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ABSTRACT 

 

Three unsteady heat conduction problems with anisotropic diffusivity and time-dependent heating or heat flux and/or 
heat source are considered in showing the utility of a hybrid method involving a combination of temporal differential 

transform and spatial finite difference methods. The segregation of  time from the spatial component is the greatest 

advantage of the hybrid method that exhibits no instability of finite difference methods generally seen with parabolic 
equations. The easy-to-implement algorithm that is essentially a Poisson solver works with both linear and non-

linear heat transport problems without any difficulty of sorts. To gain confidence in the results some simulation 

results are also presented of problems that have an Adomian solution. The method can be used in practical heat 
transfer problems concerning non-uniform materials like composites, alloys, heterogeneous porous media with 

thermal equilibrium or non-equilibrium, multi-layered media and such other problems. 

 
Keywords: Differential Transform Method, Finite-difference approximation, Heat conduction, anisotropic 

diffusivity, time-dependent heating. 

 

1. INTRODUCTION 

 

Thermal engineering applications in homogeneous 

materials are mentioned in many engineering books dealing 

with heat transfer. The parabolic heat transport equations in 

these cases have generally constant coefficients. Over the 

years with the introduction of new materials like alloys, 

composite, fluid-saturated porous media, multi-layer media 

and such other heterogeneous working media, heat 

transport equations began to have variable coefficients. 

These mathematical models due to practical interest could 

no longer be solved analytically by classroom mathematical 

tools. The numerical methods of finite difference that 

began to be used with these suffered many problems of 

instability and thereby of convergence. Obtaining stability 

criterion for these problems was so difficult due to the 

variable coefficient in them.  

 

With the introduction of the method of differential 

transforms proposed by Zhou [1] for electrical circuits 

dawned a new horizon of possibilities. Several different 

engineering problems were then solved by these methods 

[2-8]. Then many researchers began to use the hybrid 

methods which are a combination of two or more methods. 
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The present paper is one such hybrid method that combines 

the best features of the differential transform and finite 

difference methods. Three practical examples are chosen 

for illustration of the easy-to-implement method that does 

not suffer from instability and non-convergence.  We now 

consider the three examples one by one.  

 

 

2. UNSTEADY, ONE-DIMENSIONAL HEAT CONDUCTION EQUATION WITH VARIABLE DIFFUSIVITY, 

TIME-DEPENDENT DIRICHLET BOUNDARY CONDITIONS AND SPACE-DEPENDENT INITIAL 

CONDITION   

 

 

 
Figure 1: Schematic of the one-dimensional, unsteady heat conduction problem. 

 

 

 

A heterogeneous, one-dimensional rod of length L is 

considered as shown in Figure 1. It is assumed that the 

thermal diffusivity varies as 
2

2

o x

L

χ  
 
 

, where oχ  is a 

constant. One end of the rod is assumed to be maintained at 

ambient temperature while the other end is assumed to be 

incessantly and increasingly heated as time progresses. The 

heating is assumed to be an exponential function of time t, 

namely, 
2

,
o

L
oT e

χ
τ

where oT  is the ambient temperature. 

The deviation of the initial temperature distribution from 

oT  in the rod is assumed to vary as the square of x. It is 

further assumed that at all other points of the rod there is 

thermal insulation. The mathematical model using the 

Fourier second law thus is: 

 
2

, 0 , 0,
2

oT x T
x L

x L x

 ∂ ∂ ∂ = < < >   ∂ ∂ ∂  
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τ

τ
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2
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o

o

L
o o
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T T x
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x
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L


= = ∀ > 




= + = ∀ > 


  = + = ∀ ∈    

χ
τ

τ

τ

τ

  (2.2) 

The following non-dimensional variables are now defined 

to render the equations (2.1) and (2.2) dimensionless: 

 

2
, , .o o

o

T Tx
t X u

L L T

−
= = =

τχ
                  (2.3) 

 

Using equation (2.3) in equations (2.1) and (2.2), the 

following equation is obtained on completing the 

differentiation: 

 
2 2

2
, 0 1, 0,

2

u u X u
X X t

t X X

∂ ∂ ∂
= + < < >

∂ ∂ ∂
  (2.4) 

 

subject to  

 

( )
( )
( ) [ ]2

0, 0, 0,

1, , 0,

,0 , 0,1 .

t

u t t

u t e t

u X X X

= ∀ >


= ∀ > 


= ∀ ∈ 

   (2.5) 

 

It must be noted here that there is no analytical solution to 

the above initial-boundary value problem (IBVP). 

 

Taking the temporal differential transform of equation (2.4) 

results in the following differential-difference equation: 

 

 

( ),0L  
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( ) [ ] [ ] [ ]
2 2

2
1 , 1 , , , ( 0,1,2,...),0 1.

2

U X U
k U X k X X k X k k X

X X

∂ ∂
+ + = + = < <

∂ ∂
                     (2.6) 

 

After having explicitly segregated the time derivative from the spatial component, the interval [ ]0,1 is now discretized using the 

following: 

 

, 0(1) .i

i
X i X i N

N
= ∆ = =                    (2.7) 

 

Denoting the value of [ ],iU X k  by [ ]iU k , the central difference approximation to the derivatives in equation (2.6) gives rise 

to the following difference equation: 

 

 

 

( ) [ ] [ ] [ ]{ } [ ] [ ] [ ]{ }
2

1 1 1 11 1 2 ,
2 2

( 0,1,2,...), (1 1).

i i i i i i

i i
k U k U k U k U k U k U k

k i N

+ − + −+ + = − + − +

= < < −

                                  (2.8)  

 

 

 

Taking the temporal differential transform of the equations 

in (2.5), the following equations are obtained: 

 

 

[ ]0 0, ( 0,1,2,...),U k k= =     (2.9) 

[ ] 1
, ( 0,1,2,...),

!
NU k k

k
= =     (2.10) 

[ ]
2

2
0 , (0 ).i

i
U i N

N
= < <     (2.11) 

 

At each time step, i.e., for each value of k, up to the desired 

value of time, the algebraic equation (2.8) is solved to 

obtain the [ ]iU k ’s. This means that at each discretized 

time we get the solution for [ ],iU x k and the same may 

be used in obtaining the solution of u(xi,t) at the spatially 

discretized points using the inverse differential transform 

that gives us: 

 

[ ] [ ]
0

, , , 0 .k
i i

k

u x t U x k t i N
∞

=

= < <∑  (2.12) 

 

In the computation of results, 15 terms were taken in the 

time series (2.12) and with 40 internal spatially discretized 

points, i.e., N=40. 

 

We note here that there is no restriction on reason of 

stability in choosing the time step and spatial step length in 

the hybrid method. One, however, has to note that the 

radius of convergence may be looked into. This problem 

can also be overcome in the hybrid method by dividing the 

time-domain into a number of sub-domains as suggested by 

Yu and Chen [9] in the context of the differential transform 

solution of the Blasius equation and used subsequently by 

Odibat et al. [10] extensively in his works. Further, Jang et 

al. [5] proved quite rigorously that the differential 

transform method has errors within bounds and is thereby 

stable and convergent (by Lax equivalence theorem). Let us 

consider a sample computation now and say we need to 

find the solution at t=5. Let us assume N=40, i.e., 40 

spatially discretized points 0 1 2 3 40, , , ,......., .x x x x x  

Further, let us divide the time interval into 20 sub-intervals, 

say, [0,0.25], [0.25,0.5], [0.5,0.75], [0.75,1.0], ………., 

[4.75,5.0].  We first use the hybrid method and obtain the 

solution [ ],i ku x t  at t=0.25 and at all the spatially 

discretized points. Using these values as the initial values in 

equations (2.9)-(2.11), we now compute the values at the 

next time step t=0.5 at 1 2 3 40, , ,........,x x x x . The above 

procedure used for one-dimensional heat conduction 

equation is generalized and used in two- and three-

dimensional problems discussed below.  
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3. UNSTEADY, TWO-DIMENSIONAL HEAT CONDUCTION EQUATION WITH ANISOTROPIC DIFFUSIVITY 

AND WITH TIME- DEPENDENT NEUMANN BOUNDARY CONDITIONS AND SPATIALLY - DEPENDENT 

DIRICHLET INITIAL CONDITION 

 

 

A heterogeneous, rectangular plate of length L and breadth B is considered as shown in Figure 2.  

 

 
 

Figure 2: Schematic of the two-dimensional, unsteady heat conduction problem. 

 

 

It is assumed that the thermal diffusivity is a tensor given by 
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χ
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               (3.1) 

 

Thermal insulation is maintained on two sides and time-dependent heat influx and outflux are maintained at the other two sides, 

as shown in the Figure 2. The initial heat flux is assumed to vary quadratically with y as explained further on. The mathematical 

model for the problem using Fourier second law thus is  

 

2 2

2
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x L x y A B y
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χ χ
τ

τ
                            (3.2) 

subject to 

 

0 0 at 0,  [0, ], 0,
T

Q x y B
x

χ τ
∂

− = = ∀ ∈ ∀ >
∂

           (3.3) 

0 0 at 0,  [0, ], 0,
T

Q y x L
y

χ τ
∂

− = − = ∀ ∈ ∀ >
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                          (3.4) 

0
0 0 0 2

2 sinh at ,  [0, ], 0,
T
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x L

χ
χ τ τ

∂  
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where 
L

A
B

=  is the aspect ratio. 

 

The following non-dimensional variables are now defined to render the equations (3.2)-(3.7) dimensionless: 

 

2
, , , .o o

o

Tx y
t X Y u

L L B Q L
= = = =
τχ χ

                                          (3.8) 

 

Using equation (3.8) in equations (3.2)-(3.7), the following equations are obtained on completing the differentiation: 

 
2 2 2 2

2 2
, 0 1, 0 1, 0,

2 2

u u u X u Y u
X Y X Y t

t X Y X Y

∂ ∂ ∂ ∂ ∂
= + + + < < < < >
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subject to 

 

1 at 0,  [0,1], 0,
u

X Y t
X

∂
= − = ∀ ∈ ∀ >

∂
                                 (3.10) 

1 at 0,  [0,1], 0,
u

Y X t
Y

∂
= = ∀ ∈ ∀ >

∂
                    (3.11) 

( )1 2sinh at 1,  [0,1], 0,
u

t X Y t
X

∂
= − + = ∀ ∈ ∀ >

∂
                     (3.12) 

( )1 2cosh at 1,  [0,1], 0,
u

t Y X t
Y

∂
= − = ∀ ∈ ∀ >

∂
                     (3.13) 

[ ] [ ]21 at 0,  0,1 , 0,1 .u Y t X Y= + = ∀ ∈ ∀ ∈                     (3.14) 

 

It must be noted here that there is no analytical solution to the above IBVP. The hybrid method as explained in the previous 

section is used to solve the IBVP of equations (3.9)-(3.14).  

 

An unsteady three-dimensional heat conduction problem will now be considered with thermal anisotropy tensor, volumetric heat 

source and space- and time-dependent initial and boundary conditions of Dirichlet type. 
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4. UNSTEADY, THREE-DIMENSIONAL HEAT CONDUCTION EQUATION WITH ANISOTROPIC 

DIFFUSIVITY TENSOR, VOLUMETRIC HEAT SOURCE AND TIME- AND SPACE - DEPENDENT INITIAL 

AND BOUNDARY CONDITIONS 

 

 
 

 

 

 

 

Figure 3: Schematic of the three-dimensional, unsteady heat conduction problem. 

 

 

A heterogeneous rod of rectangular cross-section is considered as shown in Figure 3. It is assumed that the thermal diffusivity is 

a tensor given by: 
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 The mathematical model for this problem using Fourier second law is: 
2 2 2 2

0

2 2 2
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,
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< < < < < < >             (4.2) 

subject to the following initial and boundary conditions whose description is similar to that in the one-dimensional problem: 

[ ] [ ]at 0,  y 0, , z 0, , 0,oT T x B H τ= = ∀ ∈ ∀ ∈ ∀ >              (4.3) 

 

[ ] [ ]at 0,  x 0, , z 0, , 0,oT T y L H τ= = ∀ ∈ ∀ ∈ ∀ >               (4.4) 
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[ ] [ ]2

4
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o

L
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χ
τ
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[ ] [ ] [ ]at 0,  0, , 0, , 0, ,oT T x L y B z H= = ∀ ∈ ∀ ∈ ∀ ∈τ               (4.9) 

 

where 
1

B
A

L
= , 

2

H
A

L
= and S are the aspect ratios and a non-dimensional constant. 

 

The following non-dimensional variables are now defined to render the equations (4.2) to (4.9) dimensionless: 

 

2
, , , , .o o

o

T Tx y z
t X X Z u

L L B H T

−
= = = = =
τχ

                        (4.10) 

 

Using equation (4.10) in equations (4.2) to (4.9), the following equations are got on completing the differentiation: 

 

( )
2 2 2 2 2 2

2

2 2 2
,

2 2 2

0 1, 0 1, 0 1, 0,

u u u u X u Y u Z u
X Y Z S XYZ

t X Y Z X Y Z
X Y Z t

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
< < < < < < >

          (4.11) 

subject to  

 

( )0, , , 0, [0,1], [0,1], 0,u Y Z t Y Z t= ∈ ∈ ∀ >                 (4.12) 

( ),0, , 0, [0,1], [0,1], 0,u X Z t X Z t= ∈ ∈ ∀ >              (4.13) 

( ), ,0, 0, [0,1], [0,1], 0,u X Y t X Y t= ∈ ∈ ∀ >              (4.14) 

( ) ( ) ( )4
1, , , 1 , [0,1], [0,1], 0,tu Y Z t YZ e Y Z t= − ∈ ∈ ∀ >             (4.15) 

( ) ( ) ( )4
,1, , 1 , [0,1], [0,1], 0,tu X Z t XZ e X Z t= − ∈ ∈ ∀ >            (4.16) 

( ) ( ) ( )4
, ,1, 1 , [0,1], [0,1], 0,tu X Y t XY e X Y t= − ∈ ∈ ∀ >            (4.17) 

( ) [ ], , ,0 0, , , 0,1 .u X Y Z X Y Z= ∀ ∈               (4.18) 

 

It must be noted here that there is no analytical solution to the above IBVP. The hybrid method as explained in a previous section 

is used to solve the IBVP of equations (4.11)-(4.18). Before we move on to the discussion of results we first note the existence in 

literature of the Adomian solution for some particular forms of the three IBVPs considered in our study. These IBVPs are 

documented in the next section. 

 

5. NUMERICAL EXAMPLES 

 

     

 IBVP1 
2 2

2
, 0 1, 0,

2

u X u
X t

t X

∂ ∂
= < < >

∂ ∂
                                      (5.1) 
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subject to  
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t
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u X X X
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= ∀ > 

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             (5.2) 

 

IBVP2 

 

            

2 2 2 2

2 2
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2 2

u X u Y u
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τ

τ
∂ ∂ ∂
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    ( )
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u
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Y
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

∂ = = ∀ ∈ ∀ >
∂
∂ 
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∂ 
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     IBVP3 

 

    

( )
2 2 2 2 2 2

4

2 2 2
,

36 36 36
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XYZ
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= ∈ ∈ ∀ >

= ∈ ∈ ∀ >
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, , ,0 0, , , 0,1 .

t

u X Y Z X Y Z











∀ >

= ∀ ∈ 

                  (5.6) 

 

In Tables 1 we have compared the Wazwaz and Gorguis [11] Adomian solution of the above three problems with those obtained 

by the methodology of our study. After convincing ourselves of the validation of our results we next handled the three heat 

conduction problems with thermal anisotropy reported in this paper. We now move on to discuss the results of the study and 

make some general conclusions.  
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        one- dimensional    two- dimensional     three- dimensional 

t   Adomian  Hybrid      t   Adomian   Hybrid   t   Adomian   Hybrid  

0  0.0625000 0.0625000     0  0.2500000 0.2500000  0.001  0.00000000095  0.00000000095 

0.05 0.0657044 0.0657044  0.001 0.2500626 0.2500626  0.002  0.00000000191  0.00000000191 

0.10 0.0690731 0.0690731  0.002 0.2501255 0.2501255  0.003  0.00000000287  0.00000000287 

0.15 0.0726146 0.0726149  0.003 0.2501886 0.2501886  0.004  0.00000000382  0.00000000383 

0.20 0.0763376 0.0763391  0.004 0.2502520 0.2502520  0.005  0.00000000478  0.00000000478 

0.25 0.0802515 0.0802561  0.005 0.2503156 0.2503156  0.006  0.00000000574  0.00000000574 

0.30 0.0843661 0.0843767  0.006 0.2503795 0.2503795  0.007  0.00000000670  0.00000000671 

0.35 0.0886917 0.0887123  0.007 0.2504436 0.2504436  0.008  0.00000000766  0.00000000767 

0.40 0.0932390 0.0932749  0.008 0.2505080 0.2505080  0.009  0.00000000862  0.00000000863 

0.45 0.0980195 0.0980770  0.009 0.2505726 0.2505726  0.010  0.00000000958  0.00000000960 

 

Table1: Comparison of Adomian solution with hybrid solution for the one, two and three-dimensional problems of Wazwaz and Gorguis [11]. 
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6. RESULTS AND DISCUSSION 

 

The examples of heat transfer problems such as non-

uniform materials like composites, alloys, heterogeneous 

porous media with thermal equilibrium or non-

equilibrium, multi-layered media and such other 

problems can be studied with a combination of the 

temporal differential transform and finite difference 

method. This work is proposed for three heat conduction 

problems with variable coefficients. The thermal 

diffusivity being an anisotropic tensor leads to the 

variable coefficients in these equations. Further, 

constant/time-dependent heating or heat flux conditions 

are chosen for obtaining the particular solution of the 

equations in the absence/presence of heat source. The 

solution procedure first converts the parabolic type heat 

equation to an elliptic heat equation using the central 

difference method. The temporal differential transform 

method as used in the paper takes care of stability and 

the finite difference method on the resulting equation 

results in a system of diagonally dominant linear 

algebraic equations. The Gauss-Siedel iterative 

procedure then used to solve the linear system thus has 

assured convergence. The convergence is optimized in 

the paper computationally by proper selection of time 

step in the differential transform part of the algorithm 

and then the spatial step size in the finite difference part 

of the algorithm. Quite conveniently we may point to the 

excellent work of Jang et al. (2000) on the differential 

transform method of solution whose work clearly 

showed that the error remains bounded if we choose the 

time step-size to satisfy: 

 
1
16

(for 15 terms in the time-series).
[16]i

t
U

ε 
∆ <  

 
 

 

We have actually been governed by this choice of step-

size in our calculations and as a result we had a 

convergent solution. We now discuss the results of the 

computation obtained by a combination of two methods.  

 

In the one dimensional heat conduction problem there is 

time-dependent heating at one end of the rod and the 

entire length of the rod is thermally insulated. The other 

end of the rod is comparatively cold. The heat is thus 

transported along the length of the rod from the hot to the 

cold. This is also clearly shown by Figure 4. As time 

progresses one sees that temperature remains higher near 

regions of the hotter end of the rod, though decreasing 

with time.  
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Figure 4: Three dimensional plot of the temperature distribution ( ),u x t  for (a) 0t =  and (b) all time. 

 

Figure 5 is a plot of the temperature distribution of the 

two-dimensional problem at different times at different 

points in space. The temperature is the highest at points 

where the time-dependent heating faces are near. The 

temperature is the least at the points towards the end 

where the faces are opposite to the time-dependent heating 

faces. Overall the temperature decreases with time at all 

points of the plate and the plots have been shown for those 

times wherein concave portions of the surface become 

convex – an overturning of sorts seen in these plots. 
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Figure 5: Plot of u versus x and y for different values of t. 
 

The last plot in the paper shows the effect of heat source on the temperature distribution in the case of the three-dimensional 

problem. Clearly the heat source effect is more enhanced at points in the neighborhood of (1,1,1) compared to the other points. 

The points in the neighborhood of (0,0,0) are the ones that are least affected by the heat source. 

 

At any given point when the heat source is present the temperature is higher than when the heat source is absent. Therefore the 

rate of temperature increases when the heat source is present. 



1074 GU J Sci, 27(4):1063-1076 (2014)/Đ. Çilingir SUNGU, H. DEMĐR 

0
0.25

0.5

0.75

1

0
0.25

0.5

0.75

1

0

1

2

3

4

5

x 10
-5

yz

u

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1

0

1

2

3

4

5

6

x 10
-3

yz

u
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 (c) 0.5 , 0.5 , 0t x S= = =      (d) 0.5 , 0.5 , 1t x S= = =  
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  (g) 1.5 , 0.5 , 0t x S= = =     (h) 1.5 , 0.5 , 1t x S= = =   

 

Figure 6: Plot of u versus y and z at different times and different point along the length of the rod, with each row of figures having 

plots without/with heat source. 

 

The application of a combination of the temporal differential transform and finite difference method is thus shown to give 

satisfactory results in a physical problem. It must be emphasized that the method does not suffer from the instability problems 

usually seen in the case of parabolic problems. The methodology further allows one to go ahead with computation without 

having to look into stability considerations. 
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