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Abstract
In applied problems parameter estimation with missing data has risen as a hot topic.
Imputation for ignorable incomplete data is one of the most popular methods in integer-
valued time series. For data missing not at random (MNAR), estimators directly derived
by imputation will lead results that is sensitive to the failure of the effectiveness. In view
of the first-order integer-valued autoregressive (INAR(1)) processes with MNAR response
mechanism, we consider an imputation based semiparametric method, which recommends
the complete auxiliary variable of Yule-Walker equation. Asymptotic properties of rel-
evant estimators are also derived. Some simulation studies are conducted to verify the
effectiveness of our estimators, and a real example is also presented as an illustration.
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1. Introduction
Integer-valued time series of counts plays an important role in various practical fields,

such as the number of patients who are contracted the same infection every day in the
same area, or the number of people in a queue waiting for service at a certain moment. Al-
Osh and Alzaid [1] proposed first-order integer-valued autoregressive (INAR(1)) processes,
Du and Li [6] generalized the order to p. Since then, researches for integer-valued time
series have been developing rapidly. For example, Jung et al. [11] discussed the estima-
tion for conditional linear first-order autoregressive (CLAR(1)) processes with a Poisson
marginal model; Zheng et al. [27] proposed pth-order random coefficient integer-valued
autoregressive (RCINAR(p)) processes and made some statistical inferences; Zhang et al.
[26] considered the statistical properties of integer-valued autoregressive processes with
signed generalized power series thinning operator, and Yang et al. [25] proposed nega-
tive binomial thinning based integer-valued threshold autoregressive processes driven by
independent negative-binomial distributed random variables.
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In practice, it is common to encounter missing data in many areas of statistics. Sta-
tistical analysis of missing data has attracted wide attentions in recent years. Rubin
[21] introduced the statistical inference of response mechanism named missing at random
(MAR); Little and Rubin [15] studied the propensity and statistical inference for both
ignorable and nonignorable missing data in general regressive model. Ignorable missing
data has been widespreadly concerned in time series, Pourahmadi [19] proposed an inter-
polation algorithm handling missing data in stationary time series; Andersson and Karlis
[2] studied the statistical inference of missing data based on imputation in INAR(1) model;
Jia et al. [10] made some researches of ignorable missing data in PINAR(1)T processes.

Nonignorable missing data, which is also named as data missing not at random
(MNAR), has been considered widely in recent years. Kim and Yu [13] discussed the
modeling of nonignorable nonresponse and estimated the mean of response variable in the
i.i.d. case, Tang et al. [23] extended this to estimate more general parameters based on
empirical likelihood. Cui et al. [5] provided conditionals of identification with MNAR
mechanism in generalized linear models. Shao and Wang [22] proposed a semiparametric
inverse propensity weighting method using the nonresponse instrumental variable assump-
tion of Wang et al. [24], which discussed the identification of parameter for MNAR data
as well. Riddles et al. [20] proposed a propensity score adjustment method for MNAR
data with a specified parametric model for the conditional distribution of respondents,
and Morikawa et al. [17] loosen this restriction to a semiparametric estimation.

However, there are few literatures for nonignorable missing data in integer-valued au-
toregressive processes. Postulated a set of time sequence {Xn, n ∈ N}, a missingness
indicator δn where δn = 1 means the value of Xn is observed and δn = 0 otherwise, non-
ignorable missing data, whose response probability πn depends on all the data not later
than time n, regardless of whether it is missing, can be regard as

δn|Fn ∼ Bernoulli(πn), n = 1, 2, ....,

where Fn is the σ-field generated by {Xn, Xn−1, ..., X0}. Handling nonignorable missing
data is quite challenging because it is difficult to determine when it is missing. Although we
know the dependent of data, estimation may be seriously biased without proper treatment.
Therefore, finding the effective estimation for nonignorable nonresponse problem in time
series has been developed as a main objective.

In this paper, we consider the parameter estimation of Poisson INAR(1) processes
with MNAR data. We propose a semiparametric likelihood estimation for nonignorable
nonresponse by employing the idea of Morikawa et al. [17], which is based on the first-step
imputation. A parametric model for πn and a nonparametric model for the distribution
of observed data are allowed. Furthermore, we establish conditional observed likelihood
by the joint conditional density of {Xn, Xn−1, ..., X1} given X0 to produce the effective
estimator in INAR(1) processes.

This paper is organised as follows. In Section 2, we propose the thought of first-step im-
putation for substituting in INAR(1) processes. In Section 3, a semiparametric estimation
for Poisson INAR(1) processes is discussed and we represent the theoretical properties of
parameter estimation in Section 4. Simulation studies and a real data example to prove
the efficiency of our algorithm are mentioned in Section 5 and Section 6, respectively. In
addition, we consider this method for other INAR models as presenting in Section 7.

2. First-step imputation of missing data
We consider INAR(1) processes {Xn, n ∈ N}:

Xn = α ◦ Xn−1 + εn, (2.1)
where {εn, n ∈ N} constitutes a periodic sequence of independent Poisson-distributed
random variables with mean λ (λ ≥ 0), which is assumed to be independent of Xn−1 for
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each n. α ∈ (0, 1). The thinning operator “◦” is defined as

α ◦ X =
X∑

i=1
Wi, Wi

i.i.d.∼ Bernoulli(α),

and Wi is independent of X. θ = (α, λ)⊤ is the unknown parameter to be estimated.
Let (x1, x2, ..., xn) be the observations of {Xn, n ∈ N} with X0 = x0 and δi be the

response indicator of xi (i = 1, 2, ..., n). Since (2.1) is strict stationary ergodicity (Du and
Li [6]), the response probability for INAR(1) can be represented as

π(ϕ; xi, xi−1) := p(δi = 1|Xi = xi, Xi−1 = xi−1; ϕ), i = 1, 2, ..., n, (2.2)

where ϕ = (ϕ1, ϕ2, ..., ϕq)⊤ ∈ Φ is the unknown parameter and Φ ⊆ Rr, q, r ∈ N+.
First of all, it is necessary to estimate ϕ of the nonignorable missing mechanism. Let

f(·|x0) be the conditional probability given X0 = x0, the estimator of ϕ could be derived
by the following conditional observed likelihood function by Kim and Shao [14]:

Lobs(ϕ, θ) =
∫

f(x1, x2, ..., xn, δ|x0; ϕ, θ)dµ(xmis), (2.3)

where xmis represents the missing part of X1, ..., Xn and µ be the Lebesgue measure.
However, expressing the explicit function of the integral in (2.3) is quite difficult because

of the uncertainty of the missing time n. Notice that (2.1) admits the representation

X̃n = α ◦ X̃n−1 + εn (2.4)

by Yule–Walker equation with X̃n = (X1, X2, ..., Xn)⊤, X̃n−1 = (X0, X1, ..., Xn−1)⊤ and
εn = (ε1, ε2, ..., εn)⊤. To avoid confusion, we denote

α ◦ X̃n−1 := (α ◦ X0, α ◦ X1, ..., α ◦ Xn−1)⊤,

where “⊤” denotes the matrix transpose. Consequently, the integrand in (2.3) can be
rewritten as the following from:

f(x1, x2, ..., xn, δ|x0; ϕ, θ) = f(x̃n, δ|x̃n−1; ϕ, θ)

= f(x̃n|x̃n−1; θ)p(δ|X̃n = x̃n, X̃n−1 = x̃n−1; ϕ).

Notice that the missing data exists in the both sides of (2.4). Traditional imputation
estimation, which supplying the missingness in both X̃n and X̃n−1, will cause the failure
of the result under MNAR hypothesis, and another difficulty for incomplete INAR data
is the inexistence of a full-observed sequence. Based on these, our major idea is only
filling the missing part in the right side of (2.4), but allowing X̃n remains as the original
structure, i.e. for any 0 < k < n, Xn−k is on the both sides of (2.4), if the value of
Xn−k is unobserved, we can fill this gap in X̃n−1 by some ways and the site of Xn−k

in X̃n remains missing. Reasonable imputation provides an interpolated sequence with
approximate dynamic lag relationship, hence it could be regarded as the condition to
make inference. Moreover, estimation with missing X̃n remedies effectiveness of directly
imputation conversely. Motivated by this thought, several interpolation methods can be
considered. For instance, Andersson and Karlis [2] proposed imputation based on the
bridge imputation (BI), Jia et al. [10] considered subgroup mean (SM) imputation. For
ease of description, we assume the interpolated value of x̃n−1 is x∗

n−1 = (x∗
0, x∗

1, ..., x∗
n−1),

where x∗
i−1 be the interpolation value if δi−1 = 0 and x∗

i−1 = xi−1 (i = 1, 2, ..., n) otherwise.
Since we would rather making statistical inference for (2.3) by imputing X̃n−1 at first, we
name this as “first-step imputation”.
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3. Semiparametric estimation
The conditional observed likelihood function (2.3) could be represented as following:

Lobs(ϕ, θ) =
∫

f(x̃n|x̃n−1; θ)p(δ|X̃n = x̃n, X̃n−1 = x̃n−1; ϕ)dµ(xmis). (3.1)

For time series data, we can see that

p(δ|X̃n = x̃n, X̃n−1 = x̃n−1; ϕ) =
n∏

i=1
p(δi|Xi = xi, X̃i−1 = x̃i−1; ϕ)

and
f(x̃n|x̃n−1; θ) =

n∏
i=1

f(xi|x̃i−1; θ)

by Markovian property, thus we have

Lobs(ϕ, θ) =
∏

δi=1
f(xi|x∗

i−1; θ)π(ϕ; xi, x∗
i−1)

∫ ∏
δi=0

f(xi|x∗
i−1; θ)π0(ϕ; xi, x∗

i−1)dµ(xi)

(3.2)
by replacing the data of X̃n−1 with x∗

n−1, where π0(ϕ; xi, x∗
i−1) = 1 − π(ϕ; xi, x∗

i−1).
Morikawa et al. [17] proposed a semiparametric method for (3.2) in the case of inde-

pendent and identical distribution data. Based on the first-step imputation, a similar way
(refer to Louis [16]) is considered to establish the estimation equation for ϕ by solving

1
n

n∑
i=1

[δisi(ϕ; x∗
i−1, δi) + (1 − δi)E{si(ϕ; x∗

i−1, δi)|x∗
i−1, δi = 0}] = 0, (3.3)

where si(ϕ; x∗
i−1, δi) = ∂

∂ϕ log[πδi(ϕ; xi, x∗
i−1)π0

1−δi(ϕ; xi, x∗
i−1)].

Under some regularity conditions, the conditional expectation in (3.3) can be employed
the kernel smoothing to perform the nonparametric estimator by Ĉsi(ϕ)/D̂(ϕ) that

Ĉsi(ϕ) = (nh)−1
n∑

j=1
δjK((x∗

j−1 − x∗
i−1)/h)Oj(ϕ; x∗

i−1)sj(ϕ; x∗
i−1, δi),

D̂i(ϕ) = (nh)−1
n∑

j=1
δjK((x∗

j−1 − x∗
i−1)/h)Oj(ϕ; x∗

i−1),
(3.4)

where Oj(ϕ; x∗
i−1) = π0(ϕ; xj , x∗

i−1)/π(ϕ; xj , x∗
i−1), K(·) is a kernel function defined on R

with the bandwidth h. Therefore, (3.3) could be written as
1
n

n∑
i=1

[δisi(ϕ; x∗
i−1, δi) + (1 − δi)Ĉsi(ϕ)/D̂i(ϕ)] = 0, (3.5)

and the estimator will be given as ϕ̂n.
To estimate θ, we consider a strategy inspired by conditional maximum likelihood

(CML) estimation in complete case for INAR(1) processes. Let θ̂CML be the CML esti-
mator,

θ̂CML = arg max
θ

n∏
i=1

f(xi|xi−1; θ).

The conditional probability density function f(xi|xi−1; θ) is given by Al-Osh and Alzaid
[1], thus θ̂ in this paper by maximizing Lobs(ϕ̂, θ), which is equivalent to solving the
following score equation:

1
n

n∑
i=1

[δiPi(θ) + (1 − δi)E{li(θ)|x∗
i−1, δi = 0}] = 0, (3.6)

where li(θ) = ∂
∂θ log f(xi|xi−1; θ).
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Equation (3.6) can be solved in a similar way because E{li(θ)|x∗
i−1, δi = 0} could

be approximated by the kernel smoothing method again. The left side of (3.6) can be
estimated by

1
n

n∑
i=1

[δili(θ) + (1 − δi)Ĉli(θ, ϕ̂)/D̂i(ϕ̂)] = 0, (3.7)

where

Ĉli(θ, ϕ̂) = (nh)−1
n∑

j=1
δjK((x∗

j−1 − x∗
i−1)/h)Oj(ϕ̂; x∗

i−1)lj(θ).

and an effective estimator θ̂n will be obtained.

4. Asymptotic properties
In this section, we discuss the asymptotic properties of proposed estimation. We focus

on the consistency and asymptotic normality of ϕ̂n and θ̂n with sample size n. In what
follows, E0[·] := E[·|δ = 0], E1[·] := E[·|δ = 1], f1(·) := f(·|δ = 1), and ∥ · ∥ denotes the
Euclidean norm (for example, for a matrix A = (aij), ∥A∥ = (

∑
i,j a2

ij)1/2). Firstly, the
following necessary regularity conditions are given to study properties of ϕ̂n:
(A1) Let X be a compact set that is contained in the support of X, for all n = 1, 2, ... and

all ϕ, Xi ∈ X and π(ϕ; xn, xn−1) ∈ (0, 1);
(A2) E[ ∂

∂ϕπ(ϕ0; xn, xn−1) ∂
∂ϕ⊤ π(ϕ0; xn, xn−1)] is positive definite, where ϕ0 ∈ Φ is the

true value of ϕ;
(A3) π(ϕ; xn, xn−1) is identifiable, continuously differentiable until order 3 with prob-

ability one, ∥ ∂
∂ϕπ(ϕ; xn, xn−1)∥, ∥ ∂2

∂ϕ⊤∂ϕ
π(ϕ; xn, xn−1)∥ are bounded on an open

set containing X and E[∥ ∂
∂ϕ log π(ϕ; xn, xn−1)∥], E[∥ ∂2

∂ϕ⊤∂ϕ
log π(ϕ; xn, xn−1)∥],

E[∥ ∂3

∂ϕ∂ϕ⊤∂ϕ
log π(ϕ; xn, xn−1)∥] are finite;

(A4) The kernel K(u) has bounded derivative until order 3 satisfies that
∫

K(u)du = 1,
and has zero moments of m ≥ 4 and a nonzero mth order moment;

(A5) For p ≥ 4, E1[∥ ∂
∂ϕ log π(ϕ; xn, xn−1)∥p], E1[∥ ∂

∂ϕ log π(ϕ; xi, xn−1)∥p|xn−1]f1(xn−1),
E1[∥π−1(ϕ; xn, xn−1)∥p] and E1[∥π−1(ϕ; xn, xn−1)∥p|xn−1]f1(xn−1) are bounded on
an open set containing X;

(A6) The bandwidth h satisfies that: (i) h → 0, (ii) for p ≥ 4, n
1− 2

p h/ log n → ∞,
(iii)

√
nh6/ log n → ∞ and (iv) for m ≥ 4,

√
nh2m → ∞.

Conditions (A4)-(A6) provide the kernel conditions for the nonparameter estimator
(3.6). Newey and McFadden [18] proved that for i = 1, 2, ..., n and ϕ ∈ Φ,

∥Ĉsi(ϕ) − Csi(ϕ)∥k = op(n−1/4),

∥D̂i(ϕ; x∗
i−1) − Di(ϕ; x∗

i−1)∥k = op(n−1/4),
(4.1)

where ∥ · ∥k is defined as Sobolev norm which ∥γ(x)∥k := maxj≤ksupx∈X∥ ∂j

∂xj γ(x)∥ for all
the distinct jth-order partial derivatives of all elements of γ(x) and nonnegative integer
k.

The asymptotic properties of ϕ̂n can be summarized from the following theorem:

Theorem 4.1. Under conditions (A1)-(A6), there exists a maximizer ϕ̂n ∈ Φ of (3.2)
such that

(i)(Consistency) ϕ̂n
p−→ ϕ0, as n → ∞,

(ii)(Asymptotic Normality)
√

n(ϕ̂n − ϕ0) L−→ N(0, I−1
ϕ WϕI−1

ϕ ), as n → ∞,

where Iϕ, Wϕ are presented in the proof.
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Let Ŝn(ϕ) = n−1 ∑n
i=1[δisi(ϕ; x∗

i−1, δi) + (1 − δi)Ĉsi(ϕ)/D̂i(ϕ)], it can be reformed to
a linearization via Lemma 4.2 of Morikawa et al [17] and Khashimov [12], that is

Ŝn(ϕ) = n−1
n∑

i=1
[1 − δi

π(ϕ; xi, x∗
i−1)

]E0{si(ϕ; x∗
i−1, δi)|x∗

i−1} + op(n−1/2). (4.2)

Denote the influence functions of Ŝn(ϕ) by Ŝl
n(ϕ), it can be proved that

sup
ϕ

∥Ŝl
n(ϕ) − Sn(ϕ)∥ −→ 0, as n −→ ∞, (4.3)

where Sn(ϕ) = n−1 ∑n
i=1[δisi(ϕ; x∗

i−1, δi)+(1−δi)E0{si(ϕ; x∗
i−1, δi)|x∗

i−1}]. There remains
to verify the asymptotic properties of ϕ̂n in Ŝl

n(ϕ), it requires us give a following lemma:

Lemma 4.2. Let Fn = σ(Xn, Xn−1, ..., X0) be a σ-field, under (A1)-(A6), for n → ∞,
{Ŝl

n(ϕ), Fn, n ≥ 1} is an asymptotic martingale sequence.

Proof of Lemma 4.2. Let Mi(ϕ) label the i-th elements of nSn(ϕ) and S
(1)
n (ϕ) =∑n

i=1 Mi(ϕ) ,we consider a σ-field as Fδn = σ(Xn, δn, Xn−1, δn−1, ..., δ1, X0) such that
Fn ⊂ Fδn . Following Theorem 2.5 of Kim and Shao [14] we can obtain

E{S(1)
n (ϕ)|Fn−1} = E{E[S(c)

n (ϕ)|Fδn ]|Fn−1}

= E{S
(c)
n−1(ϕ)|Fδn−1}

= S
(1)
n−1(ϕ),

(4.4)

where S
(c)
n (ϕ) is the score function with complete data of INAR(1) satisfies

E{S(c)
n (ϕ)|Fn−1} = S

(c)
n−1(ϕ) + E{ ∂

∂ϕ
log f(xn, δn = 1|xn−1; ϕ, θ)|Fn−1},

and
E{ ∂

∂ϕ
log f(xn, δn = 1|xn−1; ϕ, θ)|Fn−1} = 0,

which implies that {Sn(ϕ), Fn, n ≥ 1} be a martingale, therefore, as n tends to infinity,
{Ŝl

n(ϕ), Fn, n ≥ 1} is an asymptotic martingale by (4.3). �
Lemma 4.2 proved the martingale sequence from the construction of (4.2). The laws of

large number and center limits theorem of martingale could be used to prove theorem 4.1.

Proof of Theorem 4.1. Let

M̂ l
i (ϕ) = [1 − δi

π(ϕ; xi, x∗
i−1)

]E0{si(ϕ; x∗
i−1, δi)|x∗

i−1},

from lemma 4.2, it is easy to see that

Ŝl
n(ϕ) p−→ E[Mn(ϕ)], as n → ∞,

by the laws of large number. With the strict stationary ergodicity of {Xn, n ∈ N}, we can
show that

E[Mn(ϕ0)] → 0 as n → ∞,

V ar(Mn(ϕ0)) = E[Mn(ϕ0)M⊤
n (ϕ0)] := Iϕ,

and
E[ ∂

∂ϕ⊤ Mn(ϕ0)] = −Iϕ, as n → ∞.

Let

Ŝ∗
n(ϕ) =

n∑
i=1

{ ∂

∂ϕ⊤ M̂ l
i (ϕ) − E[ ∂

∂ϕ⊤ M̂ l
i (ϕ)]},
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where ∂
∂ϕ⊤ M̂ l

i (ϕ0) denotes ∂
∂ϕ⊤ M̂ l

i (ϕ)|ϕ=ϕ0 , we can also prove that {Ŝ∗
n(ϕ), Fn, n ≥ 1}

is a martingale and

Ŝ∗
n(ϕ0) =

n∑
i=1

[ ∂

∂ϕ⊤ M̂i(ϕ0) + Iϕ],

so that
∥ 1

n
Ŝ∗

n(ϕ0)∥ p−→ 0, n → ∞.

Conditions (B1)-(B3) of Basawa et al. [3] hold and, furthermore, it can be proved that
(3.1) has a root ϕ̂n which is consistent to ϕ0 as n → ∞. (See also in section 6.2, Hall and
Heyde [8])

To derive the asymptotic distribution of ϕ̂n, we consider Taylor series expansion at
ϕ = ϕ0 that

0 = Ŝl
n(ϕ̂n) =

√
nŜl

n(ϕ0) + ∂

∂ϕ⊤ Ŝl
n(ϕ0)

√
n(ϕ̂n − ϕ0) + 1

2
∂

∂ϕ∂ϕ⊤ Ŝl
n(ϕ1)

√
n(ϕ̂n − ϕ0)2,

where ϕ1 values between ϕ̂n and ϕ0. Through the arguments of martingale central limit
theorem (Hall and Heyde [8]),

1√
n

Ŝl
n(ϕ0) L−→ N(0, Wϕ),

whereWϕ = E{Ŝl
n(ϕ0)Ŝl

n
⊤(ϕ0)}. On the other hand,

∥ ∂

∂ϕ∂ϕ⊤ Ŝl
n(ϕ1) − E[ ∂

∂ϕ∂ϕ⊤ Mn(ϕ1)]∥ p−→ 0, n → ∞,

therefore
∥ ∂2

∂ϕ∂ϕ⊤ Ŝl
n(ϕ1)(ϕ̂n − ϕ0)∥ = op(1)

from the consistency of ϕ̂n. Therefore, the (ii) of theorem 4.1 follows by the Slutsky
theorem. The proof is completed. �

The following regularity conditions for INAR(1) processes are assumed as below, which
are necessary for studying the asymptotic properties of θ̂n.
(B1) {Xn, n ∈ N} has finite moments until order 3, that is, for k ≤ 3, EXk

n < ∞;
(B2) There exits p ≥ 4 such that E1[∥l(θ)∥p] and E1[∥l(θ)∥p|xi−1]f1(xi−1) are bounded,

where l(θ) =
∑n

i=1 li(θ).

Theorem 4.3. Under conditions (A4)-(A6) and (B1)-(B2), the estimator θ̂n in (3.9)
satisfies

(i)(Consistency) θ̂n
p−→ θ0, as n → ∞,

(ii)(Asymptotic Normality)
√

n(θ̂n − θ0) L−→ N(0, I−1
θ WθI−1

θ ), as n → ∞,

where Iθ and Wθ are presented in the proof.

Note that the left side of (3.6) is the score function of the conditional observed likelihood
(2.3) for θ, let Un(θ) =

∑n
i=1[δili(θ)+(1−δi)E0{li(θ)|x∗

i−1}], we have Un(θ) = ∂
∂ϕLobs(θ).

Let Ûn(θ) be the estimation of (3.6), it can also be represented as a linearization that

Ûn(θ) = n−1
n∑

i=1
[ δili(θ)
π(ϕ̂n; xi, x∗

i−1)
+ (1 − δi

π(ϕ̂n; xi, x∗
i−1)

)E0{li(θ)|x∗
i−1}] + op(n−1/2),

and for all θ ∈ Θ, the influence function Û l
n(θ) converges to Un(θ) as n tends to infinity.

Similar to lemma 4.2, we can prove that {Û l
n(θ), Fn, n ≥ 1} is an asymptotic martingale

sequence. It inspires us considering as the same proof as theorem 4.1.
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Proof of Theorem 4.3. Let

N̂ l
i (θ) = δili(θ)

π(ϕ̂n; xi, x∗
i−1)

+ (1 − δi

π(ϕ̂n; xi, x∗
i−1)

)E0{li(θ)|x∗
i−1},

Ni(θ) = δili(θ) + (1 − δi)E0{li(θ)|x∗
i−1},

one can see that for n −→ ∞,

Û l
n(θ) p−→ E[Nn(θ)].

Denote
Û∗

n(θ) =
n∑

i=1
{ ∂

∂θ⊤ N̂ l
i (θ) − E[ ∂

∂θ⊤ N̂ l
i (θ)]},

it can be found the martingale sequence of {Û∗
n(θ), Fn, n ≥ 0} and similar with theorem

4.1, θ̂n is converge to the true value θ0 in probability as n increasing to infinity.
Freeland and McCabe [7] proved the asymptotic normality for θ̂CML in the case of

complete data, the proposition 3 can directly derive the martingale sequences for score
function li(θ). Since {Û l

n(θ), Fn, n ≥ 1} is an asymptotic martingale sequence, thus
1√
n

Û l
n(θ0) L−→ N(0, Wθ),

by martingale central limit theorem with Wϕ = E[N̂ l
n(θ0)N̂ l

n
⊤(θ0)]. Similarly, we can

prove that
∂

∂θ⊤ Û l
n(θ0) p−→ E[ ∂

∂θ⊤ ln(θ0)] := Iθ

and
∥ ∂2

∂θ∂θ⊤ Û l
n(θ1)(θ̂n − θ1)∥ = op(1),

as n −→ ∞ with θ1 values between θ̂n and θ0. Therefore, by Taylor series expansion, the
asymptotic distribution for θ̂n can be given as

√
n(θ̂n − θ0) L−→ N(0, I−1

θ WθI−1
θ ), n → ∞,

�
Remark 1 Note that asymptotic properties of estimators are provided by the strictly
stationary ergodicity of {Xn, n ∈ N}, therefore, unbiased results by our method will be
established under other stationary INAR models in the same way. This will be confirmed
in section 7 with numerical studies.
Remark 2 In theorem 4.1 and theorem 4.3, asymptotic variances are constructed by the
imputed value x∗

i−1 (i = 1, ..., n), which indicates that the first-step imputation somehow
influences the efficiency of the estimator. In practice, a proper choice for the imputation
method depends on the modeling of πt. The sample size, response rates and θ0 will also
dominate the option in general. Refer to section 5 for related simulation results.

5. Simulation studies
To test the performance of our theory described in previous sections, we perform several

simulation studies to examine our algorithm for Poisson INAR(1) processes for 4 kinds
of parameter combinations. The response mechanism for each scenario is specified as a
log-log model πt = 1 − exp(− exp(ϕ1 + ϕ2Xt)). The true value of θ = (α, λ) and ϕ is
designed as following:

Model 1. θ = (0.3, 1) with the mechanism parameter ϕ1;
Model 2. θ = (0.3, 2) with the mechanism parameter ϕ2;
Model 3. θ = (0.6, 1) with the mechanism parameter ϕ3;
Model 4. θ = (0.6, 2) with the mechanism parameter ϕ4;
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For each model, we use 500 independent replications for different series with the ini-
tial value X0 ∼ Poisson(λ). The response rates are controlled at about 85% and 70%
respectively by adjusting ϕ. Simulations are carried out to evaluate efficiency of θ̂n under
consideration of four strategies: (i) Subgroup Mean Imputation estimation (SM); (ii)
Bridge-Imputation estimation (BI); (iii) First-Step Imputation Semiparametric estima-
tion by Subgroup Mean Imputation (SM-FISE) and (iv) First-Step Imputation Semipara-
metric estimation by Bridge-Imputation (BI-FISE).

In the subgroup mean imputation, we use the rounding of (
∑

i δi)−1 ∑
δi=1 Xi to fill

up each missing part in X̃n−1. In the bridge imputation, we consider the algorithm as
following:

step 1. Specify an observed series Xobs by deleting the missing part of Xn, estimate
a start value θ1 from Xobs;

step 2. For some k > 1, denote Xi and Xi+k are observed points and all the points
that are between are missing. The BI algorithm proceeds by simulating value Xi+r+1
conditional on the previous point Xi+r (r = 0, ..., k − 1) by (2.1) with θ1;

step 3. Simulate the value of Xi+k as X∗
i+k, if X∗

i+k coincides with Xt+k to use this
path filling all the missingness, otherwise repeat step 2 to generate a new path;

step 4. Use the entire series to simulate an estimator θ2. Repeat step 2-4 with the
parameter values obtained in the last iteration until ∥θ1 − θ2∥ < ϵ and select each X∗

i+r+1
in step 3 to replace the missingness of X̃n−1.

For the semiparametric simulation study, the nonparametric kernel regression estimator
of (3.5), (3.8) is computed using a Gaussian kernel function K(u) = (2π)−1/2 exp(−u2/2).
The bandwidth is selected as h = 1.5σ̂xn−1/3 which is considered in Chen et al. [4], Shao
and Wang [22] and Morikawa et al. [17], where σ̂x is the estimated standard deviation
of Xn in the sample. Moreover, the convergence criteria of bridge imputation is set as
ϵ = 10−2.

Table 1–4 summarized the results for each θ̂n from the scenario Monte Carlo samples
of size n = 100, 300 with 85% and 70% response rates, respectively. In each table the
empirical bias (Bias), mean squared errors (MSE), standard deviations (SD) and standard
errors (SE) are presented. Otherwise, the approximately 95% confidence intervals (CI)
of the parameter with coverage rate (CR) are reported, which is constructed based on
θ̂n ± 1.96SE and SE is the square root of diagonal elements of n−1 ∑n

i=1 I−1
θ̂n

Wθ̂n
I−1

θ̂n
. In

particular, we compute CI and CR by substituting the true value to the missing part of
X̃n−1 to compare the asymptotic normality influenced by different first-step imputations.

It is worth to show that estimations directly from imputation are much more seriously bi-
ased obviously biased in terms of nonignorable missing data, especially for λ̂n, our method
improves the accuracy of imputation estimation to a certain extent. As the sample size
increasing, desired results of SE-FISE and BI-FISE are maintained throughout different
response rates as well. On the other hand, we found that regardless of the missing rates
SE-FISE generally performs less bias and MSE than BI-FISE under the circumstances of
100 sample size in model 1 and model 2, while BI-FISE works better in model 3, 4. The
convergence speed of BI-FISE performs faster as sample size increasing as well. This is
mainly because the subgroup imputation for INAR(1) reduces the sampling variability in
the data. The imputed values with deterministic imputation cause the inaccurate charac-
terization of the missingness as data varying far away from EXn (as shown in Figure 1–4),
the increasing n deeps this problem in the same way. However, bridge imputation can
be problematic contrarily. Therefore, when α and λ are specified small, SM-FISE could
be considered as an efficient estimation because of saving time for the iterative process.
Moreover, the coverage probabilities of 95% confidence intervals is decreasing with the
increase of missing rates. Due to different properties of imputations CR of BI-FISE per-
forms a little bit stable and as in direct proportion to α and λ, it computed around 90%
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in model 3, 4 but opposite for SM-FISE. In summary, choosing an appropriate imputation
method for the semiparametric estimation in terms of preliminary inference of models will
lead a better conclusion.

Figure 1. Scattergram of observations and imputations for INAR(1) with 100
sample size, 85% response rates.

Figure 2. Scattergram of observations and imputations for INAR(1) with 300
sample size, 85% response rates.

Figure 3. Scattergram of observations and imputations for INAR(1) with 100
sample size, 70% response rates.
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Figure 4. Scattergram of observations and imputations for INAR(1) with 300
sample size, 70% response rates.

6. Empirical analysis
In this section, we apply the proposed algorithm to the monthly counts of Criminal

mischiefs in the 21 police car beat in Pittsburgh from January 1990 to December 2001,
which could be extracted from the website of Forecasting Principles (http://www.fore-
castingprinciples.com), consisting of 144 monthly observations that the sample path and
ACF, PACF plot are presented in Figure 5, Figure 6 and Figure 7, respectively. From
ACF and PACF of the criminal data, it is reasonable to show that the analysed data set
can be fitted by Poisson INAR(1) processes. The CML estimator is (0.2335, 4.5205) in a
complete case, which is specified as a measure of estimations.

We create artificial missing conditions by defining response mechanisms for the sample
described above. Specifically, 3 groups of models are used:

(i) (MCAR) πt = ϕ1;
(ii) (Log-log) πt = 1 − exp(− exp(ϕ1 + ϕ2Xt));
(iii) (Logistic) πt = 1/(1 + exp(ϕ1 + ϕ2Xt));

Figure 5. Sample path plot of criminal mischiefs in the 21 police car beat in
Pittsburgh.

The missing rates are controlled at about 15% and 30% with different ϕ = (ϕ1, ϕ2).
For each mechanism, we simulate 50 independent replications and the convergence criteria
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ϵ = 0.08 to improve the efficiency of BI. the Bias, MSE, SD and SE of parameters estimated
by algorithms mentioned in section 5 are compared.

Table 5–6 report the differences of indicators between each estimator and θ0 with dif-
ferent response rates. Under response mechanisms (i) , (ii) and (iii) , the Bias based
on two kinds of imputation estimators are consistently larger than our FISE estimators
whenever response rate valued 85% or 70% and SD, SE display the same performance as
well. Therefore, this empirical study demonstrates a better effectiveness for our method.

Figure 6. ACF plot of criminal mischiefs in the 21 police car beat in Pittsburgh.

Figure 7. PACF plot of criminal mischiefs in the 21 police car beat in Pittsburgh.

7. Numerical experiments for diverse INAR models
In this section, we perform some numerical experiments for some other integer-valued

autoregressive processes to verify that first-step imputation semiparametric estimation is
universal. Typically, we consider the estimation for stationary integer-valued autoregres-
sive with geometric innovations (INARG(1)) in terms of nonignorable missing data, which
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is well-discussed in Jazi [9]. In this paper we pay our attention to the following processes:

Xt = α ◦ Xt−1 + εt, εt
i.i.d.∼ Geometric(λ).

We make the numerical simulation with parameters (α, λ) = (0.3, 0.5) and (0.5, 0.5) re-
spectively, the initial value X0 ∼ Geometric(λ). The nonignorable response mechanism
for each model is specified as πt = 1 − exp(− exp(ϕXt)), the same indicators are adopted
as in section 5 for 500 independent replications with various sample size and response rates
as well. As shown in Table 7–8, expected results for first-step imputation semiparametric
estimation are performed in the scenarios, where BI-FISE performs best in all scenarios.
It concludes that our method will not lose the efficient for other INAR processes.

8. Conclusion
In this article, we introduced an estimation method for which observations are incom-

plete in Poisson INAR(1) processes. When the response mechanism is nonignorable, the
effective semiparametric estimator (3.9) based on a first-step imputation could be ob-
tained. Asymptotic properties, simulation and empirical results have been presented to
prove our estimators provide satisfactory performances in general. For different param-
eters we discuss the division between SM-FISE and BI-IFSE, our method can be seen
as an improvement for the directly imputation estimation. It will be suitable for other
parameter estimation of stationary integer-valued time series.

There are some more points that we did not pursue in this article. In the nonparametric
part, choice of the bandwidth h in kernel function has not been discussed at length in this
paper, some algorithms like cross-validation could be considered to improve estimation
effects but this still be a computational challenging problem. On the other hand, if the
response mechanism πi becomes unknown or under a class of candidate specifications
{πij , i = 1, 2, ..., I; j = 1, 2, ..., J}, propensities of estimation may be challenging. In
addition, the identification of parameters in complex time series under nonignorable
response mechanisms is also an impeding problem. These remains topics of future research.

Acknowledgment. This work is supported by National Natural Science Foundation of
China (No. 11871028, 11731015, 11901053),Natural Science Foundation of Jilin Province
(No. 20180101216JC), Program for Changbaishan Scholars of Jilin Province (2015010).
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