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Abstract

Lie symmetry theory of partial differential equations with both fractional and delay phenomena is considered.
A complete group classification of time fractional convection-reaction-diffusion equation with a delay is
presented. The Minimal symmetry algebra is found to be one dimensional. The classification is used to find
symmetry reductions and exact solutions.

Keywords: Lie symmetries, Fractional Delay, Bäckland Operator, Mittag-Leffler function.
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1. Introduction

Most of the physical, economical and biological processes are gradual and spontaneous in nature. There-
fore, to exhaustively comprehend these processes, differential mathematical models which put into consid-
eration of both the present and the past occurrences are developed to represent and study such processes.
In so doing, delay differential equations are developed. To mention but a few, delay differential equations
have been applied to: controlled motion of a rigid body, mathematical models of sugar quantity in blood,
evolution equations of single species [7]. Other models include; time to maturity and incubation time, for
instance in the well known Lotka-Volterra model [53] , delayed feedback in controlled systems [8]. Generally,
time delay is observed to have a negative effect on system stability [60].

Whereas the integer-order derivative indicates a variation or certain attribute at particular time, the
fractional-order derivative is concerned with the whole time domain and space of the process, for that reason
therefore, the theory of fractional order delay differential equations (FDDEs) has become an interesting field
of study with applications in fields of science and engineering. [7, 60, 16, 28, 6, 61].
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In this article therefore, we consider a time fractional convection-reaction-diffusion equation with a delay,
i.e.

∂αu

∂tα
+
∂u

∂x
− ∂2u

∂x2
= f(u, ū), fū 6= 0 (1.1)

where u = u(t − s, x). In general, a convection-diffusion-reaction model is a mathematical model that
describes how the concentration of the substance distributed in the medium changes under the influence
of convection, diffusion and reaction processes [26]. The model is developed by balancing three factors,
The first process, which is convection, refers to the flow or transfer of materials involved in the process
from one region to another depending on flow velocity. On the other hand, diffusion is the movement of a
substance from region of high concentration to region of low concentration throughout the physical domain
of the problem . Lastly, the reaction term describes possible processes like adsorption, decay and reaction of
the substances with other components. These processes when combined together, they form a single model,
which explains a physical system that can undergo convection, diffusion and reaction process within a system
[9, 26]. The convection-diffusion-reaction equation(1.1) is widely used in science and engineering for instance
in modelling evolution of thermal waves in plasma [61]. It is also used to model the Mackey-Glass equation,
which simulates a single-species population with age-structure and diffusion [52], and Hematopoiesis model
which plays a vital role in investigation on the dynamics of blood cell production [10].

The existence and uniqueness of solutions for a fractional order reaction-diffusion equation with delay by
Leray-Schauder’s theorem was proved by Ouyang [35], while the existence and uniqueness of mild solutions for
a class of nonlinear fractional reaction-diffusion equations was studied by Bo Zhu et al. using the measure
of compactness, the theory of resolvent operators, the fixed point theorem and the Banach contraction
mapping principle [63]. Some methods have been developed to study fractional differential equations with
delay, mostly numerical approach [60, 16, 28, 6, 61].

The modern approach of the applications of the theory of Lie Symmetry remains a powerful tool to study
both deterministic and stochastic deferential equations [34, 4, 29, 30, 18, 1, 2, 33, 58, 57, 11, 31, 32]. Not
long ago, the Lie group theory was extended to the class of fractional differential equations for the purposes
of linearization, reduction in the number of independent variables and finding analytical solutions. Similarly,
some work has been done to study the symmetry and invariant solutions of the delay differential equation
[48, 5, 59, 19, 3, 47, 25, 17, 12, 13, 14].

Recently, Cheng C. and Yao-Lin J. used Lie group method to derive the invariant solutions for non-linear
time-fractional convection-diffusion equations [5]. Several other methods were used by A. D. Polyanin et. al.
to study the solutions of different forms of the non-linear time-fractional convection-diffusion equation with
delay [37, 38, 39, 40, 41, 42, 43, 44, 45].

In this paper, an extension of Lie group theory to a fractional order delay differential equation has been
presented. The rationale of this article is to use classical Lie symmetry theory to present complete group
classification of time fractional convection-reaction-diffusion equation with a delay.

2. Preliminaries

There is no unique definition of fractional derivatives [20, 21]. In this paper, we use the version of
Riemann-Liouville.

Definition 1.

Dα
t u(t, x) =

∂αu

∂tα
=

{
∂nu
∂tn α = n ∈ N

1
Γ(n−α)

∂n

∂tn

∫ t
0

u(µ,x)
(t−µ)α+1−ndµ n− 1 < α < n, n ∈ N

(2.1)

where Γ is a gamma function, and Dα
t satisfies the following properties [20, 21, 54]

Dα
t t
ς =

Γ(ς + 1)

Γ(ς + 1− α)
tς−α, α > 0, t > 0, (2.2)



Kassimu Mpungu, Aminu M. Nass, Results in Nonlinear Anal. 2 (2019), 113–124 115

Dα
t 1 =

t−α

Γ(1− α)
, α ≥ 0, t > 0, (2.3)

and

Dα
t (g(t)h(t)) =

+∞∑
n=0

(
α
n

)
Dα−n
t hDn

t g. (2.4)

where (
α
n

)
=

Γ(α+ 1)

Γ(α− n+ 1)Γ(n+ 1)
.

This article is organized as follows; equivalence Lie group of transformation is given in Section 2 and
admitted Lie group transformation as well as classification are carried out in Section 3. Finally, invariant
solutions and conclusion are given in Section 4 and Section 5 respectively.

3. Equivalence Lie Group of Equation (1.1)

A transformation of both the independent and dependent variables which preserves the differential struc-
ture of the equations themselves is referred to as an equivalence transformation. Furthermore, a Lie group
formed by a set of equivalence transformations is known as an equivalence Lie group. For simplicity, we start
by introducing a new dependent variable v, which is related to u by the formula;

v(t, x) = u(t− s, x). (3.1)

Therefore, equation (1.1) becomes,
uα + ux − uxx = f(u, v) (3.2)

where f(u, v) is the arbitrary function. To obtain an equivalence Lie group of transformation, we assume
that the function f doesn’t depend on the independent variables, i.e.

fx = ft = 0. (3.3)

Therefore, the corresponding generator of the equivalence Lie group for (3.2), is as result given by:

H = ξ∂x + τ∂t + φ∂u + φv∂v + φf∂f , (3.4)

where the coefficients ξ, τ, φ, φv, and φf are infinitesimals functions depending on variables t, x, u, v and f.
The canonical Lie-Bäcklund operator equivalent to generator (3.4) is

H∗ = ξ∂x + τ∂t + φu∂u + φv∗∂v + φf∗∂f (3.5)

where
φu = φ− ξux − τut, φv∗ = φv − ξDxv − τDtv, φ

f∗ = φf − ξDxf − τDtf. (3.6)

The prolonged operator for the equivalence Lie group is

H̄α = H∗ + φux∂ux + φuxx∂uxx + φuα∂uα , (3.7)

where the coefficients are defined as;

φux = Dx(φ− ξux − τut), φuxx = Dx(φux), φuα = Dα
t (φ− ξux − τut). (3.8)



Kassimu Mpungu, Aminu M. Nass, Results in Nonlinear Anal. 2 (2019), 113–124 116

The prolongation of the fractional derivative in (3.8) can be expanded using direct calculation to obtain;

φuα =
∂αφ

∂tα
+ φv

∂αv

∂tα
+ (φu − αDt(τ))

∂αu

∂tα
− u∂

αφu
∂tα

− v∂
αφv
∂tα

−
+∞∑
n=1

(
α
n

)
Dn
t (ξ)Dα−n

t (ux) +

+∞∑
n=1

[(
α
n

)
∂nφv
∂tn

]
Dα−n
t (v)

+

+∞∑
n=1

[(
α
n

)
∂nφu
∂tn

−
(

α
n+ 1

)
Dn+1
t (τ)

]
Dα−n
t (u)

− τDα+1
t (u)− ξDα

t (ux) + β

(3.9)

where

β =
+∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α
n

)(
n
m

)(
k
r

)
1

k!
× tn−α

Γ(n+ 1− α)
[−u]r

∂m

∂tm
(uk−r)

∂n−m+kφ

∂tn−m∂uk

+
+∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α
n

)(
n
m

)(
k
r

)
1

k!
× tn−α

Γ(n+ 1− α)
[−v]r

∂m

∂tm
(vk−r)

∂n−m+kφ

∂tn−m∂vk

and Dt, Dx, D
α
t , D

α
x are total derivative.

Remark 1. It is worth noticing that β in (3.9) becomes zero if the infinitesimal φ is linear with respect to
the dependent variables u and v. For the detailed proof, we refer the reader to [47, 49, 50, 51].

We now apply the invariance criteria:

H̄α (uα + ux − uxx − f)
∣∣∣uα=f−ux+uxx = 0 (3.10)

which gives;
φuα + φux − φuxx − φf∗

∣∣∣uα=f−ux+uxx = 0. (3.11)

Substituting uα and vα in the expanded form of (3.11), and then equating the coefficients of various
derivatives of u and v to zero, gives a simplified system of determining equations below;

τu = τv = τx = φv = φuu = ξu = ξv = ξt = 0, (3.12)

ατt − 2ξx = 0, (3.13)

ατt − ξx − 2φxu + ξxx = 0, (3.14)(
α
n

)
∂nφu
∂tn

−
(

α
n+ 1

)
Dn+1
t (τ) = 0, ∀n ∈ N, (3.15)

∂αφ

∂tα
− u∂

αφu
∂tα

+ φuf + φx − φxx − ατtf − φf = 0. (3.16)

The determining equations corresponding to (3.1) are

φv(w(t, x))− φ(w(t− s, x))− vt(t, x)(ξ(w(t, x)))− ξ(w(t− s, x))

− vx(t, x)(τ(w(t, x)))− τ(w(t− s, x))
∣∣∣(3.2) = 0

(3.17)

where
w(t, x) = (t, x, u(t, x), v(t, x), f(u(t, x), v(t, x)). (3.18)

Splitting (3.17) with respect to vx and vt we get

ξ = ξ̄, τ = τ̄ , φv = φ̄ (3.19)
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where ξ̄ = ξ(w(t− s, x)), τ̄ = τ(w(t− s, x)), φ̄ = φ(w(t− s, x)).
From (3.12), (3.13) and (3.19) we have τt = ξx = 0, consequently, from (3.14) and (3.15)

φut = φux = 0.

Again the assumption fx = ft = 0 leads to

φt = φx = φfx = φft = 0. (3.20)

Hence, the general solution of the system (3.12)-(3.19) and (3.20), using the definition of fractional
derivatives becomes:

τ = 0, ξ = c1, φ = 0, φf = 0. (3.21)

In this section, we apply the techniques used in [27, 24, 23, 15], to find the admitted Lie groups trans-
formation of the time fractional convection-reaction-diffusion equation with a delay (1.1).

Let
H = ξ∂x + τ∂t + φ∂u, (3.22)

be the Lie generator admitted by (1.1), with the infinitesimal ξ, τ, φ depend on the variables t, x and u.
The Lie-Bäcklund generator equivalent to (1.1) is

H̄α = φu∂u + φux∂ux + φuxx∂uxx + φuα∂uα + φ̄u∂ū (3.23)

where
φu = φ− ξux − τut, φ̄u = φ̄− ξ̄ūx − τ̄ · ūt (3.24)

φux = Dx(φ− ξux − τut), φuxx = Dx(φux), (3.25)

φuα = Dα
t (φ− ξux − τut). (3.26)

Here, Dt, Dx and Dα
t are the total derivatives operators with respect to t, x and the fractional total derivative

respectively.
Applying the Lie-Bäcklund infinitesimal generator (3.23) in the equation (1.1) and using the invariance

criteria leads to (
−φufu + φux − φuxx + φuα − φ̄ufū

) ∣∣∣uα=f−ux+uxx = 0. (3.27)

Substituting the prolongation (3.24)-(3.26) and replacing

Dα+1
t (u) = fuut + fūūt + uxxt − uxt, Dα

t (ux) = fuux + fūūx + uxxx − uxx, (3.28)

in the determining equations (3.27), we obtain a simplified system of determining equations by equating the
coefficients of various derivatives of u, i.e. ux, uxx, ut, uxt,ūt,ūx... and Dα−n

t u, Dα−n
t ux... for n = 1, 2..., to

zero, as follows;
ξu = τx = τu = φuu = ξt = 0, (3.29)

− 2φux − ξx + ξxx + ατt = 0, (3.30)

2ξx − ατt = 0, (3.31)

ξ = ξ, τ̄ = τ, (3.32)(
α
n

)
∂nφu
∂tn

−
(

α
n+ 1

)
Dn+1
t (τ) = 0, ∀n ∈ N, (3.33)

∂αφ

∂tα
+ φuf − αfτt − u

∂αφu
∂tα

− φxx + φx − φfu − fūφ̄ = 0. (3.34)

Differentiating equation (3.31) with respect to x, implies that ξ is linear in x i.e.,

ξ = c1x+ c2. (3.35)
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And using (3.35), (3.31) we have

τ =
2c1

α
t+ c3. (3.36)

Finally, using equation (3.30), (3.33), (3.35) and (3.36) we have

φ = γ(t, x) +
c1u

2
x+ c4u. (3.37)

Using the periodic properties of the infinitesimals τ, and ξ (3.32) i.e.,

τ(t, x) = τ(t− s, x), ξ(t, x) = ξ(t− s, x), (3.38)

and from (3.30), (3.31), (3.35), (3.36) and (3.37), we have

ξ = c2, τ = c3, φ = γ(t, x) + c4u. (3.39)

Since the lower limit of the integral in the definition of the fractional derivative (2.1) is fixed, it requires that
the manifold t = 0 is invariant i.e.,

τ(t, x)
∣∣∣
t=0

= 0.

Hence from (3.39) we have
ξ = c2, τ = 0, φ = γ(t, x) + c4u. (3.40)

Substituting (3.40) into (3.34) gives

c4

(
ufu + ūfū − f −

ut−α

Γ(1− α)

)
+ γfu + γ̄fū − γα + γxx − γx = 0. (3.41)

3.1. Classification
In this section, we analyze the classification equation (3.41) to find all possible functions f(u, ū) and γ

that will satisfy it.
Differentiating (3.41) with respect to u and u respectively, we have the following system{

c4

(
ufuu + ūfūu − t−α

Γ(1−α)

)
+ γfuu + γ̄fūu = 0

c4(ufuū + ūfūū) + γfuū + γ̄fūū = 0.
(3.42)

The system (3.42) is an algebraic with respect to γ̄ and γ, which have determinant of the matrix as

∆ = f2
uū − fuufūū. (3.43)

3.1.1. Case 1: ∆ 6= 0

Equation (3.42) is a classification equation and is it’s assumed to be true for the solution of f(u, ū).
We have from the system (3.42)

γ =
−c4 (fūūt

−α + uΓ(1− α)∆)

Γ(1− α)∆
, γ̄ =

c4 (fuūt
−α − ūΓ(1− α)∆)

Γ(1− α)∆
. (3.44)

Since γ, γ̄ are independent of u and u, equation (3.44) implies that γ = c4 = 0. Hence, we obtained the
following infinitesimals

ξ = c2, τ = 0, φ = 0. (3.45)

Therefore, the minimal symmetry algebra for any arbitrary function f(u, u) is one dimensional given as
below;

H1 = ∂x. (3.46)

To search for extra symmetry algebra, we have to consider the case when ∆ = 0 and solve for all possible
function f(u, ū).
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3.1.2. Case 2: ∆ = 0

Under this case, we analyse the solutions of ∆ = 0 to look for possibilities of larger extra symmetry
algebra, solutions of this equation are discussed in details in [27, 24, 55, 15].

The following conditions are consider;

fuu 6= 0. In this case the equation ∆ = 0 has the general solution

fu = ψ(fū) (3.47)

where ψ is an arbitrary function. Substituting (3.47) in the system (3.42) we have{
(γψ

′
+ γ̄)ψ

′
fūū = −c4(uψ

′
+ ū− Γ(1− α)t−α)ψ

′
fūū

(γψ
′
+ γ̄)fūū = −c4(uψ

′
+ ū)fūū.

(3.48)

The system (3.48) reduces to
c4(Γ(1− α)t−α)ψ

′
= 0. (3.49)

To study equation (3.49), we consider the following cases

(i) ψ
′

= 0

From equation (3.49) and (3.48), we have γ̄ = −c4ū which implies φ = 0 and so no extra symmetry
algebra is possible in this case. Next, we consider the case ψ′ 6= 0.

(ii) ψ
′ 6= 0

From equation (3.49) and (3.48), we have

c4 = 0, and γψ
′
+ γ̄ = 0. (3.50)

Differentiating equation (3.50) with respect to ū implies that

γψ
′′

= 0. (3.51)

Similarly, differentiating (3.51) with respect to x and t respectively, we have

ψ
′′
γx = 0, ψ

′′
γt = 0. (3.52)

If ψ′′ 6= 0, it implies γ is constants, say γ = c5 and we have

f(u, ū) = uG
( ū
u

)
+ c6, Guu 6= 0 (3.53)

where ci, i = 1, 2, 3, ... are constants. Substituting (3.52) in (3.41) we have

c4(c6) = c5

( ū
u
Gu −G−Gū

)
(3.54)

which implies that for an extra symmetry algebra to be possible, c6 = c5 = 0. Thus no extra algebra is
possible.

We now consider a case ψ′′ = 0, which this leads to

fu = c8fū + c7. (3.55)

This can be solve to find

f(u, ū) = c7u+G(ū+ uc8), ψ
′′

= 0, Guū 6= 0. (3.56)

Using (3.49) and (3.50), we have c4 = 0 and c8γ = −γ̄ from which equation (3.41) reduced to

γα − γxx + γx − c7γ = 0 (3.57)

where γα = ∂αγ
∂tα and c8γ(t, x) = −γ(t−s, x). In this case the equation admits an infinite dimensional algebra

for any solution of (3.57) i.e.,
Hγ = γ(t, x)∂u. (3.58)
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fūū = 0. Since fū 6= 0, we have
f(u, ū) = c9ū+ h(u). (3.59)

From system (3.42) and (3.59) we have

(γ + c4u)fuu −
c4

Γ(1− α)
t−α = 0, (3.60)

from which we have;

(i) If γ = c4 = 0 lead to a minimal symmetry, so no extra algebra.

(ii) If fuu = 0, we have from (3.59) h′′(u) = 0 i.e.,

f(u, ū) = c9ū+ c10u+ c11. (3.61)

Substituting (3.61) in (3.41), we get

− c4u

Γ(1− α)
t−α − c4c11 + c10γ + c9γ̄ − γα + γxx − γx = 0. (3.62)

Extra symmetry algebra is possible if c4 = 0 and is given by

Hγ = γ∂u (3.63)

where γ satisfies the fractional delay equation

c10γ + c9γ̄ − γα + γxx − γx = 0. (3.64)

Theorem 1. Minimal symmetry algebra of the time fractional convection-reaction-diffusion equation with a
delay

∂αu

∂tα
+
∂u

∂x
− ∂2u

∂x2
= f(u, ū), fū 6= 0

where ū = u(t− s, x) is spanned by one dimensional infinitesimal generators

H1 = ∂x

for any arbitrary function f(u, ū). Extra symmetry algebra with corresponding functions are summarized in
the Table 1.

Table 1: Extra Symmetry Generators

f(u, ū) Generators Conditions Dimensions

c7u+G(ū− ( γ̄γ )u) H1, Hγ = γ∂u Gūū 6= 0, c7γ − γα − γxx + γx = 0 Infinite

c9ū+ c10u+ c11 H1, Hγ c10γ + c9γ̄ − γα + γxx − γx = 0 Infinite

4. Invariant Solutions

In this section, we make the use of the admitted Lie symmetries of the time fractional equation (1.1) to
obtain invariant solutions.
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4.1. Sub-algebra H1 = ∂x with f = uG
(
ū
u

)
Similarly, the sub-algebra H1 = ∂x has the following invariant solution

u(t, x) = ψ(t) (4.1)

which reduces (1.1) to fractional delay differential equation

Dα
t ψ(t) = ψ(t)G

(
ψ̄

ψ

)
. (4.2)

4.2. Sub-algebra H1 +Hγ=et = et∂u + ∂x with f = u+G(ū− e−su)

Solving characteristic equation corresponding to the sub-algebra, we have

u(t, x) = ψ(t) + xet (4.3)

which simplifies the equation (1.1) reduces to

Dα
t ψ(t) + et = ψ +G(ψ̄ − e−sψ). (4.4)

4.3. Hγ=et +H1 = et∂u + ∂x with f = c9ū+ (1− c9e
−s)u+ c11

The invariant solution in this case has the form;

u = ψ(t) + xet (4.5)

which reduces, the equation (1.1) to

Dα
t ψ(t) + et = c9ψ(t− s)− c9e

−sψ(t) + ψ(t). (4.6)

If c9 = es, equation (4.6) becomes
Dα
t ψ(t) = esψ(t− s)− et. (4.7)

The equation (4.7) has the general solution [5, 13]

ψ(t) = (t− s)α−1Eα,α(es(t− s)α)− et. (4.8)

Finally, the exact solution becomes

u(t, x) = (t− s)α−1Eα,α(es(t− s)α) + xet − et. (4.9)

where Eα,β(z) is the Mittag-Leffler function [5, 13].

4.4. H1 = ∂x with f = ū2 + d

The invariant solution corresponding to the infinitesimal generator H2 is

u = ψ(t), (4.10)

were ψ(t) is the solution of
Dα
t ψ(t) = ū2 + d. (4.11)

The fractional ODE has the following solutions [21, 22, 59], where d is an arbitrary constant

ψ(t) =



√
d tan((t− s)

√
d, α) if d > 0

−
√
d cot((t− s)

√
d, α) if d > 0

−
√
−d tanh((s− t)

√
−d, α) if d < 0

−
√
−d coth((s− t)

√
−d, α) if d < 0

Γ(α+1)
Γ(2α+1)(t− s)−α if d = 0.

(4.12)

Remark 2. Some of the exact solutions obtained are summarized in Table 2 below, where

ψ̄ = ψ(t− s)

and Eα,β(z) is the Mittag-Leffler function [5, 13].
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Table 2: Table of Solutions

Representing Equation Generator Invariant Solution Reduced Equation Exact Solution

uα + ux − uxx = u2 + d ∂x u(t, x) = ψ(t) Dα
t ψ(t) = ψ2(t− s) + d ψ(t) =



√
d tan((t− s)

√
d, α) if d > 0

−
√
d cot((t− s)

√
d, α) if d > 0

−
√
−d tanh((s− t)

√
−d, α) if d < 0

−
√
−d coth((s− t)

√
−d, α) if d < 0

Γ(α+1)
Γ(2α+1)(t− s)−α if d = 0.

uα + ux − uxx = c9ū+ u et∂u + ∂x u(t, x) = ψ(t) + xet Dα
t ψ(t) = esψ(t− s)− e−t u(t, x) = (t− s)α−1Eα,α(es(t− s)α) + xet − et

5. Conclusion

A complete group classification of different kind of partial differential equation with delay are available
in literature [27, 24, 55, 46, 56]. J. Zhang and Jun Zhang [61] discusses the symmetry of time-fractional
convection-diffusion equation and prove that the equation can be reduced to fractional ordinary differential
equations.

In this article, we extend the application of the Lie symmetry analysis theory to the study of time-
fractional convection-diffusion equation with a delay i.e., an equation with both fractional and delay phe-
nomena. We present a complete group classification of this model and prove that the minimal symmetry
algebra for any arbitrary function f(u, ū) is one dimensional given by;

H1 = ∂x.

Furthermore, we demonstrate that for some special functions, there is a possibility of larger symmetry
algebras which are infinity dimensional to be precise. We use these admitted Lie symmetries with the
respective function f(u, ū) in each case to perform some similarity reductions of time-fractional convection-
diffusion equation with a delay to obtain the corresponding invariant solutions. These solutions are then
used to transform the initial equation into a fractional ODE. In the last two cases, the reduced fractional
ODEs are solved to obtain exact solutions. These results are presented in Table2.
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