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Abstract 
 

Petri nets are frequently used for modeling and analysis of discrete event systems. Similar to other modeling 
formalisms for discrete systems,  it suffers from state explosion. Fluidification can be used to overcome this 
difficulty yielding  fluid approximation of original Petri nets  in the sense of behaviours and  properties. This models 
are called  continuous Petri nets. In this work, stochastic Petri nets and their fluid approximation timed continuous 
Petri nets is considered. One of the main advantages of timed continuous Petri nets is to be able to design a controller 
by using more analytical techniques. But it is important to come back to a reasonable design or control in the 
original discrete setting.  In this work, a target state control strategy of timed continuous Petri nets will be interpreted 
for the control of underlying Stochastic Petri nets.  The efficiency of this interpretation  will be studied  on  a table 
factory system. 
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1. INTRODUCTION 
 

Petri Nets (PNs) are powerful graphical and mathematical 
tools for modelling, analysis and synthesis of discrete event 
systems [1,2]. In the real world, almost every event is time 
related. The necessity for including timing variables in the 
PN models of dynamic systems is apparent since these 
systems are real time in nature. A realistic way to introduce 
time in PNs is to assume that all transitions are timed 
according to some given probability density function, 
namely Stochastic Petri Nets (SPNs) which have proven to 
be a popular and useful tool for modelling and performance 
analysis of complex stochastic systems. Unfortunatelly, in 
the case of large scale systems, SPNs suffer from state 
explosion problem similarly to most formalisms for DESs.  

Fluidification is one of the most useful  relaxation 
techniques to overcome this state explosion problem and to 
reduce the computational complexity of the analysis and 
synthesis of PNs. For PNs, fluidification was introduced in 
[3,4] aiming to give fluid (continuous) approximation of 

the original PN in the sense of behaviours and properties, 
and these models are called timed continuous Petri nets 
(contPN). 
 
One of the most important advantages of contPN is to 
be able to use more analytical techniques for the 
analysis of some interesting properties, like 
controllability and the synthesis of controllers, such as 
optimal steady-state [5] or dynamic controllers for 
reaching a desired marking [6-9].  
 

Many works have been proposed for control of continuous 

Petri nets in the literature [5-9]. Steady state optimal 

control of continuous Petri nets was studied in [5], while 

the transitory control problem is also solved by means of 

implicit and explicit  Model Predictive Control (MPC) 

strategy in [6]. The step tracking problem, i.e. design of 

control laws to drive the system states to target references, 

was considered and a Lyapunov-function-based dynamic 

control algorithm was proposed for the problem  [7]. In 
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[8], an efficient heuristics for minimum time control of 

contPNs, which aims at driving the system from an initial 

state to a target one through a piecewise linear trajectory is 

developed. 

Assuming that good off-line designs or dynamic controls 
are obtained for the continuous relaxation, it is important to 
come back to a reasonable design or control in the original 
discrete setting. 

In this work, controlling SPN by applying a control law 
designed for the corresponding  contPN approximation will 
be considered. The aim of this paper in particular  is to 
analyze and illustrate the efficient usability of the target 
marking control strategy for contPNs developed in the 
author’s previous work [8], for the control of mean value of 
underlying SPNs. For this purpose, the scheme provided in 
[9] will be used. This  scheme was developed for the 
interpretation of a control law designed for a contPN 
system into the underlying SPN one. 

The remainder of the paper is organized as follows. Section 
2 briefly introduces the required concepts of PNs, contPNs 
and SPNs while Section 3 introduces the formulation of 
applied control. In Section 4, implementation of the control 
to SPN via contPN will be examined.  A table factory 
system is taken as a case study to illustrate the efficiency of 
implementation in Section 5. Finally, Section 6 summarizes 
the main conclusions of the work. 
 
2. PETRĐ NETS 
 

This section introduces the main concepts related to Petri 

nets, stochastic Petri nets and timed continuous Petri nets.  

 
2.1. Petri nets 
 
Definition: A  discrete Petri net (PN) system is a pair 

0,N〈 〉m  where , , ,N P T= 〈 〉Pre Post  is a net structure 

where 1 2 | |{ , , ..., }PP p p p= and 1 2 | |{ , ,..., }TT t t t= are the 

sets of places and transitions, respectively; 
| | | | , P T×∈Pre Post � are pre and post matrices  connecting 

places and transitions; | |
0

P∈m � is initial marking (state). 

In the graphical representation of a PN, places are 
represented by circles and transitions are represented by 
bars. Places and transitions are connected by directed arcs. 

( , )i jPre p t or ijPre denotes the weight of arc directed 

from place ip P∈ to transition jt T∈  and ( , )i jPost p t or 

ijPost  denotes the weight of arc directed from transition 

jt T∈ to place ip P∈ . For a node (place or transition) 

v P T∈ ∪ the sets of its input and output nodes are 

denoted by •v and •v , respectively. 

 

| |P∈m � is a marking vector, ( )im p or im indicates the 

number of tokens in place ip P∈ . A transition jt T∈  is 

enabled at m  iff i ijm Pre≥ ,
• i jp t∀ ∈ and its enabling 

degree ( , )jenab t m is the value { }
•

min
i j

i ij
p t

m Pre
∈

rounded to 

nearest lower integer. An enabled transition jt  can fire at 

marking m  in a certain amount 0β >∈ � such that 

( , )jenab tβ ≤ m . 

If m  is reachable from 0m through a finite sequence 

1 2 3, , ".` . .` .i i i ikt t t tσ = ,  the state equation is satisfied:
  

0 ·= +m m C σ
                              

(1)
 
 

where = −C Post Pre  is the token flow matrix or 

incidence matrix, | |
0

T
≥∈σ �  is the firing count vector, i.e., 

jσ is the cumulative amount of firings of jt in the 

sequence σ . 
 

2.1. Stochastic Petri nets 
 
PNs were originally proposed without any notion of time 
or probability. But for many practical applications, the 
addition of time is a necessity.  
 
Since the transitions represent activities and activities 
take time in most timed PN models, time is associated 
with transitions commonly. If the delays are 
probabilistically specified which is more appropriate for 
real applications, such PN model is called as stochastic 
net. 
 

For timed PNs, to make analysis tractable typically only a 
restricted set of probability distributions is allowed. A 
way to introduce time in discrete PNs  is to assume that 
all transitions are timed with an exponential probability 
density function (pdf) which is a one parameter 
continuous distribution such that: 

·( ) ·  ,   0xg x e xλλ −= ≥
                         

(2)
                

 

 
Definition: A stochastic  Petri net (SPN) system is a tuple  

0, ,  N ∆〈 〉m  where , , ,N P T= 〈 〉Pre Post is the net 

structure where P  and T  are the sets of places and 
transitions respectively; Pre and Post  are the pre and 

post matrices; 1 2 | |
| |[ ... ]  T
Td d d >0∈∆ = � is delay vector 

where jd is delay of transition jt , 0m is the initial 

marking (state).  
 
In this work, we assume that all transitions are timed with 
exponential pdf. In SPNs with exponentially distributed 
random variable, if a transition models infinite servers, 
time to fire the transition jt at a marking m is  

exponentially distributed random variable with parameter 

· ( , )j jenab tλ m  whose mean value is 1
· ( , )j jenab tλ m

. If 

a transition models finite servers, time to fire the transition 

jt at a marking m is  exponentially distributed random 

variable with parameter jλ  whose mean value is 1
jλ . 

SPNs suffer from state explosion problem, like in all 
formalisms for DESs. One possible way to overcome this 
difficulty is fluidification (or continuization) as a classical 
relaxation technique. Fluidification of PNs allows the use 
of linear programming techniques (that can be solved in 
polynomial time) instead of integer programming 
techniques for the analysis and synthesis of the systems, 
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moreover the resulting contPN systems may be studied by 
means of several analytical techniques.  

 
 
2.2. Timed Continuous Petri nets 
 
Definition 2: A continuous Petri net system is a pair 

0,N〈 〉m  where , , ,N P T= 〈 〉Pre Post  is a net structure 

defined in Definition 1; | |
0

P∈m � is initial marking 

(state). 
 
In continuous Petri nets, markings, m , are not restricted 

to be integer, that is | |
0

P
≥∈m � .  A transition jt T∈  is 

enabled at m  iff • , 0i j ip t m∀ ∈ > . That is, the enabling 

condition of continuous systems is the same as the 
enabling condition of discrete systems.  As differ from 
the discrete case, the enabling degree is not limited to a 
natural number: 

( , ) min
•

i
j

i j ij

m
enab t

p t Pre
=

∈

  
 
  

m
              (3)     

 

An enabled transition jt can fire in any real amount α ,k 

with 0 ( , )enab t j< ≤α m  leading to a new state  

· (·, )' C t j= +m m α                               (4) 

that the delays associated to the firing of transitions can be 
approximated by their mean values.  This leads continuous 
and deterministic ``approximated" model [11]. 
 
Definition 2.2 A timed continuous Petri net (contPN) 

system 0, ,  N〈 〉Λ m is a continuous Petri net system  

together with a vector 
| |

1 2[ ]  
T

Tλ λ λ >0∈Λ = �K  

where jλ is the firing rate of t j . 

 
As in untimed continuous Petri nets, state equation 

summarizes the way the marking evolves along time.  The 

state equation of a contPN has an explicit dependence on 

time 0[ ] · [ ]τ τ= +m m C σ  where τ  is global time. But, 

in continuous systems, the marking is continuously 

changing, so we may consider the derivative of m  with 

respect to time. By this way [ ] · [ ]τ τ=m C σ& &  is obtained.  

Here, σ&  is flow through transitions and it is denoted by 

[ ] [ ]τ τ=f σ& . Hence, the state equation is  

[ ] · [ ]τ τ=m C f&                              (5)                                                                         

For the sake of simplicity τ is omitted in the rest of the 
paper.  

 

Different semantics have been defined for continuous 
timed transitions [12,13].  It has been proven that the 
continuous model under infinite server semantics provides 
a better approximation of the original discrete model under 
some general conditions. Hence, this paper is focused on 
infinite server semantics. Since, we use a first order (or 
deterministic) approximation of SPNs, the firing of 

transition takes 1
· ( , )j jenab tλ m

 time units. The flow of 

transition jt , ( )jf t  or jf  is defined as: 

•· ( , ) ·min
j i jj j j p t

ij

im
f enab t

Pre
λ λ= ∈

  
=  

  
m        (6) 

Under this semantics the flow vector is given as, 

· [ ]·=f ΛΠ m m                                   (7)                                                                        

where 1 | |diag{ ,...., }Tλ λ=Λ  is the firing rate matrix and 

[ ]Π m is the constraint matrix at marking m defined by 

elements: 

•

1
, f min

[ ]

0, otherwise

h j

h
p t

ji ij ij hj

m mii
Π Pre Pre Pre

∈=
=

         
 

m     (8)                                         

Note that the value of [ ]Π m changes when the system 

switches its configuration: a configuration assigns to 

each transition one place that will control its firing rate 

(i.e. it is constraining that transition). The number of 

configurations is upper bounded by  
| |

1

•
| |

T

j
j

tγ
=

= ∏ . 

 

Example 1: Consider the contPN in Figure 1. Assume 

1 2 33, 1λ λ λ= = = . The system dynamics is described 

as follows: 

2 2

2 2

2 2

2 2

min{ } min{ }

min{ } min{ }

min{ } m

min{ } min{ }

41

41

41

41

mm
1 1 2 3 2 4 3

mm
2 1 2 2 4

mm
3 1 3 3

mm
4 1 2 3 2 4 3

m = -2f + f + f = -6 , - m ,m + m

m = f - f = 3 , - m ,m

m = f - f = 3 , -

m = -2f - f + 3·f = -3 , - m ,m + 3·m

⋅

⋅

⋅

⋅

&

&

&

&

 

Figure 1. A contPN [6] 

 
3. CONTROL of contPN 
 
In contPNs, the only control action we consider is to 
brake it down. Hence,  the only action that can be applied 
to contPN is to reduce the flow of transitions [14]. If a 
transition can be controlled (its flow can be reduced or 
even stopped), we will say that it is a controllable 
transition [5]. In   this work, it is assumed that all 
transitions are controllable. 
 
Definition 3:  The controlled flow, w , of  a contPN is 
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defined as [ ] [ ] [ ]τ τ τ= −w f u  with 0 [ ] [ ]τ τ≤ ≤u f ,  

where f is the flow of the uncontrolled system, i.e., 

defined as in (4), and u is the control action. Therefore, 

the control input u  is dynamically upper bounded by the 

flow f of the corresponding unforced system. Under 

these conditions, the overall behaviour of the system in 

which all transitions are controllable is ruled by the 

following system: 

 

·(   ) · (a)

0    · [ ]· (b)

= − =

≤ ≤

m C f u C w

w Λ Π m m 

&

                (9) 

In this work, we consider the control strategy developed in 
[8]  aiming at driving the system from initial state to the 
target one through a linear or a piecewise linear trajectory 
by minimizing time. In the following, we explain how to 
compute the corresponding  control action u  that drives 

the contPN system from an initial marking, 0m , to  a 

desired target marking fm  through a linear trajectory. 

The procedure consists of assigning constant flows, w , 

that satisfies dynamic upper bounds in (9)(b). 0m  and 

fm  are assumed to be  strictly positive. The assumption 

0m  that  is positive ensures that the system can move at 

0τ = in the direction of fm  [15]; the assumption that 

fm  is positive ensures that fm  can be reached in finite 

time [5].  

 

Notice that in order to be reachable, fm necessarily 

satisfies the state equation:
 0[ ] · [ ]τ τ= +m m C σ . As 

differ from [8], here we will drive the system only through 
a linear trajectory and  will not distinguish the cases 0m  

and fm are in the same or in different regions. This way, 

by the cost of reaching time, calculation of controlled flow 
is simplified since solving  only one LPP is enough. 

The programming problem (10) computes a constant 
controlled flow vector  that drives the system from 0m  

and fm in minimum time: 

0

0

{1, .., | |} where i satisfies 0

,

· ·

0

min

s.t. (a)

(

min

b)

· ii

f

f f

f
j j

ij ij

ijj T Pre

mm
w

Pre Pre

τ
τ

λ

∀ ∈ ≠

= +

  
≤ ≤  

  

w

m m C w

            (10) 

The equations correspond to: (a) the time dependent  
equation of the straight line connecting 0m to fm  (b) the 

flow constraints in (9)(b). Notice that (10)(b) is a linear 
constraint  because 0im and f im are known. The product 

· fτw makes (10) a BLP. But it can be transformed into a LPP 

by defining a new vector of variables  · fτ=s w . The 

resulting LPP is: 

 

0

0

{1, .., | |} where i satisfies 0

,

min

s.t. (a)

(b

·

)

·

0 ·min

f

f

f
j j f

ij

i

ij

ij

i

j T Pre

mm
s

Pre Pre

τ

λ τ

∀ ∈ ≠

= +

  
≤ ≤  

  

s

m m C s

              (11) 

4. IMPLEMENTATION OF   CONTROL to  
    SPN via contPN 

One of the most important advantages of contPNs is to be 
able to use more analytical techniques for the analysis of 
some interesting properties. But after the control law is 
designed for a contPN, it is important to come back to a 
reasonable design or control  in the original discrete setting. 
In this section, implementation of control designed for a 
contPN to the underlying SPN will be examined. 

The  approximation of the SPN by means of contPN was 
studied in [16]. There, contPN is analyzed in discrete time, 
and the following difference equation is obtained: 

· · · · · ·k+1 k k k k∆τ ∆τm = m + C λ Π(m ) m - C u           (12) 

where ∆τ is a small enough sampling period. In that work  
it was proved that when initial states are same,  the marking 
of contPN system whose evolution is described  by (12) 
without input approximates the mean value of the marking 
of SPN during the time interval 0 0(τ , τ + n·∆τ) for live 

contPN for any time step k in the interval 0 0(τ , τ + n·∆τ)
 
.  

The approximation can be improved when the probability 
that the transitions of SPN are all enabled is near one or the 
probability that the marking is outside the region of initial 
state is near zero. By using the work  in [16], a scheme has 
been provided in [9] for the interpretation of a control law 
designed for a contPN system with infinite server semantics 
into the corresponding SPN. The resulting scheme 
constitutes a tool for controlling the mean value of a SPN 
system  applying additional delays to the controllable 
transitions. The scheme is explained below. 

Considering the state equation in (9), the controlled flow of 
a contPN is denoted by 

 

( ) [1 ( ( ), )]· · ( , )j j j jw t u t enab tα λ= − m m
             

(13)
         

        
 

where ( ( ), )ju tα m is a function takes values in the interval 

[ ]0 1 . Therefore, the applied control law imposes to jt  an 

additional delay of:  
 

1 1
( )

[1 ( ( ), )]·
j

j j j

delay t
u tα λ λ

= −
− m

               (14)

 
 

If additional delays are defined for all the controllable 
transitions in the same way, and they are added to the 
corresponding mean time delays of the SPN system, then 
the mean value of its marking will still be approximated 
by the marking of the contPN.  The application of the 
control law designed for contPN to SPN is described in the 
block diagram in Figure 2. In this block diagram, block C2D 
computes such additional delays, so, according to the 

previous equation and substituting α , the output of C2D at 
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time step k is defined as: 
 

( , ) 1
( )

( , )· ( )
j k

k j

j k j k j j

enab t
delay t

enab t u tλ λ
= −

−

m

m
                     (15) 

 

km

·∆τC
k+1m km

· · · ·k k k ∆τm + C λ Π(m m ) 

· · k∆τC uku

 
Figure 2. Block diagram of implementation 

Example 2: Let us consider the control law design for the 
contPN in Example 1. Asuume the same firing rates. Let 

0 [13 3 1 10]T=m and [12 3 2 7]f
T=m . First we 

design the controller to drive the system from 0m  to fm

through a linear trajectory by minimizing the time. The 
constraints of LPP (11) are: 
 

1 2

1 2 3

1 3

1 2 3

1 01 1 04 4

2 02 2 04 4

3 03 3

12 13 2

3 3 (a)

2 1

10 7 2 3

0 1.5 min{ , , , }

0 min{ , , , } (b)

0 min{ , }

f f f

f f f

f f

s s s

s s

s s

s s s

s m m m m

s m m m m

s m m

τ
τ

τ

= − ⋅ + +

= + −

= + −

= − ⋅ − + ⋅

≤ ≤ ⋅ ⋅

≤ ≤ ⋅

≤ ≤ ⋅

          (12)            

By solving this LPP, the optimal solution is calculated as  

1 2 31, 0s s s= = = and 1fτ = . That is, 11 2w = w = and 03w = . 

And the resulting control law  is 
 

4

2

3

1.5 ( )

( ) ( ) 1 , 0 1

( )

m

u m if

m

τ
τ τ τ

τ

 ⋅ 
 = − < ≤ 
  

                    (13) 

The convergence of the markings of contPN  under the 
designed control law is illustrated in Figure 2. 
 

 
Figure 3. Marking evolutions of contPN for Example 2 

In order to implement the control (13)  obtained for the 
contPN to the underlying original SPN, we apply the 
control scheme of the block diagram in Figure 2. The 
evolutions of mean values of  markings (with 1000 
repetition) of the SPN is given in Figure 4 and 5.  

 
Figure 4: Evolutions of mean values of 

1
m and 2m  for 

Example 2 

 
                   Figure 5: Evolutions of mean values of 3m and 4m  for  

                                  Example 2 
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5. CASE STUDY 
 
Let us consider the contPN sketched in Figure 6 (taken 
from [17]) which models a table factory system.  This 
system, consists of two different machines to make table-

legs (
1

t  and 
2

t ), a machine to produce the table boards (

3
t ), a machine to assemble four legs and a board ( 5t ), a 

big painting line which paints two tables at once 6t . More 

unpainted tables are sent (
4

t ) from another factory. The 

places 31 2 ,,p p p  and 
4

p  are work orders; while 
5

p , 

6p  and 7p  are devoted to the storage of table-legs, 

boards and unpainted tables, respectively (see [17]  for 
details). 

 

 Figure 6: ContPN model of a table factory system 

Suppose in the initial marking 01 03 2m m= = , 

02 05 06 07 1m m m m= = = = and 04 3m = . For the final state 

work orders are desired as 1 2 4 2f f fm m m= = = ,
 

3 3fm = . We want to increase the number of stored table 

legs, i.e. 5 4fm = , and keep the number of stored boards 

and unpainted tables, i.e.  6 7 1f fm m= = in minimum 

time. By solving LPP(11), the corresponding control 
action is obtained as: 
 

01

02

03

04

05

07

0.5 m -0.75

m

m
( ) , 0 2

m -1

0.25 m

0.5 m -0.5

u ifτ τ

 ⋅ 
 
 
 

= < ≤ 
 
  ⋅
 

⋅  

            (16) 

In order to implement the control (13)  obtained for the 
contPN to the underlying original SPN, we apply the 
control scheme of the block diagram in Figure 2. The 
markings of contPN and the mean values (with 1000 
repetition)  of the SPN at time 2τ =  are given in Table 1. 
The evolutions of some markings (at contPN) and the  

mean values of these markings  (at SPN)  are given in 
Figures 7-10. 

 

Table 1: The markings of the contPN and the mean 
values of  the SPN at time 2τ =    

 contPN 
(exact value) 

SPN 
(meanvalue) 

1
m  2 2.03 

2m  2 2.02 

3m  3 2.98 

4m  2 2.01 

5m  4 3.97 

6m  1 1.04 

7m  1 0.97 

               

 

 Figure 7:  Evolution of 2m  for the case study 

 

Figure 8:  Evolution of 4m  for the case study 
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Figure 9:  Evolution of 5m  for the case study 

 
Figure 10:  Evolution of 7m  for the case study 

 
6. CONCLUSION 
 
In this work, efficient usability of the target marking 
control strategy for contPNs developed in the author’s 
previous work [8] is analyzed and illustrated for the control 
of mean values at the underlying SPNs. For this purpose, 
the  scheme  developed in [9] is used for the interpretation 
of the  control law designed for a contPN system into the 
underlying SPN. The efficiency of this interpretation is 
studied on a table factory system and satisfactory results 
are obtained, showing that the target state controller 
designed for contPN system  can be used for the control of 
underlying SPN system efficiently. 
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