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Abstract

In this paper, we investigate the evolution of quaternionic curve in Euclidean 4-space R4. We obtain evolution equations of the Frenet frame
and curvatures. Then we give integrability conditions for the evolutions. Finally we give examples of evolution of curvatures.
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1. Introduction

In differential geometry, although there are many studies about curved spaces or shapes in regardless to time parameter, the recent researches
have made a great improvement about the evolution of curved spaces with respect to time. Among them, an envolving curve has arisen in
many engineering and physical applications [3, 4, 5, 7, 9, 13, 16]
An envolving curve can be considered as a family of curves parametrized by time. The time evolution of a curve generated by its
corresponding flow so we shall also refer to curve evolutions as flows throughout this paper. Firstly, Kwon and Park studied inextensible
flows of curves and developable surfaces in Euclidean 3-space [12]. Following them, inextensible flows of curves are studied in many
different spaces [8, 10, 11, 15, 18, 19, 20, 21]. Another related work is that of [1], Abdel et al. brought a different approach to time evolution
of a curve. They obtained the evolution equations of a generalized space curve. Then, Yıldız et al. studied evolution of generalized space
curve in Minkowski Space [22].
Our aim is to study evolution of quaternionic curve in R4. We give necessary and sufficient conditions for inextensible flows of quaternionic
curves in R4. We express evolution equation of the Frenet frame by matrix equation. Further, we obtain integrability conditions (zero
curvature conditions) for the considered model.

2. Preliminaries

A brief summary of the theory of quaternions in the Euclidean space is presented in this section.
The space of quaternions Q is isomorphic to R4, four-dimensional vector space over the real numbers. There are three operations in Q :
addition, scalar multiplication, and quaternion multiplication. The sum of two elements of Q is defined to be their sum as elements of R4.
Similarly, the product of an element of Q by a real number is defined to be the same as the product in R4.

A real quaternion q is an expression of the form q = ae1+be2+ce3+de4, where a,b,c and d are real numbers, and e1,e2,e3 are quaternionic
units which satisfy the non-commutative multiplication rules,

i)ei× ei =−e4, (e4 = 1, 1≤ i≤ 3)

ii)ei× e j = ek =−e j× ei, (1≤ i, j ≤ 3) ,

where (i jk) is an even permutation of (123) in the Euclidean space R4. A real quaternion can be written as a linear combination of scalar
part Sq = d and vectorial part Vq = ae1 +be2 + ce3. Using these basic products, the product of two quaternions can be expanded as

p×q = SpSq−<Vp,Vq >+SpVq +SqVp +Vq∧Vq
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for every p,q ∈ Q, where <,> and ∧ are inner product and cross product on E3, respectively. The conjugate of the quaternion q is denoted
by q and defined

q = Sq−Vq = de4−ae1−be2− ce3,

and is called by ”Hamiltonian conjugation”. The h-inner product of two quaternions is defined by

h(p,q) =
1
2
(p×q+q× p) ,

where h is the symmetric, non-degenerate, real valued and bilinear form. Thus the definition of the norm for every quaternion can be given.
The norm of a real quaternion q is

‖q‖2 = h(q,q) = a2 +b2 + c2 +d2.

Theorem 2.1. The three-dimensional Euclidean space R3 is identifed with the space of spatial quaternion {γ ∈ Q |γ + γ = 0} in an obvious
manner. Let I = [0,1] be an interval in the real line R and s ∈ I be the parameter along the smooth curve

γ : I ⊂ R−→Q, γ(s) =
3

∑
i=1

γi(s)ei, (1≤ i≤ 3) ,

chosen such that the tangent γ ′(s) = t has unit length ‖t(s)‖= 1 for all s. This unitarity condition implies;

t ′× t + t× t ′ = 0.

The last equation implies that t ′ is orthogonal to t and t ′× t is a spatial quaternion. Let {t(s),n1(s),n2(s)} be the Frenet trihedron in the
point γ(s) of the quaternionic curve γ . Then Frenet equations are

t ′(s) = k(s)n1(s)

n′1(s) =−k(s)t(s)+ r(s)n2(s)

n′2(s) =−r(s)n1(s)

where t is the unit tangent, n1 is the unit principal normal, n2 is the unit binormal vector fields, k is the principal curvature and r is the
torsion of the quaternionic curve γ , [2].

Theorem 2.2. The four-dimensional Euclidean space R4 is identified with the space of unit quaternion. Let

β : I ⊂ R−→Q, β (s) =
4

∑
i=1

γi(s)ei, e4 = 1

be a smooth curve (β ) in R4 defined over the interval I. Let the parameter s be chosen such that the tangent T = β ′(s) =
4
∑

i=1
γ ′i (s)ei has unit

magnitude. Let {T,N1,N2,N3} be the Frenet apparatus of the differentiable Euclidean space curve in the Euclidean space R4. Then the
Frenet equations are

T ′(s) = κN1(s)

N′1(s) =−κT (s)+ kN2(s)

N′2(s) =−kN1(s)+(r−κ)N3(s)

N′3(s) =−(r−κ)N2,

where N1 = t×T, N2 = n1×T, N3 = n2×T and K = ‖T ′(s)‖ , [2].

It is obtained the Frenet formulae in [2] and the apparatus for the curve β by making use of the Frenet formulae for a curve γ in R3. Moreover,
there are relationships between curvatures of the curves β and γ . These relations can be explained that the torsion of β is the principal
curvature of the curve γ . Also, the bitorsion of β is (r−κ), where r is the torsion of γ and κ is the principal curvature of β . These relations
are only determined for quaternions, [2]. Moreover, these formulas can be stated as the follows matrix

Vs = QV (2.1)

where

V = [T,N1,N2,N3]
t , Q =


0 κ 0 0
−κ 0 k 0
0 −k 0 (r−κ)
0 0 (r−κ) 0

 (2.2)

For further quaternions concepts see [2, 6, 10, 14, 17, 18].
Unless otherwise stated we assume that

β : [0, l]× [0,w)−→Q
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is a one parameter family of smooth quaternionic curves in Q, where l is the arclength of the initial curve. Let u be the curve parametrization
variable , 0 ≤ u ≤ l and t be the time parameter. If the metric on the quaternionic curve β is given by v(u, t) = h

(
∂β

∂u ,
∂β

∂u

)
, then the

arclength variation of β (u, t) is

s(u, t) =
u∫

0

∥∥∥∥∂β

∂u

∥∥∥∥du =

u∫
0

√
v(u, t)du.

Let s be an arclength parameter then,

∂

∂ s
=

1√
v

∂

∂u
. (2.3)

i.e., ds =
√

vdu.

3. Evolution of Quaternionic Curves by Flow in R4

Let β be a differentiable quaternionic curve. Any flow of the quaternionic curve can be given by

∂β

∂ t
= f1T + f2N1 + f3N2 + f4N3, (3.1)

where, f1, f2, f3 and f4 are scalar speed of the quaternionic curve β .
In E4,the requirement that a quaternionic curve not be subject to any elongation or compression can be expressed by the condition

∂

∂ t
s(u, t) =

u∫
0

∂
√

v
∂ t

du = 0, u ∈ [0, l] . (3.2)

where u ∈ [0, l] .

Definition 3.1. Let β (u, t) be a quaternionic curve in R4. The flow ∂β

∂ t is said to be inextensible if

∂

∂ t

∥∥∥∥∂β

∂u

∥∥∥∥= 0.

Before deriving the necessary and sufficient condition for inextensible quaternionic curve flow, we need the following lemma.

Lemma 3.2. Let ∂β

∂ t be a smooth flow of β in E4. Then, the evolution equation of v is

∂v
∂ t

= vt = 2v
(

∂ f1
∂ s
− f2κ

)
. (3.3)

Proof. By the direct computation, we have

∂v
∂ t

=
∂

∂ t
h
(

∂β

∂u
,

∂β

∂u

)
= 2h

(
∂β

∂u
,

∂

∂u
( f1T + f2N1 + f3N2 + f4N3)

)
= 2vh

(
T,λT +

3

∑
i=1

AiNi

)
,

where

λ =

(
∂ f1
∂ s
− f2κ

)
,

A1 = f1κ +
∂ f2
∂ s
− f3k,

A2 = f2k+
∂ f3
∂ s
− f4 (r−κ) , (3.4)

A3 = f3 (r−κ)+
∂ f4
∂ s

.

Then,

∂v
∂ t

= 2vλ .

Theorem 3.3. The flow of a quaternionic curve is inextensible if and only if

∂ f1
∂ s

= f2κ. (3.5)
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Proof. Suppose that ∂β

∂ t is inextensible. From equations (3.2) and (3.3) it follows that

∂

∂ t
s(u, t) =

u∫
0

vt

2
√

v
du = 0, u ∈ [0, l] .

This clearly forces

∂ f1
∂ s
− f2κ = 0⇒ ∂ f1

∂ s
= f2κ.

On the contrary, assume that ∂ f1
∂ s = f2κ. By applying ∂ f1

∂ s into (3.3), we get vt = 0 then st = 0. This means that the flow is inextensbile.

Theorem 3.4. Let ∂β

∂ t be a smooth flow of β , then, the following statements hold:
i) Evolution of the elements of Frenet frame can be given by

Vt = MV

where

M =


0 A1 A2 A3
−A1 0 B2 B4
−A2 −B2 0 C3
−A3 −B3 −C3 0

 , (3.6)

Ai = fi+1,s + ki fi− fi+2ki+1; i = 1,2,3.

B j =
1
k1

(
A j,s + k jA j−1− k j+1A j+1

)
; j = 2,3.

C3 =
1
k2

(
B3,s + k1A3 + k3B2

)
k1 = κ,k2 = k,k3 = (r−κ) ,k4 = 0.

ii)Evolution equations of the curvatures are

κt = A1,s−λκ− kA2

kt = B2,s− kλ − (r−κ)B3 +κA2 (3.7)

(r−κ)t =C3,s−λ (r−κ)+ kB3

Proof. By taking derivative of (3.1) with respect to u, we get

βtu =
√

vβts =
√

v

(
λT +

3

∑
i=1

AiNi

)
. (3.8)

Since βu =
√

vβs =
√

vT , by taking derivative of βu with respect to t, we have

βut =
√

v
( vt

2v
T +Tt

)
(3.9)

By using (3.4), (3.8), (3.9) and βtu = βut ,we have

Tt =
3

∑
i=2

AiNi (3.10)

By taking derivative of (3.10) with respect to u, then we get

Ttu =
√

v
(
(−κA1)T +

(
A1,s− kA2

)
N1 +

(
kA1 +A2,s− (r−κ)A3

)
N2 (3.11)

+
(
(r−κ)A2 +A3,s

)
N3
)

and by taking derivative of Tu with respect to t, we have

Tut =
√

v
(( vt

2v
κ +κt

)
N1 +κN1,t

)
. (3.12)

By using (3.11), (3.12) and Ttu = Tut , we get

κt = A1,s−λκ− kA2

N1,t =−A1T +
3

∑
i=2

BiNi (3.13)

B2 =
1
κ

(
A2,s + kA1− (r−κ)A3

)
B3 =

1
κ

(
A3,s +(r−κ)A2

)
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Next, by taking derivative of (3.13) with respect to u, then we get

N1,tu =
√

v
((
−A1,s

)
T +(−κA1− kB2)N1 +

(
B2,s− (r−κ)B3

)
N2

+
(
(r−κ)B2 +B3,s

)
N3 (3.14)

and by taking derivative of N1,u with respect to t, we have

N1,ut =
√

v(−(λκ +κt)T − (κA1)N1

+(λk+ kt −κA2)N2 (3.15)

+ kN2,t −κA3N3
)
.

By using (3.14), (3.15) and N1,tu = N1,ut , we get

kt = B2,s−λk− (r−κ)B3 +κA2

N2,t =−A2T −B2N1 +C3N3 (3.16)

C3 =
1
k

(
κA3 +(r−κ)B2 +B3,s

)
.

Then, by taking derivative of N2,t with respect to u, we have

N2,tu =
√

v
((
−A2,s +κB2

)
T −

(
κA2 +B2,s

)
N1 (3.17)

− (kB2 +(r−κ)C3)N2 +C3,sN3

and by taking derivative of N2,u with respect to t, we have

N2,ut =
√

v((κA1)T − (λk+ kt)N1− kB2N2 (3.18)

+(λ (r−κ)− kB3 +(r−κ)t)N3 +(r−κ)N3,t .

Since N2,tu = N2,ut and from (3.17), (3.18), we get

(r−κ)t =C3,s−λ (r−κ)+ kB3,

N3,t =−A3T −B3N1−C3N2. (3.19)

The obtained equations can be given in a matrix form as

Vt = M ·V

where

M =


0 A1 A2 A3
−A1 0 B2 B4
−A2 −B2 0 C3
−A3 −B3 −C3 0

 .
From first equation of (3.13), (3.16) and (3.19), we get

κt = A1,s−λκ− kA2

kt = B2,s−λk− (r−κ)B3 +κA2

(r−κ)t =C3,s−λ (r−κ)+ kB3

Corollary 1. If the flow of β (u, t) is inextensible, then evolution equations of curvatures (3.7) are

κt = A1,s− kA2

kt = B2,s− (r−κ)B3 +κA2

(r−κ)t =C3,s + kB3

Proof. If the flow of β (u, t) be inextensible, then vt = 0, moreover λ = 0. By applying λ = 0 into (3.7), the the lemma holds.

Theorem 3.5. The flow of β (u, t) is inextensible if and only if the following condition (zero curvature condition) holds

Qt −Ms +[Q,M] = 0 (3.20)

where [Q,M] = QM−MQ is the Lie bracket.
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Proof. In order to prove the theorem, there is need some calculations. Considering the equations (2.2) and (3.6). By taking derivative of
Vu =

√
vQV with respect to t, we obtain

Vut =
√

v
( vt

2v
Q+Qt +QM

)
V (3.21)

and taking derivative of Vt with respect to u, we have

Vtu =
√

v(Ms +MQ)V. (3.22)

From (3.21) and (3.22), we obtain

Vut −Vtu =
√

v
( vt

2v
Q+Qt −Ms +[Q,M]

)
V.

First, if the flow is an inextensible, then vt = 0 and ∂/∂u and ∂/∂ t are commutative, hence

Qt −Ms +[Q,M] = 0.

Conversely, suppose the integrability condition is satisfied, i.e.,

Qt −Ms +[Q,M] = 0.

From (2.2) and (3.6), we get

[Q,M] =


0 kA2 A2,s A3,s
−kA2 0 −κA2 +(r−κ)B3 B3,s
−A2,s κA2− (r−κ)B3 0 −kB3
−A3,s −B3,s kB3 0

 (3.23)

By taking derivative of Q with respect to t and derivative of M with respect to s and using (3.7), we get

Qt −Ms =


0 −λκ− kA2 −A2,s −A3,s

λκ + kA2 0 −λk+κA2− (r−κ)B3 −B3,s
A2,s λk−κA2 +(r−κ)B3 0 −λ (r−κ)+ kB3
A3,s B3,s λ (r−κ)− kB3 0

 (3.24)

. From the equation (3.23) and (3.24) we obtain
0 −λκ 0 0

λκ 0 −λk 0
0 λk 0 −λ (r−κ)
0 0 λ (r−κ) 0

= 0.

From last equation it can be seen that λ = 0 i.e., v = constant, so the flow is an inextensible.

Corollary 2. Let the curve flow be inextensible. If the Q and M are abelian, then

A2 = B3 = 0.

Proof. Assume that Q and M are abelian, so [Q,M] = 0, then (3.20) as follows

Ms−Qt = 0. (3.25)

Since the flow is inextensible, then

Ms−Qt =

 0 −kA2 −A2,s −A3,s
kA2 0 −κA2 +(r−κ)B3 B3,s
−A2,s κA2− (r−κ)B3 0 kB3
−A3,s −B3,s −kB3 0

 . (3.26)

By using (3.25) and (3.26), we get

A2 = B3 = 0.

Example 3.6. Let quaternionic curve β (s) be

β (s) =

(
cos

√
2
3

s,sin

√
2
3

s,cos

√
1
3

s,sin

√
1
3

s

)

for all s ∈ I. Curvatures of are as follows:

κ =

√
5

3
,k =

√
2

3
√

5
,(r−κ) =

√
2
5
.
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If f1 = s2 cos
(
s2) , f2 = ssin(s) , f3 = s2, f2 = s, then graphs of evolution of the curvatures in domain

D :
{
−10 < u < 10
−10 < t < 10

are given in figure 3.1.

(a) The evolution of κ(s, t) (b) The evolution of k(s, t)

(c) The evolution of (r−κ)(s, t)

Figure 3.1

If f1 = scos(s) , f2 = ssin(s) , f3 = scos(s) , f2 = ssin(s) , then graphs of evolution of the curvatures in domain

D :
{
−5 < u < 5
−5 < t < 5

are given in figure 3.2
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(a) The evolution of κ(s, t)
(b) The evolution of k(s, t)

(c) The evolution of (r−κ)(s, t)

Figure 3.2
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