
Çankaya University Journal of Science and Engineering
Volume 16, No. 2 (2019) 070–086
Date Received: October 22, 2019
Date Accepted: October 28, 2019

Order-preserving Models for the Supervisory
Control of Flexible Manufacturing Systems

Anas Nooruldeen1, Klaus Werner Schmidt2

1Department of Electronic and Communication Engineering, Çankaya University, Turkey,
2Department of Electrical and Electronics Engineering, Middle East Technical University, Turkey,

e-mail: anasnooruldeen@gmail.com, schmidt@metu.edu.tr

Abstract: Flexible manufacturing systems (FMS) are characterized by the processing of different product
types on the same manufacturing systems. In particular, it is possible that the paths of different products type
through an FMS overlap and different product types share the same production components such as machines.

This paper develops a new modeling technique for the supervisory control of FMS in the framework of
discrete event systems (DES). In particular, we consider the general case of an FMS, where different product
types can share production components and production components can hold multiple products. We first
point out that a suitable model for such production component needs to keep track of the product type and
the order of products entering and leaving production components. Then, we develop a general method for
algorithmically constructing the required order-preserving models. We further illustrate the practicability of
the developed method by an application example.

Keywords: Discrete event systems, supervisory control, order-preserving models, flexible manufacturing
systems.

1. Introduction

Flexible manufacturing systems (FMS) have the ability of manufacturing different types of prod-

ucts using a given hardware setup with various production components such as machines, robots

and conveyor belts [1, 2, 3, 4, 5]. In an FMS, it is generally desired to move products along pre-

defined paths through the FMS and use pre-specified production components for processing these

products in a given sequence [6, 7, 8].

The logic control of FMS can be carried out in the framework of supervisory control for discrete

event systems (DES) [9]. In this context, the desired production sequences are realized by a

supervisor that is designed based on a formal DES model of the FMS and a formal specification of

the production sequence. In this context, the existing literature considers various aspects regarding

the supervisory control of FMS. The work in [10, 11, 12, 13] focuses on the avoidance of deadlocks

or forbidden states in FMS and [6, 7, 14, 15] develop modular and hierarchical methods for the

efficient computation of supervisors for FMS. Furthermore, there is recent work such as [8] that

ISSN 1309 - 6788 c© 2019 Çankaya University

CUJSE 16, No. 2 (2019) Order-preserving Models for FMS 71

proposes the concept of distinguishers in order to facilitate the modeling of FMS with different

product types.

The subject of this paper is the modeling of an additional property of FMS that has not been

addressed in previous work on the supervisory control of FMS. In particular, it is possible that

production components can hold multiple products and then process them sequentially. In this

case, it is required that a product that enters the production component first will also be processed

first and then leave the production component first. That is, if a production component is able to

process different product types, it is necessary to keep track of the different product types entering

and leaving such production component. Nevertheless, this case does not appear in the existing

literature. For FMS with different product types it is either the case that these product types

have independent paths in the FMS [3, 8, 16], the product paths are defined such that it is not

necessary to remember the product order [1, 6, 7, 14, 15, 17, 18] or the product order is not taken

into account and it is implicitly assumed that the production component knows which product is

currently transported [2, 10, 11], In order to address this issue, we first determine scenarios under

which a suitable model for a production component needs to keep track of the product type and

the order of products entering and leaving. Then, we develop a general method for algorithmically

constructing the required order-preserving models of production components. This method takes

into account the neighborhood relationship between production components and is applicable to

production components that can hold an arbitrary number of products and that can process an

arbitrary number of product types. We demonstrate the practicability of the proposed modeling

method by an FMS example with multiple products and overlapping product paths.

The remainder of the paper is organized as follows. Section 2 introduces the basic notation regard-

ing DES and supervisory control. Section 3 formulates the problem addressed in this paper based

on motivating examples. The proposed order-preserving modeling method is developed in Section

4 and applied to an FMS example in Section 5. Section 6 gives conclusions and states ideas for

future work.

2. Preliminaries

This section provides the necessary notation for the formal representations in the paper. Section

2.1 introduces the notions related to discrete event systems (DES) and Section 2.2 gives the back-

ground on the supervisory control theory.

2.1. Discrete Event Systems (DES)

The behavior of a DES is represented by formal languages over finite alphabets Σ. Each element

σ ∈ Σ is denoted as an event, Σ? denotes the set of all finite strings over Σ and s1, s2 ∈ Σ? defines

72 A. Nooruldeen and K. W. Schmidt

the concatenation of two strings s1s2 ∈ Σ?. s1 ≤ s indicates that s1 is a prefix of s and ε ∈ Σ? is

the empty string. A formal language over Σ is a subset L ⊆ Σ?. L := {s1 ∈ Σ?|∃s ∈ L s.t. s1 ≤ s}
defines the prefix closure of L, and L is called prefix closed if L = L.

Consider two alphabets Σ1,Σ2 and their union Σ = Σ1∪Σ2. Then, the natural projection pi : Σ?→
Σ?

i , i = 1,2, is defined iteratively such that (1) pi(ε) := ε; (2) for s ∈ Σ?, σ ∈ Σ: pi(sσ) := pi(s)σ

if σ ∈ Σi, or pi(sσ) := pi(s) otherwise. The set-valued inverse of pi is written as p−1
i : Σ?

i → 2Σ?
,

p−1
i (t) := {s ∈ Σ?| pi(s) = t}. Using the natural projection, the synchronous product L1||L2 ⊆ Σ?

of two languages Li ⊆ Σ?
i is computed as L1||L2 = p−1

1 (L1)∩ p−1
2 (L2)⊆ Σ?.

We model a DES as a finite state automaton G = (X ,Σ,δ ,x0,Xm), with the finite set of states

X ; the finite alphabet of events Σ; the partial transition function δ : X ×Σ→ X ; the initial state

x0 ∈ X and the set of marked states Xm ⊆ X . Hereby, δ (x,σ)! is written if δ is defined at (x,σ)

and we extend the transition function δ to a partial function on X ×Σ? in the usual way. The

behavior of G is given by its closed language L(G) := {s ∈ Σ?|δ (x0,s)!} and its marked language

Lm(G) := {s∈ L(G)|δ (x0,s)∈Xm}. The synchronous composition G1||G2 of two automata G1,G2

is defined in the usual way [9] such that L(G1||G2) = L(G1)||L(G2).

2.2. Supervisory Control

In supervisory control, we write Σ = Σc∪̇Σu for controllable (Σc) and uncontrollable (Σu) events.

We say that an automaton S = (Q,Σ,ν ,q0,Qm) is a supervisor for a plant G if S can only disable

events in Σc. In particular, it must hold for all s ∈ L(G)∩L(S) and σ ∈ Σu with sσ ∈ L(G) that

also sσ ∈ L(S). Then, L(G)||L(S) and Lm(G)||Lm(S) represent the closed and marked behavior of

the closed-loop system G||S, respectively.

A language K ⊆ Lm(G) is said to be controllable for L(G) and Σu if KΣu∩L(G)⊆ K. There exists

a supervisor S such that Lm(G||S) = K if and only if K is controllable for L(G) and Σu [?]. In case,

K is not controllable for L(G) and Σu, the supervisor will implement the supremal controllable

sublanguage of K. We write Lm(S||G) = SupC(K,G,Σu). It is ensured that such supervisor is

nonblocking and maximally permissive if SupC(K,G,Σu) 6= /0 [19].

3. Problem Statement

The main topic of this paper is the generation of DES models that retain the order of products

for production systems. To this end, Section 3.1 first motivates the problem setting based on an

illustrative example. Then, Section 3.2 states the research problem addressed in this paper.

CUJSE 16, No. 2 (2019) Order-preserving Models for FMS 73

output

M1

output

M2

to M1

to M2

M1

M2

Cinput C

FIGURE 1. Example system with one conveyor (C) and two machines (M1 and M2).

3.1. Motivation

In this paper, we focus on the flow of products through a production system. Consider for example

the simple production system with one conveyor belt and two machines in Fig. 1.

We study the case where the conveyor belt (C) is potentially long and can hold multiple products

simultaneously. Products are fed to C from the left and are then transported to one of the machines

M1 or M2 on the right hand side of the figure. Each product is then processed in the respective

machine and leaves the example system on the right hand side.

In this simple setup, the common automaton model GC of the conveyor and the automata models

GM1 and GM2 of the machines are as given in Fig. 2. That is, the conveyor receives products with

the event inC and delivers products towards the machines with the event outC. If C can hold

at most n products simultaneously (that is, the capacity of C is n), GC has n+ 1 states to keep

memory of the number of products in C. The machines M1 and M2 obtain products with the event

inM1 and inM2, respectively. After processing products are delivered to the outside with outM1

and outM2.

10
inC

outC

GC

n
inC

outC

inC

outC

10
inM1

outM1

GM1

10
inM1

outM2

GM2

FIGURE 2. Automata models for the machines M1 and M2.

Although such models are frequently used in the modeling of manufacturing systems, flexible

manufacturing systems (FMS) [20] as well as reconfigurable manufacturing systems (RMS) [21],

we argue that these models are not suitable if there are different product types (with different

processing requirements). To this end, we next discuss four relevant scenarios and their effect on

the conveyor model as depicted in Fig. 3.

3.1.1. Scenario with a single product type and capacity of one product on C. Fig. 3 (a) shows

the case where there is a single product type and C has capacity for a single product. It is further

74 A. Nooruldeen and K. W. Schmidt

C

M1

M2

C

M1

M2

C

M1

M2

(a) (b)

(c) (d)

P1

P2

P1

C

M1

M2

P1

P2P2

P3

FIGURE 3. Conveyor belt: (a) One product type and capacity one; (b) two prod-
uct types and capacity one; (c) two product types and capacity two; (d) three
product types and capacity two.

desired that any product is delivered to one of the machines arbitrarily. In this case, it needs to be

taken into account that (i) there is no difference between products that enter C; (ii) any product that

enters C can leave to two different machines. Accordingly, input of a product to C can be modeled

by the event inC, whereas product output has to be modeled by two different events C-M1 (from

C to M1) and C-M2 (from C to M2) as is shown in Fig. 4. Similarly, the model of the machines in

Fig. 2 has to be adjusted such that inM1 is replaced by C-M1 and inM2 is replaced by C-M2 in

order to match the events defined for C.

10
C-M2

outM2

GM2
10

C-M1

outM1

GM1
10

inC

C-M1

GC

C-M2

FIGURE 4. Models for the case in Fig. 3 (a).

3.1.2. Scenario with two product types and capacity of one product on C. We next investigate

the scenario in Fig. 3 (b). Here, the conveyor can hold a single product but there are two product

types. Product P1 (blue) needs to be processed by M1, whereas product P2 (green) has to be

processed by M2. In this case, it needs to be taken into account that (i) different products enter

C; (ii) depending on the product type in C, the product leaves to M1 or M2. That is, the model of

C in Fig. 4 is not suitable since it cannot distinguish products entering C. In order to distinguish

the product type, a refinement of the event alphabet of GC is required by introducing separate

events for the different product types. That is, instead of ΣC = {inC,C-M1,C-M2}, we use

ΣC = {inCP1,inCP2,C-M1,C-M2}. In addition, the model needs to respect the order of products

entering and leaving C. In particular, it is not possible that P2 leaves C (C-M2) after P1 enters

CUJSE 16, No. 2 (2019) Order-preserving Models for FMS 75

C (inCP1) and vice versa. A suitable model for this scenario is shown in Fig. 5. Here, GC

expresses that each event C-Mi is only possible after the respective event inCPi, i ∈ {1,2}.

10
C-M2

outM2

GM2
10

C-M1

outM1

GM1

2

0
C-M1

GC

C-M2

1inCP1

inCP2

FIGURE 5. Models for the case in Fig. 3 (b).

3.1.3. Scenario with two product types and capacity for two products on C. A more compli-

cated modeling problem is encountered in the scenario in Fig. 3 (c). Here, two different product

types P1 and P2 are produced and C can hold up to two products. In this case, it needs to be taken

into account that (i) different products enter C; (ii) depending on the product type in C, the product

leaves to M1 or M2; (iii) the order of products entering and leaving C must be preserved in the

model. Similar to the previous case, it is again necessary to refine the event alphabet of GC as

ΣC = {inCP1,inCP2,C-M1,C-M2}. In addition, the model has to remember the order in which

products enter the system since products have to leave C in the same order. A suitable model for

this purpose is shown in Fig. 6. Here, GC has one state for each possible product combination on

C as is indicated by the color code in the respective states (P1 – blue; P2 – green). For example,

it can be seen that the input order P1, P2 of products (string inCP1 inCP2) leads to a state where

only P1 can exit C to M1 (event C-M1), whereas P2 has to wait until P1 leaves C.

P1

P1 P1 P2 P1 P1 P2 P2 P2

P2

GC

inCP1

inCP1
inCP1

inCP2
inCP2

C-M1

10
M1out

GM1

0

GM2

inCP2

C-M2

C-M2 C-M1

C-M2C-M1

C-M1

1
M2out

C-M2

FIGURE 6. Models for the the case in Fig. 3 (c).

3.1.4. Scenario with three product types and capacity for two products on C. The next ex-

ample shows that the modeling problem need not be restricted to a single component of a pro-

duction system. To this end, we consider the scenario in Fig. 3 (d). Here, there are three product

types P1, P2, P3 and C has a capacity of two products. P2 is delivered to M2, whereas both P1

76 A. Nooruldeen and K. W. Schmidt

and P3 are delivered to M1. That is, P1 and P3 share the same path within the example sys-

tem but might follow a different path after leaving the example system. In this case, it needs to

be taken into account that (i) different products enter C; (ii) depending on the product type in

C, the product leaves to M1 or M2; (iii) the order of products entering and leaving C and M1

must be preserved in the model. Since there are three products in C and two products in M1,

we refine the respective alphabets as ΣC = {inCP1,inCP2,inCP3,C-M1P1,C-M1P3,C-M2P2},
ΣM1 = {C-M1P1,C-M1P3,outM1P1,outM1P3} and ΣM2 = {C-M2P2,outM2P2}. In addition,

the model has to remember the order in which three different products enter C (capacity 2) and the

order in which two different products enter M1 (capacity 1). A suitable model for this purpose is

shown in Fig. 7. Similar to Fig. 6, GC has one state for each possible product combination on C.

Since there are more product types, more combinations have to be considered. Finally, the model

for M1 has the same structure as the model for C in Fig. 5 since there are two products types and

the capacity is one.

P1

P1 P1 P3 P1 P1 P3 P3P3

P3

inCP1

inCP1
inCP1

inCP3

inCP2

inCP2

C-M1P1 C-M1P3

P1 P2 P2 P2

P2inCP1

inCP2

P3 P2 P2 P3P2 P1

inCP3

inCP3

inCP3

inCP2

C-M1P1
GM1

GC

C-M2P2 C-M1P3

C-M1P3

C-M1P3

C-M2P2

C-M2P2

C-M2P2

C-M1P1 C-M1P1

C-M1P1

10
C-M2P2

inM2P2

1

0 outM1P1

2

C-M1P3
outM1P3

GM2

FIGURE 7. Models for the the case in Fig. 3 (d).

3.2. Discussion and Research Problem

The main purpose of the example scenarios in Fig. 3 is to analyze the effect of different product

types and different capacities of production components on the structure of the respective automa-

ton model. In particular, it can be observed from the scenario in Fig. 3 (b) that DES models need

to distinguish products if there is more than one product type. In addition, the scenario in Fig.

3 (c) indicates that the DES model needs to remember the order of products if there are multiple

CUJSE 16, No. 2 (2019) Order-preserving Models for FMS 77

product types and the capacity of the production component is greater than one. Finally, the sce-

nario in Fig. 3 (d) shows that the information about capacity and different product types has to be

incorporated in the DES models of all relevant production components.

In this context, we note that there is a vast literature on the control of FMS and RMS with poten-

tially different product types [1, 2, 3, 6, 7, 8, 10, 11, 14, 15, 16, 17, 18]. Nevertheless, none of the

existing studies considers the case of DES models that preserve the order of products.

Regarding FMS and RMS with different product types, the literature generally considers two spe-

cial cases regarding the system specification. In the first case, it is assumed that the different

product types travel on different paths through the system and hence do not pass the same pro-

duction components [3, 8, 16]. Accordingly, it is not necessary to find models that distinguish

products. In the second case, the paths of different products can intersect such that there are pro-

duction components which are passed by multiple products [1, 2, 6, 7, 10, 11, 14, 15, 17, 18].

In one line of work, the specifications are always chosen such that it is not necessary to remember

the product order [1, 6, 7, 14, 15, 17, 18]. More precisely, different products never share a path

with production components with a capacity greater than one. In another line of work [2, 10, 11],

the product order is not taken into account and it is implicitly assumed that it is know which

product travels between production components. In a real application this knowledge can only

be obtained by sensors that detect the prototype everywhere in the production system, which is

impractical.

In view of the above discussion, the main objective of this paper is a systematic approach to the

modeling of production systems with different product types and production components with

a capacity that is greater than one. In particular, Section 4 formalizes the notion of an order-

preserving DES model and proposes an algorithmic procedure to construct such model. Moreover,

Section 5 illustrates the applicability of the proposed modeling technique by the application to

FMS supervisory control.

4. Order-preserving DES Models

Based on the discussion in the previous section, this section systematically addresses the problem

of modeling production systems with multiple product types and production components with a

capacity greater than one. Section 4.1 formalizes the notion of an order-preserving DES model

proposes an algorithm for determining such models. Section 4.2 discusses properties of the order-

preserving model.

4.1. Modular Production Systems and Order-preserving Models

We consider modular production systems (MPSs) with a set C = {C1, . . . ,Cm} ∪ {I,O} of m

production components and the virtual input component I and output component O. We assume

78 A. Nooruldeen and K. W. Schmidt

that the MPS is processing a set of n products P = {P1, . . . ,Pn} and the main aim of this paper

is to model the flow of products in such production system. To this end, we introduce PCi ⊆P

as the set of products that pass component Ci. Considering production components Ci,Cj ∈ C

such that Ci 6= Cj, we define PCi,Cj ⊆Pci as the set of products leaving component Ci to Cj and

PCj,Ci ⊆Pci as the set of products arriving at Ci from component Cj. In particular, PCi,Cj = /0 if

no products are transported from Ci to Cj and it must hold that⋃
Cj∈C

PCj,Ci =
⋃

Cj∈C
PCi,Cj. (1)

That is, all products entering component Ci should also be able to leave Ci.

For the example in Fig. 1, we have C = {C,M1,M2, I,O}. Then, the sets PCi,Cj depend on

the product flow. Consider for example the scenario in Fig. 3 (d). Here, PI,C = {P1,P2,P3},
PC,M1 = {P1,P3}, PC,M2 = {P2}, PM1,O = {P1,P3}, PM2,O = {P2}. The remaining sets are

PI,M1 = PI,M2 = PI,O = PO,I = PO,M1 = PO,M2 = PO,C = PM1,I = PM2,I = PC,I = /0.

Using the information about the product transport between production components, we suggest to

define appropriate alphabets for the DES model of each production component. Specifically, for

any Ci ∈ C we introduce the input alphabet Σin
Ci and the output alphabet Σout

Ci as

Σ
in
Ci =

⋃
Cj∈C

⋃
Pk∈PCj,Ci

Cj-CiPk∪
⋃

Pk∈PI,Ci

inCiPk, (2)

Σ
out
Ci =

⋃
Cj∈C

⋃
Pk∈PCi,Cj

Ci-CjPk∪
⋃

Pk∈PCi,O

outCiPk. (3)

In words, Σin
Ci contains events for each product transport from neighboring components (including

the input component I) and for each possible product type. Similarly, Σout
Ci contains events for

each product transport to neighboring components (including the output component O) with each

possible product type. Then, the overall alphabet of any production component Ci ∈ C is ΣCi =

Σin
Ci∪Σout

Ci .

We note that the alphabets of the models in Section 3.1 are selected according to (2) and (3).

For example, we have Σin
C = {inCP1,inCP2,inCP3} and Σout

C = {C-M1P1,C-M2P2,C-M1P3} for

component C in Fig. 7.

Finally, we write cCi for the product capacity of component Ci∈C (maximum number of products

that can be in component Ci simultaneously).

Using cCi, ΣCi, PCj,Ci and PCi,Cj for Cj ∈ C , we define a general automaton model GCi =

(XCi,ΣCi,δCi,x0,Ci,Xm,Ci) for a production component Ci with multiple product types and a prod-

uct capacity that is greater than one. Referring to GC in Fig. 6 and 7, we note that each state of

the automaton model represents a possible sequence of products entering the component. For a

CUJSE 16, No. 2 (2019) Order-preserving Models for FMS 79

production component Ci, with the capacity cCi, the state set XCi is hence given by

XCi = {E}∪
cCi⋃
l=1

(l

×
k=1

PCi
)
. (4)

Hereby, E is the empty state and the Cartesian product×with the set PCi represents the combi-

nations of products in the component. Then, the initial state is given as x0,Ci = E and the set of

marked states is Xm,Ci = {E} since it is always desired to go back to the empty state of a production

component in order to complete all production tasks.

For example, the state set for component C in Fig. 6 with the products in PC = {P1,P2} is found

as XC = {E,P1,P2,(P1,P1),(P1,P2),(P2,P1),(P2,P2)}. Then, x0,C = E and Xm,C = {E}.

It remains to determine the transition relation δCi. To this end, we first observe that any input event

in Σin
Ci adds one new product to the production component and each output event in Σout

Ci removes

the oldest product from the production component. That is, assuming that the current state of Ci is

(Pk, · · · ,Pl) and an input event with product Pm occurs, the new state is (Pm,Pk, · · · ,Pl) (adding

the new product PM). Similarly, assuming that the current state of Ci is (Pk, · · · ,Pl,Pm), then

only output events with product Pm are possible and the new state is (Pk, · · · ,Pl) (taking out the

”oldest” product Pm). Using this observation, the transition relation is defined for any state x∈ XCi

and σPm ∈ ΣCi as

δCi(x,σPm) =

(Pm) if x = E and σPm ∈ Σin
Ci

(Pm,Pk, · · · ,Pl) if x = (Pk, · · · ,Pl) and σPm ∈ Σin
Ci

E if x = (Pm) and σPm ∈ Σout
Ci

(Pk, · · · ,Pl) if x = (Pk, · · · ,Pl,Pm) and σPm ∈ Σout
Ci

undefined otherwise.

(5)

Consider for example the model GC in Fig. 6. Here, the transitions δC(E,inCP1) = (P1),

δC((P1),inCP2) = (P2,P1), δC((P1,outCP1) = E and δC((P1,P2),outCP2) = (P1) are intro-

duced according to the rules in (5).

4.2. Order-preserving Models

We recall that the main objective of this paper is the modeling of production components that can

hold multiple products with different types, while preserving the order to products entering and

leaving the component. For the first time in the literature, the model introduced in Section 4.1

fulfill this purpose. In particular, we point out that the label of each state in GCi keeps track of the

order of products entering the component Ci. In the tuple (Pk, . . . ,Pl), old products appear on the

right, whereas new products appear on the left. On the one hand, any new product Pm entering

the component with an input event σPm ∈ Σin
Ci is added to the state label from the left, to obtain the

next state (Pm,Pk, . . . ,Pl) in (5). Hence, indeed, the state label always correctly characterizes the

80 A. Nooruldeen and K. W. Schmidt

order of incoming products. On the other hand, any product that leaves the system at some state

(Pk, . . . ,Pl,Pm) must be the oldest product Pm on the right of the tuple as stated in (5). Hence,

products indeed leave the component in the same order as entering the component. Accordingly,

we denote the model in Section 4.1 as an order-preserving DES model.

As a further interesting feature of the proposed model, it is possible to determine the number of

states |XCi| depending on the product capacity cCi and the number of products |PCi|. Inspecting

(4), it holds that

|XCi|= 1+
cCi

∑
k=1
|PCi|k =

cCi

∑
k=0
|PCi|k. (6)

In particular, for each possible number k of products in the component with 0≤ k ≤ nCi, there are

|PCi|k combinations of product types.

For example, an order-preserving model for a production component Ci with capacity nCi = 2

and |PCi| = 3 product types, the model has 1+3+9 = 13 states (see Fig. 7) and the model of a

production component with capacity nCi = 4 and |PCi|= 2 product types has 1+2+22+23+24 =

31 states.

5. Application Example

In this section, we apply the modeling technique introduced in Section 4 to an FMS example that

is adapted from [2, 10]. Section 5.1 describes the components of the example system and Section

5.2 determines suitable automata models. The supervisor computation for the FMS is discussed in

Section 5.3.

5.1. FMS Example

The FMS example consists of 3 robots R1, R2, R3 and two machines M1 and M2. That is,

C = {R1,R2,R3,M1,M2, I,O} including the virtual input and output components. Hereby, it is

assumed that the capacity of the robots is cR1 = cR2 = cR3 = 1 whereas the machines can hold up

to cM1 = cM2 = 2 products. There are two product types P1 and P2 that arrive at the FMS from

the virtual input component I and leave the FMS to the virtual output component O. P1 is picked

from I by R3, moved to M2, then transported to M1 by R2 and finally transported to O by R1. P2

is picked from I by R1, moved to M1, then transported to M2 by R2 and finally transported to O

by R3. That is, both product paths overlap and both products are processed by M1 and M2, whose

capacity is two. Hence, the models for these machines need to keep track of the product order.

5.2. Order-preserving Model for the Example System

In order to model the FMS, we first determine the sets PCi,Cj that characterize the product ex-

change between neighboring components. It holds that PI,R3 = {P1}, PR3,M2 = {P1}, PM2,R2 =

CUJSE 16, No. 2 (2019) Order-preserving Models for FMS 81

R3 M2 R2 M1 R1

I

P2P1

O

FIGURE 8. Schematic of the FMS.

{P1}, PR2,M1 = {P1}, PM1,R1 = {P1}, PR1,O = {P1}, PI,R1 = {P2}, PR1,M1 = {P2}, PM1,R2 =

{P2}, PR2,M2 = {P2}, PM2,R3 = {P2}, PR3,O = {P2}. All remaining sets are empty.

Accordingly, it is possible to define the input and output alphabets of different production com-

ponents according to (2) and (3) as Σin
R1 = {inR1P2,M1-R1P1}, Σout

R1 = {R1-M1P2,outR1P1},
Σin

R2 = {M2-R2P1,M1-R2P2}, Σout
R2 = {R2-M1P1,R2-M2P2}, Σin

R3 = {inR3P1,M2-R3P2}, Σout
R3 =

{R3-M2P1,outR3P2}, Σin
M1 = {R2-M1P1,R1-M1P2}, Σout

M1 = {M1-R1P1,M1-R2P2} and Σin
M2 =

{R3-M2P1,R2-M2P2}, Σout
M2 = {R2-R2P1,M2-R3P2}.

Considering that the robots all have a capacity of one product, their models according to (4) and

(5) have 3 states as shown in Fig. 9.

(P1)

E

(P2)R1-M1P2

M1-R1P1

outR1P1

inR1P2

GR1

(P1)

E

(P2)R2-M2P2

M2-R2P1

R2-M1P1

M1-R2P2

GR2

(P1)

E

(P2)outR3P2

inR3P1

GR3

FIGURE 9. Robot models.

Differently, the machines have a capacity of two product and two product types pass M1 and M2.

Hence, their models need to remember the product order similar to the model in Fig. 6. The

resulting models for M1 and M2 are shown in Fig. 10 and 11, respectively.

The overall model G of the FMS is then given by the synchronous composition of the component

models are

G = GR1||GR2||GR3||GM1||GM2. (7)

Since this model has 2368 states, it is not displayed in the paper.

82 A. Nooruldeen and K. W. Schmidt

E

(P1)

(P1,P1) (P2,P1)(P2,P1) (P1,P2)(P1,P2) (P2,P2)

(P2)

R2-M1P1

R2-M1P1

M1-R1P1

M1-R1P1

R1-M1P2

R1-M1P2

M1-R2P2

M1-R2P2

R2-M1P1R1-M1P2

M1-R1P1M1-R2P2

GM1

FIGURE 10. Model of machine M1.

E

(P1)

(P1,P1) (P2,P1) (P1,P2) (P2,P2)

(P2)

R3-M2P1

R3-M2P1

M2-R2P1

M2-R2P1

R2-M2P2

R2-M2P2

M2-R3P2

M2-R3P2

R3-M2P1R2-M2P2

M2-R2P1M2-R3P2

GM2

FIGURE 11. Model of machine M2.

5.3. Supervisor Computation for the Example System

The FMS model G already represents all the possible product paths as specified in Fig. 8. However,

it turns out that G is a blocking automaton, that is, the uncontrolled FMS will encounter deadlock

situations. Two examples of such deadlock situation are illustrated in Fig. 12. The figure shows

the production components (robots and machines), whereby, the machines are displayed in the

form of a FIFO (first-in-first-out) queue that can hold up to two products and such that the product

entering the component first will also leave first. Products of type P1 are represented by blue disks,

whereas products of type P2 are shown as green triangles.

Consider the scenario on the left-hand side of Fig. 12. Here, two products of type P1 are present

in M1 and one product of type P2 is present in R1. That is, the products in M1 need to be picked

by R1, whereas the product in R1 must be placed in M1. This is not possible since both M1 and

R1 are fully occupied. Hence, the FMS will deadlock when reaching this scenario. Similarly, the

FMS deadlocks in the scenario on the right-hand side of Fig. 12. Here, M2 is fully occupied and

the first product of type P2 has to be picked by R3. However, R3 is already occupied by a product

of type P1, which has to move to M2.

In order to avoid such deadlock situations, we design a maximally permissive and nonblocking

supervisor as described in Section 2.2. The supervisor automaton S for this case has 72 states and

restricts the behavior of G in order to avoid deadlocks. Since the supervisor S is too large it cannot

be displayed in this paper.

CUJSE 16, No. 2 (2019) Order-preserving Models for FMS 83

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

FIGURE 12. Model of machine M2.

We next illustrate the operation of the computed supervisor S and demonstrate the practicability

of the proposed modeling technique. To this end, we compare the designed supervisor with a

supervisor that is computed for a plant model without keeping track of the product order. In the

modified plant, the robot models in Fig. 9 remain the same, whereas the machine models are

replaced by the automata ĜM1 and ĜM2 in Fig. 13. Here, both products can leave the respective

production component in the state (P1,P2) independent of the arrival order of the products. In that

case, the modified plant Ĝ = GR1||GR2||GR3||GM1||GM2 has 24 956 states and the corresponding

maximally permissive and nonblocking supervisor Ŝ has 564 states.

E

{P1}

{P1,P1} {P2,P2}

{P2}

R2-M1P1

R2-M1P1

M1-R1P1

M1-R1P1

R1-M1P2

R1-M1P2

M1-R2P2

M1-R2P2

R2-M1P1
R1-M1P2

M1-R1P1
M1-R2P2

GM1

{P1,P2}

E

{P1}

{P1,P1} {P2,P2}

{P2}

R3-M2P1

R3-M2P1

M2-R2P1

M2-R2P1

R2-M2P2

R2-M2P2

M2-R3P2

M2-R3P2

R3-M2P1
R2-M2P2

M2-R2P1
M2-R3P2

GM2

{P1,P2}

FIGURE 13. Model of the machines M1 and M2 without preserving the product order.

We next compare the operation of the supervisor S for the order-preserving model G and the

supervisor Ŝ for the modified model Ĝ by following an example product path. Here, the left-

hand side of Fig. 14 shows the operation of S and the right-hand side shows the operation of Ŝ.

In both cases, we consider two products of type P1 and P2. The product of type P2 step by step

approaches M1 and enters this machine first. The product of type P1 also moves towards M1 and

enters this machine after the other product. In Fig. 14, this state of the FMS is reached at the step

that is shaded in gray. After this step, both supervisors may exhibit a different operation. Since

84 A. Nooruldeen and K. W. Schmidt

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

FIGURE 14. Example product path: Order-preserving case (left) and case with
arbitrary product order (right).

S is order-preserving, it must be the case that the product of type P2 which entered M1 first must

also leave M1 first. That is, this product next moves to R2. After that, the product of type P1 can

move to R1 and leave the FMS. Differently, the product of type P1 can move to R1 first and leave

the FMS if Ŝ is used since Ŝ does not keep track of the product order. Re-visiting the discussion in

Section 3.2, we further note that the realization of the supervisor Ŝ needs additional information

CUJSE 16, No. 2 (2019) Order-preserving Models for FMS 85

compared to the realization of S. In the described situation with two products in M1, Ŝ needs

to know which product leaves M1 first. This is only possible by installing a sensor for identify-

ing products leaving M1. No such sensor is required when using the proposed order-preserving

supervisor S.

6. Conclusions

The subject of this paper is the development of a new discrete event system (DES) model for

the supervisory control of flexible manufacturing systems (FMS). This model considers that FMS

consist of various production components such as machines and robots that exchange product

among each other. In addition, the model accounts for the fact that FMS are able to manufacture

different product types that potentially share various production components such as machines and

robots. Different from the existing literature, the proposed model also addresses the case where

a production component can hold multiple products and then processes these products sequen-

tially. Specifically, if the capacity of a production component is greater than one, any product that

enters the production component first is processed first and also leaves the production component

first. Accordingly, the proposed model is order-preserving and keeps track of the different product

types entering and leaving such production component. After presenting an algorithmic procedure

for constructing such order-preserving model depending on the processed product types and the

capacity of a production component, the paper demonstrates the practicability of the proposed

method by an FMS application example, including a comparison to existing models that allow

products to enter and leave a production component in an arbitrary order.

In future work, we will apply the proposed model in the context of modular and hierarchical

control of large-scale FMS.

Acknowledgements

It is worth mentioning that the author Anas Nooruldeen is supported by a full scholarship for

his PhD study by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and

would like to express his thanks and appreciation for this support.

References

[1] M. H. de Queiroz, J. E. R. Cury, W. M. Wonham, Multitasking Supervisory Control of Discrete-Event Systems,

Discrete Event Dynamic Systems, 15(4), (2005), 375—395.

[2] W. Chao, Y. Gan, W. M. Wonham, Z. Wang, Nonblocking Supervisory Control of Flexible Manufacturing Systems

Based on State Tree Structures, Formal Methods in Manufacturing Systems, (2013).

86 A. Nooruldeen and K. W. Schmidt

[3] P. N. Pena, T. A. Costa, R. S. Silva, R. H. C. Takahashi, Control of Flexible Manufacturing Systems under model

uncertainty using Supervisory Control Theory and evolutionary computation schedule synthesis, Information Sci-

ences, 329, (2016), 491–502.

[4] T. Sprock, C. Bock, L. F. McGinnis, Survey and classification of operational control problems in discrete event

logistics systems (DELS), International Journal of Production Research, 57(15-16), (2019), 5215–5238.

[5] R. Rl-Khalil, Z. Darwish, Flexible manufacturing systems performance in US automotive manufacturing plants:

a case study, Production Planning & Control, 30(1), (2019), 48–59.

[6] K. Schmidt, T. Moor and S. Perk, Nonblocking Hierarchical Control of Decentralized Discrete Event Systems,

IEEE Transactions on Automatic Control, 53(10), (2008), 2252–2265.

[7] L. Feng and W. M. Wonham, Supervisory Control Architecture for Discrete-Event Systems, IEEE Transactions

on Automatic Control, 53(6), (2008), 1449–1461.

[8] J. E. R. Cury, M. H. de Queiroz, G. Bouzon, M. Teixeira, Supervisory control of discrete event systems with

distinguishers, Automatica, 56, (2015), 93-104.

[9] C. G. Cassandras, S. Lafortune, Introduction to discrete event systems, Second edition, Springer, (2008).

[10] Z. Li, M. Zhou and N. Wu, A Survey and Comparison of Petri Net-Based Deadlock Prevention Policies for

Flexible Manufacturing Systems, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 2(2), (2008), 173–188.

[11] M. Zhao, M. Uzam, Y. Hou, Near-optimal supervisory control of flexible manufacturing systems using divide-

and-conquer iterative method, Advances in Mechanical Engineering, 8(3), (2016), 1–17.

[12] Y. F. Hou, K. Barkaoui, Deadlock analysis and control based on Petri nets: A siphon approach review, Advances

in Mechanical Engineering, 9(5), (2017).

[13] Y. Li, L. Yin, Y. Chen, Z. Yu, N. Wu, Optimal Petri net supervisor synthesis for forbidden state problems using

marking mask, Information Sciences, 505, (2019), 183–197.

[14] K. Schmidt, C. Breindl, Maximally Permissive Hierarchical Control of Decentralized Discrete Event Systems,

IEEE Transactions on Automatic Control, 56(4), (2011), 723–737.

[15] K. Cai, W. M. Wonham, Supervisor Localization: A Top-Down Approach to Distributed Control of Discrete-Event

Systems, IEEE Transactions on Automatic Control, 55(3), (2010), 605–618.

[16] R. A. Williams, B. Benhabib, K. C. Smith, A hybrid supervisory control system for flexible manufacturing work-

cells, IEEE International Conference on Robotics and Automation, 3, (1994), 2551-2556.

[17] A. Nooruldeen, K. W. Schmidt, State Attraction Under Language Specification for the Reconfiguration of Discrete

Event Systems, IEEE Transactions on Automatic Control, 60(6), (2015), 1630–1634.

[18] K. W. Schmidt, Reconfigurability of behavioural specifications for manufacturing systems, International Journal

of Control, 90(12), (2017), 2605–2617.

[19] W. M. Wonham, Supervisory control of discrete-event systems, Lecture Notes, Department of Electrical and

Computer Engineering, University of Toronto, (2010).

[20] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, H.V. Brussel, Reconfigurable Manufacturing

Systems, CIRP Annals - Manufacturing Technology, 48(2), (1999), 527-540.

[21] M.G. Mehrabi, A.G. Ulsoy, Y. Koren , Reconfigurable manufacturing systems: Key to future manufacturing,

Journal of Intelligent Manufacturing, 11(4), (2000), 403-419.

