the endomorphism ring of a Baer module is a Baer ring. Several results for a direct sum of Baer modules to be a Baer module are also given in [5].

We write $R[x], R[[x]], R\left[x, x^{-1}\right]$ and $R\left[\left[x, x^{-1}\right]\right]$ for the polynomial ring, the power series ring, the Laurent polynomial ring and the Laurent power series ring over R, respectively.

Lee and Zhou [4] introduced the following notations. For a module M, we consider;

[^0]$M[x]=\left\{\sum_{i=0}^{s} m_{i} x^{i}: s \geq 0, m_{i} \in M\right\}, M[[x]]=\left\{\sum_{i=0}^{\infty} m_{i} x^{i}: m_{i} \in M\right\}$,
$M\left[x, x^{-1}\right]=\left\{\sum_{i=-s}^{t} m_{i} x^{i}: s \geq 0, t \geq 0, m_{i} \in M\right\}, M\left[\left[x, x^{-1}\right]\right]=\left\{\sum_{i=-s}^{\infty} m_{i} x^{i}: s \geq 0, m_{i} \in M\right\}$.
Each of these is an abelian group under an obvious addition operation. Moreover $M[x]$ becomes a module over $R[x]$ where, for
$m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x], f(x)=\sum_{i=0}^{t} a_{i} x^{i} \in R[x], \quad m(x) f(x)=\sum_{k=0}^{s+t}\left(\sum_{i+j=k} m_{i} a_{j}\right) x^{k}$.

The modules $M[x]$ and $M[[x]]$ are called the polynomial extension and the power series extension of M, respectively. With a similar scalar product, $M\left[x, x^{-1}\right]$ (resp. $M\left[\left[x, x^{-1}\right]\right]$) becomes a module over $R\left[x, x^{-1}\right]$ (resp. $R\left[\left[x, x^{-1}\right]\right]$). The modules $M\left[x, x^{-1}\right]$ and $M\left[\left[x, x^{-1}\right]\right]$ are called the Laurent polynomial extension and the Laurent power series extension of M, respectively. In what follows, by $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_{n}$ and $\mathbb{Z} / \mathbb{Z} n$ we denote, respectively, integers, rational numbers, the ring of integers and the \mathbb{Z}-module of integers modulo n.

2. EXTENSIONS OF BAER AND PRINCIPALLY PROJECTIVE MODULES

In this section we investigate extensions of Baer and principally projective modules. Following Roos [6], a module M is called abelian if all idempotents of $S=\operatorname{End}_{R}(M)$ are central. First, we mention some examples of abelian modules.

Examples 2.1. (1) If M is a duo module, then M is abelian. For if $f \in \operatorname{End}_{R}(M)$ and $e^{2}=e \in \operatorname{End}_{R}(M)$, then $f(1-e) M \leq(1-e) M$ implies ef $(1-e)=0$. From $f e(M) \leq e M$ we have $e f e=f e$. Hence $e f=f e$ for all $f \in S$.
(2) Let M be a finitely generated torsion \mathbb{Z}_{1}-module. Then M is isomorphic to the \mathbb{Z}_{1}-module $\left(\mathbb{Z} / \mathbb{Z} p_{1}^{n_{1}}\right) \oplus\left(\mathbb{Z} / \mathbb{Z} p_{2}^{n_{2}}\right) \oplus \ldots \oplus\left(\mathbb{Z} / \mathbb{Z} p_{t}^{n_{t}}\right)$ where $p_{i}(i=1, \ldots, t)$ are distinct prime numbers and n_{i} $(i=1, \ldots, t)$ are positive integers. $\operatorname{End}_{\mathbb{Z}}(M)$ is isomorphic to the commutative ring $\left(\mathbb{Z}_{p_{1}^{n_{1}}}\right) \oplus\left(\mathbb{Z}_{p_{2}^{n_{2}}}\right) \oplus \ldots \oplus\left(\mathbb{Z}_{p_{t}^{n_{t}}}\right)$. So M is abelian.

We introduce a class of modules that is a generalization of principally projective rings and Baer modules. A module M is called principally projective if for any $m \in M, l_{S}(m)=S e$ (which is equal to $l_{S}(m R)$) for some $e^{2}=e \in S$. It is obvious that the R-module R is principally projective if and only if the ring R is left principally projective.

In [1], a module M is called Armendariz if for any $m(x)=\sum_{i=0}^{n} m_{i} x^{i} \in M[x]$ and $f(x)=\sum_{j=0}^{s} a_{j} x^{j} \in S[x]$, $f(x) m(x)=0$ implies $a_{j} m_{i}=0$ for all i and j.

Lemma 2.2. Let M be a module. If M is Armendariz, then it is abelian. The converse holds if M is a principally projective module.

Proof. Let $m \in M, e^{2}=e \in S$ and $g \in S$. Consider
$m_{1}(x)=(1-e) m+e g(1-e) m x, \quad m_{2}(x)=e m+(1-e) g e m x \in M[x]$
$h_{1}(x)=e-e g(1-e) x, \quad h_{2}(x)=(1-e)-(1-e) g e x \in S[x]$.

Then $h_{i}(x) m_{i}(x)=0$ for $i=1,2$. Since M is Armendariz, $e g(1-e) m=0$ and $(1-e)$ gem $=0$. Therefore $e g m=g e m$ for all $m \in M$. Hence M is abelian.

Suppose that M is a principally projective and abelian module. Let $m(t)=\sum_{i=0}^{s} m_{i} t^{i} \in M[t]$ and $f(t)=\sum_{j=0}^{t} f_{j} t^{j} \in S[t]$. If $f(t) m(t)=0$, then

$$
\begin{align*}
f_{0} m_{0} & =0 \tag{1}\\
f_{0} m_{1}+f_{1} m_{0} & =0 \tag{2}\\
f_{0} m_{2}+f_{1} m_{1}+f_{2} m_{0} & =0 \tag{3}
\end{align*}
$$

By hypothesis, there exists an idempotent $e_{0} \in S$ such that $l_{S}\left(m_{0}\right)=S e_{0}$. Then (1) implies $f_{0} e_{0}=f_{0}$. Multiplying (2) by e_{0} from the left, we have $0=e_{0} . f_{0} m_{1}+e_{0} f_{1} m_{0}=e_{0} f_{0} m_{1}=f_{0} m_{1}$. By (2) $f_{1} m_{0}=0$ and so $f_{1} e_{0}=f_{1}$. Let $l_{S}\left(m_{1}\right)=S e_{1}$. Then $f_{0} e_{1}=f_{0}$. We multiply (3) by $e_{0} e_{1}$ from the left and use S being abelian and $e_{1} e_{0} f_{0} m_{2}=f_{0} m_{2}$, we have $f_{0} m_{2}=0$. Then (3) becomes $f_{1} m_{1}+f_{2} m_{0}=0$. Multiplying this equation by e_{0} from the left and using $e_{0} f_{2} m_{0}=0$ and $e_{0} f_{1} m_{1}=f_{1} m_{1}$ we have $f_{1} m_{1}=0$. From (3) we have $f_{2} m_{0}=0$. Continuing in this way, we may conclude that $f_{j} m_{i}=0$ for all $0 \leq i \leq s$ and $0 \leq j \leq t$. Hence M is Armendariz. This completes the proof.

Corollary 2.3. If M is an Armendariz module, then it is abelian. The converse holds if M is a Baer module.

In the sequel, we investigate extensions of Baer modules and principally projective modules by using abelian modules. In case the module M is abelian, we show that there is a strong connection between Baer modules, principally projective modules and polynomial extension, power series extension, Laurent polynomial extension, Laurent power series extension of M.

For a module $M, M[x]$ is a left $S[x]$-module by the scalar product:
$m(x)=\sum_{j=0}^{s} m_{j} x^{j} \in M[x], \alpha(x)=\sum_{i=0}^{t} f_{i} x^{i} \in S[x], \alpha(x) m(x)=\sum_{k=0}^{s+t}\left(\sum_{i+j=k} f_{i} m_{j}\right) x^{k}$.
With a similar scalar product, $M[[x]], M\left[x, x^{-1}\right]$ and $M\left[\left[x, x^{-1}\right]\right]$ become left modules over $S[[x]], S\left[x, x^{-1}\right]$ and $S\left[\left[x, x^{-1}\right]\right]$, respectively.

To get rid of confusions we recall that $M[x]$ is an $S[x]$-Baer module if for any $R[x]$-submodule A of $M[x]$, there exists $e^{2}=e \in S[x]$ such that $l_{S[x]}(A)=S[x] e$, and while $M[x]$ is an $S[x]$-principally projective module if for any $m(x) \in M[x]$, there exists $e^{2}=e \in S[x]$ such that $l_{S[x]}(m(x))=S[x]$ e. Similarly, we may define $M[[x]]$ is an $S[[x]]$-Baer and $S[[x]]$-principally projective module, $M\left[x, x^{-1}\right]$ is an $S\left[x, x^{-1}\right]$-Baer and $S\left[x, x^{-1}\right]$-principally projective module and $M\left[\left[x, x^{-1}\right]\right]$ is an $S\left[\left[x, x^{-1}\right]\right]$-Baer module and $S\left[\left[x, x^{-1}\right]\right]$-principally projective module.

Theorem 2.4. Let M be a module. Then
(1) If $M[x]$ is an $S[x]$-Baer module, then M is a Baer module. The converse holds if M is abelian.
(2) If $M[[x]]$ is an $S[[x]]$-Baer module, then M is a Baer module. The converse holds if M is abelian.
(3) If $M\left[x, x^{-1}\right]$ is an $S\left[x, x^{-1}\right]$-Baer module, then M is a Baer module. The converse holds if M is abelian.
(4) If $M\left[\left[x, x^{-1}\right]\right]$ is an $S\left[\left[x, x^{-1}\right]\right]$-Baer module, then M is a Baer module. The converse holds if M is abelian.

Proof. (1) Assume that $M[x]$ is an $S[x]$-Baer module. Let N be an R-submodule of M. Then $l_{S}(N) \subseteq l_{S}(N)[x]=l_{S[x]}(N)$. Since $M[x]$ is $S[x]$-Baer, there exists $e(x)^{2}=e(x) \in S[x]$ such that $l_{S[x]}(N)=S[x] e(x)$. Let $e(x)=\sum_{i=0}^{t} e_{i} x^{i}$ where all $e_{i} \in l_{S}(N)$. We show that $l_{S}(N)=S e_{0}$. Note that $e_{0}^{2}=e_{0}$, because $e(x)$ is an idempotent in $S[x]$. Let $f \in l_{S}(N)$, then there exists $g(x) \in S[x]$ such that $f=g(x) e(x)$. So $f e(x)=f$. It follows that $f e_{0}=f$. Hence $l_{S}(N) \subseteq S e_{0}$. Since $e_{0} \in l_{S}(N)$, $l_{S}(N)=S e_{0}$. Therefore M is a Baer module. Conversely, assume that M is an abelian and Baer module. Let N be an $R[x]$-submodule of $M[x]$. We prove that there exists $e(x)^{2}=e(x) \in S[x]$ such that $l_{S[x]}(N)=S[x] e(x)$. Let N^{*} be the right R-submodule of M generated by the coefficients of elements of N. Since M is Baer, there exists $e^{2}=e \in S$ such that $l_{S}\left(N^{*}\right)=S e$. Then $e N^{*}=0$ and so $e N=0$. Hence $S[x] e \leq l_{S[x]}(N)$. To prove reverse inclusion, let $g(x)=g_{0}+g_{1} x+\ldots+g_{n} \in l_{S[x]}(N)$. Then $g(x) N=0$. By Corollary 2.3, M is Armendariz. Then $g_{i} N^{*}=0, g_{i} \in l_{S}\left(N^{*}\right)=S e$ and $g_{i} e=g_{i}$ for all $0 \leq i \leq n$. So $g(x) e=g(x) \in S[x] e$. Hence $l_{S[x]}(N) \leq S[x] e$. Therefore $l_{S[x]}(N)=S[x] e$ and so $M[x]$ is an $S[x]$-Baer module.
(2) is proved similarly as (1).
(3) Assume now that $M\left[x, x^{-1}\right]$ is an $S\left[x, x^{-1}\right]$-Baer module. Then the proof of being M a Baer module follows from the necessity of (1). Conversely, assume that M is a Baer and abelian module. Let N be an $R\left[x, x^{-1}\right]$-submodule of $M\left[x, x^{-1}\right]$. We prove that there exists $e(x)^{2}=e(x) \in S\left[x, x^{-1}\right]$ such that $l_{S\left[x, x^{-1}\right]}(N)=S\left[x, x^{-1}\right] e(x)$. Let N^{*} be the right R-submodule of M generated by the coefficients of elements of N. By assumption $l_{S}\left(N^{*}\right)=S e$ for some $\quad e^{2}=e \in S . \quad$ Then $\quad S\left[x, x^{-1}\right] e \leq l_{S\left[x, x^{-1}\right]}(N) . \quad$ For \quad the \quad reverse inclusion, let $g(x)=\sum_{i=-k}^{t} g_{i} x^{i} \in l_{S\left[x, x^{-1}\right]}(N)$ and so $g(x) N=0$. If $f(x)=\sum_{j=-l}^{m} f_{j} x^{j} \in N$, then $g(x) f(x)=0$. There exist positive integers u and v such that $x^{u} g(x) \in S[x]$ and $x^{v} f(x) \in N[x]$. By Corollary 2.3, M is Armendariz. Since $\left(x^{u} g(x)\right)\left(x^{v} f(x)\right)=0, g_{i} f_{j}=0$ where $-k \leq i \leq t$ and $-l \leq j \leq m$. Then $g_{i} \in l_{S}\left(N^{*}\right)$ and so $g_{i} e=g_{i}$ for all $-k \leq i \leq t$. Thus $g(x) e=g(x) \in S\left[x, x^{-1}\right] e$.
(4) is proved similarly.

Theorem 2.5. Let M be a module. Then
(1) If $M[x]$ is an $S[x]$-principally projective module, then M is a principally projective module. The converse holds if M is abelian.
(2) If $M[[x]]$ is an $S[[x]]$-principally projective module, then M is a principally projective module. The converse holds if M is abelian.
(3) If $M\left[x, x^{-1}\right]$ is an $S\left[x, x^{-1}\right]$-principally projective module, then M is a principally projective module. The converse holds if M is abelian.
(4) If $M\left[\left[x, x^{-1}\right]\right]$ is an $S\left[\left[x, x^{-1}\right]\right]$-principally projective module, then M is a principally projective module. The converse holds if M is abelian.

Proof. (1) Assume that $M[x]$ is an $S[x]$-principally projective module and $m \in M$. There exists $e(x)^{2}=e(x) \in S[x]$ such that $l_{S}(m)=l_{S}(m R) \leq l_{S}(m R)[x]$ and $l_{S}(m R)[x]=l_{S[x]}(m R)=S[x] e(x)$.

Write $e(x)=\sum_{i=0}^{t} e_{i} x^{i}$. Then $e(x) m=0$ implies $e_{i} m=0$ and so $e_{i} \in l_{S}(m R)$ for all $0 \leq i \leq t$. Let $a \in l_{S}(m R)$, then there exists $g(x) \in S[x]$ such that $a=g(x) e(x)$. So $a e(x)=a$. It follows that $a e_{0}=a$. Hence $l_{S}(m R) \leq S e_{0}$. We have $S e_{0} \leq l_{S}(m R)$ from $e_{0} m=0$ and $e_{0}^{2}=e_{0}$ because $e(x)$ is an idempotent in $S[x]$. Therefore M is a principally projective module. Conversely, assume that M is a principally projective module and $m(x)=\sum_{i=0}^{k} m_{i} x^{i} \in M[x]$. By hypothesis, there exist $e_{i}^{2}=e_{i} \in S(i=0,1,2, \ldots, k) \quad$ such that $l_{S}\left(m_{i}\right)=S e_{i}$. Let $e=e_{0} e_{1} e_{2} \ldots e_{k}$. Since M is abelian, each $e_{i}(i=0,1,2, \ldots, k)$ is central, and so e is a central idempotent in S. We prove $l_{S[x]}(m(x))=S[x] e$. For if $f(x)=\sum_{j=0}^{t} f_{j} x^{j} \in l_{S[x]}(m(x))$, then $f(x) m(x)=0$. By Lemma 2.2, $f_{j} m_{i}=0$ for each $j=0,1,2, \ldots, t$ and for each $i=0,1,2, \ldots, k$. It follows that $f_{j} e_{i}=f_{j}, f_{j} e=f_{j}$ and $f(x) e=f(x)$. Hence $f(x) \in S[x] e$ and so $l_{S[x]}(m(x)) \leq S[x] e$. Let $g(x) \in S[x] e$. Since S is abelian, $e m(x)=0$ and $g(x) e m(x)=0$. Hence $S[x] e \leq l_{S[x]}(m(x))$. Thus $S[x] e=l_{S[x]}(m(x))$. Therefore $M[x]$ is an $S[x]$-principally projective module.
(2), (3) and (4) are proved similarly.

REFERENCES

[1] N. Agayev, S. Halicioglu and A. Harmanci, ''On Rickart modules', appears in Bull. Iran. Math. Soc. available at http://www. iranjournals.ir/ims/bulletin/
[2] G. F. Birkenmeier, J. Y. Kim and J. K. Park, ' ${ }^{\text {On }}$ extensions of Baer and quasi-Baer Rings'', J. Pure Appl. Algebra 159(2001), 25-42.
[3] I. Kaplansky, ‘'Rings of Operators’’, Math.
Lecture Note Series, Benjamin, New York, (1965).
[4] T. K. Lee and Y. Zhou, ' 'Reduced modules’", Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure Appl. Math. 236, Dekker, New York, (2004).
[5] S. T. Rizvi and C. S. Roman, " Baer and QuasiBaer Modules", Comm. Algebra 32(2004), 103-123.
[6] J. E. Roos, '`Sur les categories auto-injectifs a droit'', C. R. Acad. Sci. Paris 265(1967), 1417.

[^0]: *Corresponding author, e-mail: halici@ankara.edu.tr

