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CONFIDENCE REGIONS FOR BIVARIATE PROBABILITY
DENSITY FUNCTIONS USING POLYGONAL AREAS

ORHAN KESEMEN, EDA ÖZKUL, AND ÜLKÜ ÜNSAL

Abstract. In this study, a polygonal approach is suggested to generalize the
notion of the confidence region of the univariate probability density function for
the bivariate probability density function. The equal density approach is used
to demonstrate that confidence regions can be polygonal shapes. The bisection
method is the preferred method in finding the equal density value that reveals
the desired confidence coeffi cient. Confidence regions estimate not only bivari-
ate unimodal probability functions but also bivariate multimodal probability
functions. An approach is enhanced to estimate these confidence regions for
probability density functions which are defined as rectangular, polygonal and
infinite expanse areas. In order to show the applicable of the proposed method,
four different examples are analyzed. The results show that the confidence re-
gion is found no matter how complex the distribution function. In addition,
the proposed method gives more effi cient results for multimodal probability
density functions.

1. Introduction

In statistics, a confidence interval is an estimation of a parameter which repre-
sents the population within an acceptable range. Confidence interval was firstly
identified, and its validity was proven by Neyman [1]. Tate and Klett [2] deter-
mined the optimal confidence interval and they estimated the optimal confidence
interval for a normal distribution. Then, Dunn [3, 4] presented several procedures
for determining the rectangular confidence regions. Chew [5] compiled the formulas
for confidence, prediction, and tolerance regions for the multivariate normal distri-
bution for the various cases of known and unknown mean vector and covariance
matrix. Sidak [6] proved the validity of the rectangular confidence regions for the
means of multivariate normal distributions given by Dunn [3, 4]. Hu and Yang [7]
proposed a distribution-free approach, based on a few basic geometrical principles,
to determine the confidence region for two or more variables. Also, they analyzed
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some biological data sets to demonstrate the use of the proposed method for ge-
nomics. Mammen and Polonik [8] constructed a confidence region for a density
level set using kernel density estimators. Martin [9] described an approach, based
on random sets, to construct exact confidence regions that attain the nominal cov-
erage probability. Rambaud et al. [10] used the confidence regions to determine the
characteristics for diagnosis of pneumonia in children younger than 5 years. Harrar
and Xu [11] developed methods to construct confidence regions for level differences
in the multi-dimensional cases and they applied it to the profile analysis.
This paper proposes the confidence regions for bivariate probability density func-

tions using polygonal areas. The aim of this study is to estimate a more accurate
confidence region by utilizing the equal density approach.

2. Confidence Interval

In a probability density function, infinite confidence interval might be defined
that gives same confidence coeffi cient. Three different approaches are improved for
choosing the most convenience in these intervals. These approaches are

a) The equally tailed confidence interval,
b) The shortest confidence interval,
c) The equal density confidence interval.

These methods show the same limits in symmetric distribution, such as normal
distribution. However, the shortest confidence interval and the equal density confi-
dence interval estimate the same limits while the equally tailed confidence interval
estimates different limits in asymmetric distributions [8, 12, 13, 14]
Suppose X = {X1, X2, ..., Xn} are random samples that are taken from an i.i.d.

This distribution’s probability density function is f(x; θ, ...) and the parameter θ
is defined θ ∈ R. The values x = {x1, x2, ..., xn} are the observed values of X.
Interval estimation of θ for these observed values are executed by means of the two
bound values L and U . These two limit values must satisfy the condition L 6 U
for all x values. As a result, interval [L,U ] should involve the parameter θ with a
certain probability (1− α). This probability value is called a confidence coeffi cient.
This confidence coeffi cient constitutes the confidence interval when it is used in a
format such as (1).

Pr(L 6 θ 6 U) = 1− α (1)

Here, the value α is the significance coeffi cient which is determined by the researcher
and it ranges from (0, 1).

2.1. The Equally Tailed Confidence Interval. The equally tailed confidence
interval is used commonly in the literature. Statistic θ∗ ∼ Φ(x), which is obtained
from a sample, is an estimation of the parameter θ of the discussed population. If
the following condition is satisfied, this interval is called the equally tailed confidence
interval.
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Pr [L 6 θ 6 U | Pr(θ > U)] = 1− α (2)

According to this condition, the probabilities of parameter θ, being less than the
lower bound and being greater than the upper bound, are equal. Therefore, in this
interval, the right and the left side of the confidence region are equal to each other.
The parameter θ of the population with the (1− α) confidence coeffi cient can

be calculated with the inverse distribution function below.

Pr
[
Φ−1 (α/2; θ∗, ...) 6 θ 6 Φ−1 (1− α/2; θ∗, ...)

]
= 1− α (3)

2.2. The Shortest Confidence Interval. The shortest confidence interval is de-
fined as (4).

Pr [L 6 θ 6 U | min(U − L)] = 1− α (4)

There are infinite confidence limits with the same confidence level. In this method,
confidence limits which have the minimum confidence width (U − L) is preferred.
Although the shortest confidence interval gives a more precise estimation, it is not
preferred due to diffi culty of its calculation.

2.3. The Equal Density Confidence Interval. The equal density method presents
a different approach to the shortest confidence method. The basis of this approach
is the conditional equality which is given as follows.

Pr [L 6 θ 6 U | φ(L; θ, ...) = φ(U ; θ, ...)] = 1− α (5)

According to (5), the probability density values are equal in the shortest confidence
limits with the (1− α) confidence coeffi cient.
This approach is novel because it determines a cutting level in the y axis rather

than research shortest confidence interval in the x axis, in order to calculate the
shortest confidence interval. According to the cutting level, the confidence limits
are determined as the roots of the following equation.

φ(x; θ, ...)− ζ = 0 (6)

This method is superior because it determines the confidence interval within a
multimodal probability density function [14].

3. Confidence Region in Polygonal Area

The univariate confidence region is defined as a region that is restricted by the
two bounds, (L,U), of the probability density function. These bounds can be deter-
mined by employing the afore-mentioned methods. However, the confidence region
for bivariate probability density function cannot be estimated by using the equally-
tailed confidence interval. In this case, the confidence region with the smallest
area can be searched. Although there are many regions with the same volume, the
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confidence region with the smallest area can be found by utilizing two objective
optimization techniques [13]. Since there is no relationship between two objective
functions in multi objective optimization problems, several solutions with the same
(1−α) confidence coeffi cient are selected to solve the problem, and the region with
the smallest area is considered the confidence region. Although the selected region
is likely the desired region, it is possible for deviations to exist. The aim of this
study is to estimate a more accurate confidence region by utilizing the equal density
approach.

3.1. Determining the Search Area for the Confidence Region. It is often
impossible to determine a function, which defines the bounds of the region, that
estimates a confidence region for bivariate arbitrary probability density functions.
To solve this problem, this study considers the confidence region to be polygonal
region. A polygonal region is a closed region which is formed by lines with com-
bining clockwise or counterclockwise set points. The determination of this region
on an infinite plane is often not possible due to the required computation time and
memory usage. To solve this problem, an approximate search area is determined
according to the probability density function within various situations, and thus
the confidence region can be estimated with greater accuracy in this region. The
determination of the search area for some probability density functions is given
below.

3.1.1. The Search Area for the Rectangular Definition Region. In Figure 1(a), the
probability density function of the discussed statistics is defined in a polygonal
(rectangular) region

(
Φ(x, y) : [a, b]× [c, d]→ R2

)
. Its search area(

Ω = {Pi = (xi, yi) , i = 1, 2, . . . , 4}
)
is described in Figure 1(b).

Figure 1. Determination of the search area of the rectangular
definition region, (a) Rectangular definition region, (b) Search
area.
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3.1.2. The Search Area for the Arbitrary Definition Region. In Figure 2(a), the
probability density function of the discussed statistics is defined in an arbitrarily
restricted area. This area can be taken from digital images, maps, satellite images
etc. There are many applications of bivariate density functions that are in a region
restricted by polygonal area. These applications include the analysis of pollution or
crime rate in a city, of the earthquake risk distribution and frequency in a country, of
the density of a certain tree species in a forest [15], of the intensity of the dispersion
of harmful insects in a field, of the traffi c density in a particular area and of the
location and transmission of an epidemic illness in a country. In addition, there
could be multiple piecewise density functions of the examined area in the polygonal
region. In this regard, the applications of bivariate density functions extend to many
physically and politically divided cities (eg. Belfast, Beirut, Jerusalem, Mostar and
Nicosia). That said, the data in the politically divided cities changes significantly
over time. In this case, it may not be possible to evaluate an entire city in the same
way that a region is evaluated. Each example may need statistical analysis based
on a probability density function that is defined within a region with arbitrarily
determined limits. A polygonal structure should be used to define an arbitrary
region. Manual or automatic identification can determine the nodes of the polygonal
area. In automatic identification, the examined region must be converted to a digital
image. The nodes of the objects in the digital images are automatically determined
by using the dominant point detection algorithm [16]. In this case, the search area,
Ω = {Pi = (xi, yi) , i = 1, 2, . . . , NΩ}, is defined as a polygonal region consisting of
N nodes.

Figure 2. Determination of the search area of the polygonal def-
inition region (a) Arbitrary definition region (African content) (b)
Converting the arbitrary region to the polygonal search area via
dominant points.
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Figure 3. Determination of the search area via the points which
are randomly generated from the distribution function, (a) Ran-
domly generated points in an infinite definition region (b) Defini-
tion of the polygonal search area consisting of the random points
(c) Determination of the rectangular search area on the boundaries
of the random points (d) Determination of the expanded search
area.

3.1.3. The Search Area for the Infinite Definition Region. The probability density
functions are often defined in an infinite or semi-infinite space. In this study, the
search area is determined as a finite region which has a higher confidence coeffi -
cient instead of an infinite region due to the diffi culty of searching within an infinite
region. In this regard, the proposed automatic solution requires generating a suffi -
ciently random number(point) from the probability density function in this region
(Figure 3(a)). This study proposes two approaches to determine the search area
via these random points [17].
The first approach defines a polygonal search area Ω = {Pi = (xi, yi) , i = 1, 2, . . . , NΩ}

(Figure 3(b)) in which each point in this convex polygon surrounds random points
called nodes The second approach determines a rectangular search area (Figure
3(c)) consisting of bounds of randomly generated numbers (Ω : [min (X),max (X)]×
[min (Y ),max (Y )]). However, in order to find the confidence region within the de-
sired level for each of these two approaches, generated numbers must be numerous
or selected search area must be expanded (Figure 3(c)).
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3.2. Triangulation of the Search Area. In this study, a polygonal approach is
proposed to find the confidence region within the search area. The equal density
approach can be only used to find the coordinates of the nodes of the polygonal
confidence region because there is no tail definition for equally area or equally
volume in the two-variable expression. In addition, the term of the shortest region
converts to the two objective optimization problem. In this optimization problem,
the reliability of computation is weak because there is no relationship between
objective functions. As the equal density approach creates polygonal closed curves
similar to contour curves, it becomes simpler to apply as compared to the other
approaches. In order to more quickly reach the solution in an infinite space, the
search area is divided into small triangles and then the nodes of the polygonal
confidence region are sought in the edges of these triangles.
If the search area has a polygonal structure, grid points that are created around

the polygon equidistantly in rectangular area are selected via the minimum and
the maximum coordinates of the polygon nodes. These points are then recorded
in a list (Figure 4(a)). Grid points that fall out of the polygon are removed from
the list. The remaining grid points and nodes within the polygon are recorded on
the same list, and obtained point set are divided into small triangles by using the
Delaunay triangulation algorithm [18] (Figure 4(b)). If the polygonal confidence
region needs to be more sensitively bound, then the region should be gridded more
closely and divided into more small triangles (Figure 5).

Figure 4. Dividing the polygonal area into small triangles, (a)
Choosing the grid points with the size 5×5 grid; (b) Triangulation
of the polygonal area.

When the number of grids increases, the sensitivity of confidence region also
increases. Computation time and memory usage also increase. Therefore, the
choice of the number of grids belongs to the researcher. However, it can be easily
applied if the search area has a rectangular shape.
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Figure 5. Dividing the polygonal area into small triangles, (a)
Choosing the grid points with the size 10× 10 grid; (b) Triangula-
tion of the polygonal area.

There are many studies in the literature about the optimal grid size for calcu-
lating numerical integration [19, 20, 21, 22]. Since this study is based on statistical
distributions, it is necessary to investigate whether the error is significant or not.
Selected statistical distributions can be used in many polygonal areas with different
parameters. Also, distributions in the real life may be mixed or truncated distribu-
tions. In that case, it must be multiplied by a constant c, for the summation of the
distribution value to be 1. Therefore, the constant c depends on the number of the
selected grids. The best approach is to select the number the grid size according to
the researcher’s purpose. Nevertheless, the following equation can be given as an
appropriate approach to determine the number of grids in each case.

I = arg min
i=1,2,...

∣∣∣∣Φi − Φi−1

Φi
− ε
∣∣∣∣ (7)

This equation gives the number of grids of two regions. Φi is the total volume of
the two grids and ε is the tolerance value.

3.3. Computing the Probability in the Polygonal Area. The volume be-
tween the surface of the bivariate probability density function, defined in polygonal
area and x-y plane, gives the sum of the probability value in the polygonal area.
Hence, the probability value is calculated for each triangle within the triangulated
polygonal region in order to estimate this volume. Analytical and numerical ap-
proaches for the calculation of the probability in the polygonal region are improved
by Kesemen et. al [15]

3.4. Determining the Polygonal Area for the Cutting Level. In this study,
the equal density approach is used to determine the confidence region from the
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probability density function which is defined in the polygonal area. To explain the
equal density approach, the model, shown in Figure 6, is chosen as an example.
Figure 6(a) shows the values of two variable probability density functions in a
polygonal area according to color changes. These color changes are shown in the
surface form in Figure 6(b).

Figure 6. Normal distribution which is limited by the African
continent, (a) Contour format; (b) Surface format.

Figure 7(a) shows the intersection of a plane at ζ level. It is selected parallel
to the x-y plane of the model given in Figure 6(b), with the probability density
function placed in a polygonal area. The probability density function, which is
intersected by ζ plane, returns to an area of zero under the plane. The area over
the plane remains the same (Figure 7(b)).

Figure 7. Cutting region, (a)Applying the cutting level to the
probability density function; (b) Partial probability density func-
tion in the cutting region.

Each line segment between two nodes in the triangulated search area is labeled.
Each labeled line segment and its neighbor nodes are recorded in a list. If the line
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segment is one of the edges of the polygon, it has only one neighbor node (Figure
8(a)). If not, it has two neighbor nodes (Figure 8(b)).

Figure 8. Labeling line segments, (a) Edge line segment and its
neighbor nodes; (b) Inner line segment and its neighbor nodes.

The bold line segment in Figure 8(a) is between P1 and P2. Since it is an edge of
the polygon, it has only one neighbor node (P3). The bold line segment in Figure
8(b) is between P1 and P2. Since it is not an edge of the polygon, it has two
neighbor nodes (P3 and P4).
Two-dimensional linear interpolation is used for the determination of the cutting

points of all lines cut by the ζ, which is chosen by employing the equal density
approach. According to interpolation, if the cutting point of each line is on the
line segment, it is recorded as the inner polygon node (Figure 9(a), Figure 10(a),
Figure 11(a)). These nodes Qζ : {qi = (xi, yi) , i = 1, 2, . . . , NQ} are listed by the
line segment labels. The inner polygon nodes must be labeled in order to form a
polygon. For this, in this study, the neighbor-tracking approach is used. According
to this approach, labeling is performed by tracking the cutting nodes on the line
segments (the dashed lines in Figure 11) in the neighbor nodes starting from an
initial point (Figure 9(b), Figure 10(b), Figure 11(b)). If all cutting nodes are on
the inner lines of the polygon, an inner polygon is formed by starting a random
node and tracking the desired direction (Figure 9).
However, some cutting nodes fall on the line segment (Figure 10). Any edge-

cutting node is chosen as the initial point. Then, tracking is performed from the
initial point to the inner cutting nodes. When an edge-cutting node is reached,
the tracking process continues until it reaches the initial cutting point. Thus, the
cutting polygon is determined. After tracking the second edge cutting node, the
edge node with the highest density value is most preferred. In Figure 10(b), this
node is shown in a square by label 20.
If the cutting points cut the edges piece by piece (Figure 11(a)), tracking is

performed from any edge cutting point to the inner nodes (Figure 11(a)). If an
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Figure 9. Inner polygon nodes according to selected cutting level,
(a) Inner polygon nodes; (b) Sequentially labeled inner polygon
nodes; (c) Inner polygon area.

Figure 10. Inner polygon nodes according to selected cutting
level, (a) Inner polygon nodes; (b) Sequentially labeled inner poly-
gon nodes; (c) Inner polygon area.

edge node is reached in the tracking process, the tracking is continued on the edge
node (Figure 11(a)) until another edge node is reached. If the reached node is not
on the tracking list, tracking is performed on the other nodes (Figure 11(a)). This
process is continued until the edge cutting node is on the tracking list (Figure 11).
Although the tracking process is finished, there are still unlabeled cutting nodes

remaining. This shows that there is more than one confidence region. In this case,
independent regions are determined by performing an independent tracking process
to the unlabeled nodes.

3.5. Finding the Confidence Region within the Search Area. There is a
relationship between the probability value (P ) of each level at the cutting region
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Figure 11. Inner polygon nodes according to selected cutting
level, (a) Inner polygon nodes; (b) Sequentially labeled inner poly-
gon nodes; (c) Inner polygon area.

and the cutting level (ζ). Based on this relationship, the probability value can be
written as a function of ζ below.

P (ζ) = Pr [(X,Y ) ∈ Qζ | φ (xi, yi) = ζ, i = 1, 2, . . . , NQ] (8)

In this approach, the bisection method is preferred in order to find the density
level (ζ) which gives the desired probability value (1− α). According to the bisec-
tion method, two initial values, given below, are determined as the minimum and
maximum value of the probability density value of all nodes.

ζa = min{φ (xi, yi)}, (i = 1, 2, ..., NT )

ζb = max{φ (xi, yi)}, (i = 1, 2, ..., NT )
(9)

The probabilities of these levels are expected to be as follows.

P (ζa) = 1

P (ζb) = 0
(10)

This only occurs if the distribution function of the polygonal region is the uniform
distribution. In this case, polygon points are collapsed inward or expanded outward
until the desired probability value is obtained. Eventually, polygonal bounds of the
region, which provide the desired confidence coeffi cient within a polygonal search
area, are determined.
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Algorithm 1. Algorithm of the determination of the polygonal confidence
Step 1. Determine polygon nodes of the search area,
Step 2. Divide the polygonal search area into small triangles by gridding the area,
Step 3. Label the line segment between two neighbor nodes, forming the triangles,
Step 4. Determine the lower and upper initial cutting levels (ζa, ζb)

as in Equation (9),
Step 5. Determine the search level ζc,

ζc = (ζa + ζb)/2
Step 6. Determine the locations of the line segments which are cut by search level,
Step 7. Determine the cutting region Qζ via cutting points,
Step 8. Apply the triangulation algorithm to the cutting region

after the gridding process,
Step 9. Calculate the probability value P (ζc) of the triangulated cutting region,
Step 10. If |P (ζc)− (1− α)| < ε, stop the process,
Step 11. Update the lower and the upper levels

If P (ζc) < (1− α)
ζb = ζc

else,
ζa = ζc

Step 12. Go to Step 5.

4. Experimental Results

In this study, three different examples are used to measure the performance
of the proposed method. The first example aims to determine the confidence re-
gion for the standard normal distribution that is defined in an infinite space. In
this example, the performance of the proposed method is shown by comparing the
polygonal confidence regions. The second example searches the confidence region
for the quadratic gamma distribution that is defined in a semi-infinite space. In
the third example, the performance of the proposed method for multimodal prob-
ability density function is also analyzed. The fourth example examines the degree
of influence by the northern Anatolian fault line of Sivas province.
For this study, a computer with an Intel R© Core i7 2.40GHz processor was used,

and MATLAB R© was used for the application. For all models, the contour that
passes the through the middle of the initially selected minimum and maximum
contours are determined in each iteration and then, the cumulative distribution
value of its region is calculated. Until the obtained value converges the desired
confidence level, the iterations are continued. The last found contour is assumed
the desired contour.

Example 1. This example determines the confidence region with the confidence
coeffi cients α = 0.01, 0.025, 0.05, 0.1 for the bivariate standard normal distribution
function defined in an infinite space. Its probability density function is given in
Equation (11).
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Table 1. Confidence coeffi cients for the significance level α = 0.01

Iter. No. ζa ζb ζc P (ζc) | 0.99− P (ζc) |
1 0.000000 0.152609 0.076304 0.515705 0.474295
2 0.000000 0.076304 0.038152 0.762730 0.227270
3 0.000000 0.038152 0.019076 0.882182 0.107818
4 0.000000 0.019076 0.009538 0.940484 0.049516
5 0.000000 0.009538 0.004769 0.970907 0.019093
6 0.000000 0.004769 0.002385 0.985380 0.004620
7 0.000000 0.002385 0.001192 0.992541 0.002541
8 0.001192 0.002385 0.001788 0.988984 0.001016
9 0.001192 0.001788 0.001490 0.990809 0.000809

Table 2. Confidence coeffi cients for the significance level α = 0.025

Iter. No. ζa ζb ζc P (ζc) | 0.975− P (ζc) |
1 0.000000 0.152609 0.076304 0.515705 0.459295
2 0.000000 0.076304 0.038152 0.762730 0.212270
3 0.000000 0.038152 0.019076 0.882182 0.092818
4 0.000000 0.019076 0.009538 0.940484 0.034516
5 0.000000 0.009538 0.004769 0.970907 0.004093
6 0.000000 0.004769 0.002385 0.985380 0.010380
7 0.002385 0.004769 0.003577 0.977459 0.002459
8 0.003577 0.004769 0.004173 0.974140 0.000860

φ (x, y) =
1

2π
e

(
− x2+y2

2

)
(11)

The search area is determined as Ω : [−4, 4] × [−4, 4]. Some probability values
may be outside of the region due to the conversion of the probability density function,
which is defined in an infinite space to the search area in a finite space. Therefore,
the probability value in the search area is calculated as 0.998. This probability value
can be suffi cient for the search area. The tolerance value (ε) is determined as
1 × 10−3 and the region is also gridded according to the number of 20 × 20 grids.
Table 1 shows the simulation results for the significance level 0.01.
According to Table 1, the confidence coeffi cient 0.99 was reached in the 9th it-

eration. The confidence regions obtained from each iteration are given in Figure
12(a). Figure 12(b) demonstrates the optimum confidence region for α = 0.01.
The simulation results for the significance level 0.025 are given in Table 2.
According to Table 2, the confidence coeffi cient 0.975 was reached in the 8th

iteration. The confidence regions obtained from each iteration are given in Figure
13(a). Figure 13(b) demonstrates the optimum confidence region for α = 0.025.
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Figure 12. Finding the confidence region for α = 0.01, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Figure 13. Finding the confidence region for α = 0.025, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 3 shows the simulation results for the significance level 0.05.
According to Table 3, the confidence coeffi cient 0.95 was reached in the 9th it-

eration. The confidence regions obtained from each iteration are given in Figure
14(a). Figure 14(b) demonstrates the optimum confidence region for α = 0.05.
Table 4 shows the simulation results for the significance level 0.10.
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Table 3. Confidence coeffi cients for the significance level α = 0.05

Iter. No. ζa ζb ζc P (ζc) | 0.95− P (ζc) |
1 0.000000 0.152609 0.076304 0.515705 0.434295
2 0.000000 0.076304 0.038152 0.762730 0.187270
3 0.000000 0.038152 0.019076 0.882182 0.067818
4 0.000000 0.019076 0.009538 0.940484 0.009516
5 0.000000 0.009538 0.004769 0.970907 0.020907
6 0.004769 0.009538 0.007154 0.956182 0.006182
7 0.007154 0.009538 0.008346 0.948216 0.001784
8 0.007154 0.008346 0.007750 0.952225 0.002225
9 0.007750 0.008346 0.008048 0.950226 0.000226

Figure 14. Finding the confidence region for α = 0.05, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

According to Table 4, the confidence coeffi cient 0.90 was reached in the 9th it-
eration. The confidence regions obtained from each iteration are given in Figure
15(a). Figure 15(b) demonstrates the optimum confidence region for α = 0.10.
In order to measure the performance of the proposed method, the confidence

regions for the standard normal distribution must be determined according to the
given confidence coeffi cients. As shown in Equation (11), the desired confidence
region is symmetrical in all directions. According to each of the three approaches
mentioned in Section 2, the confidence region has a circular structure. Thus, the
first parameter of the circle is the center point, (0, 0), as seen in Equation (11).
To find the other parameter, the radius, the probability density function should be
converted to the polar coordinate system from the Cartesian coordinate system. This
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Table 4. Confidence coeffi cients for the significance level α = 0.10

Iter. No. ζa ζb ζc P (ζc) | 0.90− P (ζc) |
1 0.000000 0.152609 0.076304 0.515705 0.384295
2 0.000000 0.076304 0.038152 0.762730 0.137270
3 0.000000 0.038152 0.019076 0.882182 0.017818
4 0.000000 0.019076 0.009538 0.940484 0.040484
5 0.009538 0.019076 0.014307 0.912242 0.012242
6 0.014307 0.019076 0.016692 0.897226 0.002774
7 0.014307 0.016692 0.015499 0.904739 0.004739
8 0.015499 0.016692 0.016095 0.901006 0.001006
9 0.016095 0.016692 0.016394 0.899079 0.000921

Figure 15. Finding the confidence region for α = 0.10, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

function is converted as (12).

Φ (r, θ) =
1

2π

∫ θ

0

∫ r

0

e−
r2

2 r drdθ (12)

Equation (12) is updated to the following equation by integrating θ into the interval
[0, 2π]. θ is integrated due to the equality of the changes in each direction of the
probability density function.

Φ (r, 2π) = ΦR(r) =

∫ r

0

e−
r2

2 r dr (13)

The distribution function based on r is found below.

ΦR (r) = 1− e− r2

2 (14)
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Table 5. Radius sizes and relative absolute error

α rα Eα 100 (1− Eα)

0.01 3.0349 0.0197 98.0306
0.025 2.7162 0.0168 98.3199
0.05 2.4477 0.0144 98.5593
0.1 2.1460 0.0162 98.3779

The desired confidence region Ω is shown as (15).

Pr ((X,Y ) ∈ Ω) = 1− α
= ΦR (r)− ΦR(0)

(15)

In this equation, ΦR (0) = 0. Thus, Equation (16) is obtained by updating the
equation above.

ΦR (r) = 1− α

= 1− e− r2

2

(16)

The following equation is obtained when the equation above is updated.

rα =
√
−2 log (α) (17)

Through this equation, radius sizes with different α values are given Table 5.
In order to measure the performance of the proposed method, the radius that

results from Equation (17) should be compared with the confidence region determined
by employing the proposed method. In order to do this, the circle and the polygon
are superimposed in Figure 16(a). Also, to calculate more clearly the differences
between two shapes, the points on the circle are added to the polygon (Figure 16(b)).
The sectors are formed by the drawing of line segments from each polygon node to
the center of the circle. Then, the relative absolute error is calculated by determining
the ratio of the sum of the subtraction of the sectors and triangles with the entire
area of the circle (Figure 16(c)). It is demonstrated as follows.

Eα =

∑n
i=1 |Sectori − Trianglei|

πr2
α

(18)

The relative absolute error and percent performance rate for all significance values
are shown in Table 5.

Example 2. In this example, the aim is to determine the confidence regions for
bivariate Gamma distribution within a semi-infinite space. The probability density
function of the Gamma distribution is given as (19)

φ (x, y) =
1

4
x2y2 e−(x+y) (19)
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Figure 16. The calculation of the relative absolute error value,
(a) The theoretical confidence region boundary (dashed curve) with
the polygonal confidence region boundary (solid lines); (b) Deter-
mining the junction points of the boundaries (black points) and
recording them to polygonal array; (c) The determination of sec-
tors that draw lines from all points of the polygon to the center of
the circle and the determination of the differences with the sector
and the triangle (shaded area).

Table 6. Confidence coeffi cients for the significance level α = 0.01

Iter. No. ζa ζb ζc P (ζc) | 0.99− P (ζc) |
1 0.000000 0.072871 0.036436 0.466596 0.523404
2 0.000000 0.036436 0.018218 0.720246 0.269754
3 0.000000 0.018218 0.009109 0.854392 0.135608
4 0.000000 0.009109 0.004554 0.922488 0.067512
5 0.000000 0.004554 0.002277 0.958070 0.031930
6 0.000000 0.002277 0.001139 0.976851 0.013149
7 0.000000 0.001139 0.000569 0.987064 0.002936
8 0.000000 0.000569 0.000285 0.991079 0.001079
9 0.000285 0.000569 0.000427 0.989236 0.000764

Table 6 shows the simulation results for the significance level 0.01.
According to Table 6, the confidence coeffi cient 0.99 was reached in the 9th it-

eration. The confidence regions obtained from each iteration are given in Figure
17(a). Figure 17(b) demonstrates the optimum confidence region for α = 0.01.
The simulation results for the significance level 0.025 are given in Table 7.
According to Table 7, the confidence coeffi cient 0.975 was reached in the 9th

iteration. The confidence regions obtained from each iteration are given in Figure
18(a). Figure 18(b) demonstrates the optimum confidence region for α = 0.025.
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Figure 17. Finding the confidence region for α = 0.01, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 7. Confidence coeffi cients for the significance level α = 0.025

Iter. No. ζa ζb ζc P (ζc) | 0.975− P (ζc) |
1 0.000000 0.072871 0.036436 0.466596 0.508404
2 0.000000 0.036436 0.018218 0.720246 0.254754
3 0.000000 0.018218 0.009109 0.854392 0.120608
4 0.000000 0.009109 0.004554 0.922488 0.052512
5 0.000000 0.004554 0.002277 0.958070 0.016930
6 0.000000 0.002277 0.001139 0.976851 0.001851
7 0.001139 0.002277 0.001708 0.967380 0.007620
8 0.001139 0.001708 0.001423 0.972095 0.002905
9 0.001139 0.001423 0.001281 0.974489 0.000511

Table 8 shows the simulation results for the significance level 0.05.
According to Table 8, the confidence coeffi cient 0.95 was reached in the 10th

iteration. The confidence regions obtained from each iteration are given in Figure
19(a). Figure 19(b) demonstrates the optimum confidence region for α = 0.05.
Table 9 shows the simulation results for the significance level 0.10.
According to Table 9, the confidence coeffi cient 0.90 was reached in the 10th

iteration. The confidence regions obtained from each iteration are given in Figure
20(a). Figure 20(b) demonstrates the optimum confidence region for α = 0.10.

Example 3. This example determines the confidence regions for mixture normal
distribution based on the African continent as a polygonal area. Based on the pixel
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Figure 18. Finding the confidence region for α = 0.025, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 8. Confidence coeffi cients for the significance level α = 0.05

Iter. No. ζa ζb ζc P (ζc) | 0.95− P (ζc) |
1 0.000000 0.072871 0.036436 0.466596 0.483404
2 0.000000 0.036436 0.018218 0.720246 0.229754
3 0.000000 0.018218 0.009109 0.854392 0.095608
4 0.000000 0.009109 0.004554 0.922488 0.027512
5 0.000000 0.004554 0.002277 0.958070 0.008070
6 0.002277 0.004554 0.003416 0.940103 0.009897
7 0.002277 0.003416 0.002847 0.948978 0.001022
8 0.002277 0.002847 0.002562 0.953394 0.003394
9 0.002562 0.002847 0.002704 0.951218 0.001218
10 0.002704 0.002847 0.002775 0.950116 0.000116

length of the African continent, which is taken as a digital image, the probability
density function is given below.

φ (x, y) =
1

3300
e−

(x−120)2+(y−60)2
1000 +

1

4000
e−

(x−50)2+(y−125)2
700 (20)

Table 10 shows the simulation results for the significance level 0.01.
According to Table 10, the confidence coeffi cient 0.99 was reached in the 4th

iteration. The confidence regions obtained from each iteration are given in Figure
21(a). Figure 21(b) demonstrates the optimum confidence region for α = 0.01.
The simulation results for the significance level 0.025 are given in Table 11.
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Figure 19. Finding the confidence region for α = 0.05, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 9. Confidence coeffi cients for the significance level α = 0.10

Iter. No. ζa ζb ζc P (ζc) | 0.90− P (ζc) |
1 0.000000 0.072871 0.036436 0.466596 0.433404
2 0.000000 0.036436 0.018218 0.720246 0.179754
3 0.000000 0.018218 0.009109 0.854392 0.045608
4 0.000000 0.009109 0.004554 0.922488 0.022488
5 0.004554 0.009109 0.006832 0.888147 0.011853
6 0.004554 0.006832 0.005693 0.905481 0.005481
7 0.005693 0.006832 0.006262 0.896776 0.003224
8 0.005693 0.006262 0.005978 0.901152 0.001152
9 0.005978 0.006262 0.006120 0.898973 0.001027
10 0.005978 0.006120 0.006049 0.900064 0.000064

Table 10. Confidence coeffi cients for the significance level α = 0.01

Iter. No. ζa ζb ζc P (ζc) | 0.99− P (ζc) |
1 0.000000 0.000301 0.000151 0.513829 0.476171
2 0.000000 0.000151 0.000076 0.811344 0.178656
3 0.000000 0.000076 0.000038 0.947257 0.042743
4 0.000000 0.000038 0.000019 0.990765 0.000765

According to Table 11, the confidence coeffi cient 0.975 was reached in the 5th

iteration. The confidence regions obtained from each iteration are given in Figure
22(a). Figure 22(b) demonstrates the optimum confidence region for α = 0.025.
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Figure 20. Finding the confidence region for α = 0.10, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Figure 21. Finding the confidence region for α = 0.01, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 12 shows the simulation results for the significance level 0.05.
According to Table 12, the confidence coeffi cient 0.95 was reached in the 9th

iteration. The confidence regions obtained from each iteration are given in Figure
23(a). Figure 23(b) demonstrates the optimum confidence region for α = 0.05.
Table 13 shows the simulation results for the significance level 0.10.
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Table 11. Confidence coeffi cients for the significance level α = 0.025

Iter. No. ζa ζb ζc P (ζc) | 0.975− P (ζc) |
1 0.000000 0.000301 0.000151 0.513829 0.461171
2 0.000000 0.000151 0.000076 0.811344 0.163656
3 0.000000 0.000076 0.000038 0.947257 0.027743
4 0.000000 0.000038 0.000019 0.990765 0.015765
5 0.000019 0.000038 0.000029 0.975359 0.000359

Figure 22. Finding the confidence region for α = 0.025, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 12. Confidence coeffi cients for the significance level α = 0.05

Iter. No. ζa ζb ζc P (ζc) | 0.95− P (ζc) |
1 0.000000 0.000301 0.000151 0.513829 0.436171
2 0.000000 0.000151 0.000076 0.811344 0.138656
3 0.000000 0.000076 0.000038 0.947257 0.002743
4 0.000000 0.000038 0.000019 0.990765 0.040765
5 0.000019 0.000038 0.000029 0.975359 0.025359
6 0.000029 0.000038 0.000033 0.963739 0.013739
7 0.000033 0.000038 0.000036 0.956269 0.006269
8 0.000036 0.000038 0.000037 0.951965 0.001965
9 0.000037 0.000038 0.000037 0.949513 0.000487

According to Table 13, the confidence coeffi cient 0.90 was reached in the 9th

iteration. The confidence regions obtained from each iteration are given in Figure
24(a). Figure 24(b) demonstrates the optimum confidence region for α = 0.10.
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Figure 23. Finding the confidence region for α = 0.05, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 13. Confidence coeffi cients for the significance level α = 0.10

Iter. No. ζa ζb ζc P (ζc) | 0.90− P (ζc) |
1 0.000000 0.000301 0.000151 0.513829 0.386171
2 0.000000 0.000151 0.000076 0.811344 0.088656
3 0.000000 0.000076 0.000038 0.947257 0.047257
4 0.000038 0.000076 0.000057 0.881265 0.018735
5 0.000038 0.000057 0.000047 0.914899 0.014899
6 0.000047 0.000057 0.000052 0.898041 0.001959
7 0.000047 0.000052 0.000050 0.906344 0.006344
8 0.000050 0.000052 0.000051 0.902225 0.002225
9 0.000051 0.000052 0.000051 0.900138 0.000138

Example 4. In this example, earthquake risk distribution of Sivas province is mod-
eled linearly according to North Anatolian fault line [23] and its confidence region
is estimated. Based on the pixel length of the Sivas province, which is taken as a
digital image, the probability density function is given below.

φ (x, y) =
155−

∣∣(x− 150) cos
(

17π
12

)
+ (y − 160) sin

(
17π
12

)∣∣
1.6× 106 (21)

In (21), the decreasing earthquake intensity risk in the direction parallel to the
fault line is modeled as a linear decreasing probability density function with respect
to the fault line.
Table 14 shows the simulation results for the significance level 0.01.
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Figure 24. Finding the confidence region for α = 0.10, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 14. Confidence coeffi cients for the significance level α = 0.01

Iter. No. ζa ζb ζc P (ζc) | 0.99− P (ζc) |
1 0.000000 0.000097 0.000049 0.805538 0.184462
2 0.000000 0.000049 0.000024 0.980396 0.009604
3 0.000000 0.000024 0.000012 0.995995 0.005995
4 0.000012 0.000024 0.000018 0.989925 0.000075

Table 15. Confidence coeffi cients for the significance level α = 0.025

Iter. No. ζa ζb ζc P (ζc) | 0.975− P (ζc) |
1 0.000000 0.000097 0.000049 0.805538 0.169462
2 0.000000 0.000049 0.000024 0.980396 0.005396
3 0.000024 0.000049 0.000037 0.919918 0.055082
4 0.000024 0.000037 0.000031 0.958831 0.016169
5 0.000024 0.000031 0.000028 0.971512 0.003488
6 0.000024 0.000028 0.000026 0.976528 0.001528
7 0.000026 0.000028 0.000027 0.974098 0.000902

According to Table 14, the confidence coeffi cient 0.99 was reached in the 4th

iteration. The confidence regions obtained from each iteration are given in Figure
25(a). Figure 25(b) demonstrates the optimum confidence region for α = 0.01.
The simulation results for the significance level 0.025 are given in Table 15.
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Figure 25. Finding the confidence region for α = 0.01, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

According to Table 15, the confidence coeffi cient 0.975 was reached in the 7th

iteration. The confidence regions obtained from each iteration are given in Figure
26(a). Figure 26(b) demonstrates the optimum confidence region for α = 0.025.

Figure 26. Finding the confidence region for α = 0.025, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 16 shows the simulation results for the significance level 0.05.
According to Table 16, the confidence coeffi cient 0.95 was reached in the 6th

iteration. The confidence regions obtained from each iteration are given in Figure
27(a). Figure 27(b) demonstrates the optimum confidence region for α = 0.05.
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Table 16. Confidence coeffi cients for the significance level α = 0.05

Iter. No. ζa ζb ζc P (ζc) | 0.95− P (ζc) |
1 0.000000 0.000097 0.000049 0.805538 0.144462
2 0.000000 0.000049 0.000024 0.980396 0.030396
3 0.000024 0.000049 0.000037 0.919918 0.030082
4 0.000024 0.000037 0.000031 0.958831 0.008831
5 0.000031 0.000037 0.000034 0.941625 0.008375
6 0.000031 0.000034 0.000032 0.950717 0.000717

Figure 27. Finding the confidence region for α = 0.05, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

Table 17. Confidence coeffi cients for the significance level α = 0.10

Iter. No. ζa ζb ζc P (ζc) | 0.90− P (ζc) |
1 0.000000 0.000097 0.000049 0.805538 0.094462
2 0.000000 0.000049 0.000024 0.980396 0.080396
3 0.000024 0.000049 0.000037 0.919918 0.019918
4 0.000037 0.000049 0.000043 0.869624 0.030376
5 0.000037 0.000043 0.000040 0.896214 0.003786
6 0.000037 0.000040 0.000038 0.908369 0.008369
7 0.000038 0.000040 0.000039 0.902369 0.002369
8 0.000039 0.000040 0.000039 0.899311 0.000689

Table 17 shows the simulation results for the significance level 0.10.
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According to Table 17, the confidence coeffi cient 0.90 was reached in the 8th

iteration. The confidence regions obtained from each iteration are given in Figure
28(a). Figure 28(b) demonstrates the optimum confidence region for α = 0.10.

Figure 28. Finding the confidence region for α = 0.10, (a) The
confidence regions obtained from all iterations; (b) The optimum
confidence region.

5. Conclusions

This study proposes a practical method to in the attempt to modify the univari-
ate probability density functions into the bivariate probability density functions.
In the proposed method, the polygonal area is firstly separated into grids and then
triangulation is applied. If the number of grids increases the performance of method
can increase as well. According to the examples, the performance of the proposed
method is considerably high. In addition, the proposed method provides a solution
for infinite, semi-infinite and polygonal restricted areas. According to this method,
the confidence region is found no matter how complex the distribution function.
Confidence regions cannot be as precisely calculated in many applications. There-
fore, the proposed method gives more effi cient results for multimodal probability
density functions.
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Enstitüsü Dergisi 9(1), (2019) 88—98.

[16] Douglas, D., and Peucker, T., Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature, Cartographica: The International Journal for
Geographic Information and Geovisualization 10(2), (1973), 112—122.

[17] Kesemen O. and Tiryaki, B. K., Non-Uniform Random Number Generation from Arbitrary
Bivariate Distribution in Polygonal Area, Süleyman Demirel Üniversitesi Fen Bilimleri En-
stitüsü Dergisi 22(2), (2018), 443—457.

[18] Chew, L., Constrained delaunay triangulations, Algorithmica 4(1-4), (1989), 97—108.
[19] Thacker, W. C., A brief review of techniques for generating irregular computational grids,

International Journal for Numerical Methods in Engineering 15(9), (1980), 1335-1341.
[20] Fulton, S. R., Ciesielski, P. E., and Schubert, W. H., Multigrid methods for elliptic problems:

A review. Monthly Weather Review 114 (5), (1986), 943-959.
[21] Sulman, M., Williams, J. F., and Russell, R. D., Optimal mass transport for higher dimen-

sional adaptive grid generation, Journal of computational physics 230(9), (2011), 3302-3330.
[22] Stilitz, I., and Yitzhaky, J., The effect of grid size on street location time in maps, Applied

ergonomics 10(4), (1979), 235-239.
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