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Abstract
This work aims to deduce estimators for the unknown parameters of fixed effects and
covariance matrix structure in heteroscedastic additive design. In order to do that, the
design will be projected onto the orthogonal complement of the subspace spanned by
columns of design matrix for the fixed effects, and the Kronecker product will be used
to produced unbiased estimators for the parameters of covariance matrix, and then such
estimators used to produce an estimator for the fixed effect vector. Moreover, the coeffi-
cient of determination for both fixed effects and covariance structure will be derived. A
simulation study will be conducted, and a numerical example will be explored.
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1. Introduction
We approach the additive models having the following structure:

z = Xoβo +
s∑

i=1
Xiβi, (1.1)

where



βo ∈ Mco×1 is the vector for the fixed effects (the general mean);
Xo ∈ Mm×co is the design matrix for the fixed effects;
Xi ∈ Mm×ci , i = 1, . . . , s, are the design matrix for the random effects;
βi ∈ Mci×1, i = 1, . . . , s, are the random effects due to the design

different groups of treatments;
It is assumed that βi ∼ (0ci , Vi), where

Vi =

σ2
i,1,1 . . . σ2

i,1,ci
... . . . ...

σ2
i,ci,1 . . . σ2

i,ci,ci


=

[
σ2

i,h,l

]
, h = 1, . . . , ci; l = 1, . . . , ci and i = 1, . . . , s, (1.2)
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is a ci × ci matrix whose entry at row h and column l is Σ(βi,h, βi,l), with βi,h the hth
element of βi, and that the group of treatments are observed independently so that the
model follows the following distribution:

z ∼
(

Xoβo,
s∑

i=1
XiViX

⊤
i

)
. (1.3)

This is the well known heterocedastic additive model. It is known for its heteroscedastic
structure within the different groups of treatments, a problem which occurs more often
in data sets that have large range between the largest and smallest observed values (see
[2], for example). A blatant example is the household consumption based on income:
lower income households are less variable in absolute terms since they need to focus on
priority necessities (may not be too many), and higher income households may have need
to purchase a wide variety of luxury items, resulting in a broader spread of spending
habits.

Dealing with Heteroscedasticity is a major concern in linear mixed models (See [11]),
mainly because most of techniques used, such as least squares-based ones, assume that the
variability within groups or sub-groups of treatments are constants, i.e. the observed data
within groups or sub-groups are uncorrelated. As a matter of fact, according with several
recent contributes, as [1, 4, 5, 8], the situation is often different, that is such variabilities
may not be constants.

The literature is quite satisfactory with regard to addressing the heteroscedastic in
linear mixed models whose the covariance structure has only one unknown matrices (see
[6] and [7]). In this sense, in this work we aim to develop tools to estimate the variability
in linear mixed models whose covariance structure has an arbitrary number of unknown
matrices, that is, in the context of model (1.3), our purpose is to provide the users with
estimators for the unknown variation within the different groups of treatments denoted by
matrices V1, . . . , Vs, and for the unknown fixed effects denote by βo. Firstly, a restricted
version of the model will be used to derivate the announced estimators for the matrix
components V1, . . . , Vs and then, nextly, such estimators together with the general least
square estimation will be used to derive an estimator for βo in (1.1). In what follows,
parameters to measure the quality of the adjustment for each one of the estimators will be
derived. At the end, a simulation study will be conducted in order to text the estimators
performance.

The following notations will be used without any additional comments:
• Σ(x) denotes the variance-covariance matrix of a random vector x, i.e

Σ(x) = E[(x − E(x))(x − E(x))⊤];
• 0n,m denotes an n × m matrix, while 0n denotes a null vector of dimension n; 1n

denotes a vector of ones with dimension n;
• Jn denotes a n × n matrix of ones;
• z ∼ (w, Σ) denotes a random vector z with mean w, and variance-covariance matrix

Σ; zt denotes its tth element;
• r(A) denotes the rank of a matrix A.
•
∑n

i ̸=j denotes
∑n

i=1
∑n

j=1 for i ̸= j;

2. Inference
Let PR(Xo) be the projection matrix onto the subspace spanned by the columns of Xo.

Then, there exists a matrix A ∈ Mm×n, whose columns are the orthogonal eigenvectors
associated to the null eigenvalues of PR(Xo), satisfying, therefore,

A⊤A = Im−r and AA⊤ = Im − PR(Xo) = PR(Xo)⊥ ,
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where r = rank
(
PR(Xo)

)
, n = m − r and PR(Xo)⊥ is the projection matrix onto the

orthogonal complement of the subspace spanned by the columns of Xo.
Lets also consider the restricted mixed linear model

y = A⊤z =
s∑

i=1
A⊤Xiβi =

s∑
i=1

Xo
i βi, (2.1)

with Xo
i = A⊤Xi, i = 1, . . . , s, whose distribution is given as

y ∼
(

0n,
s∑

i=1
Xo

i ViX
o
i

⊤
)

, (2.2)

that is E(y) = 0n and Σ(y) = E[yy⊤] =
∑s

i=1 Xo
i ViX

o
i

⊤.

Since the parameters of the covariance structure to be estimated, V1, . . . , Vs, do not
depends on the fixed effect structure of the model, and in order to reduce the bias and
the complexity of the model for the algebraic manipulation, it is convenient for us to work
with the restricted model (2.1) in the search for estimators for variation of the different
groups of treatments.

2.1. Estimating the parameters of covariance matrix - V1, . . . , Vs

Letting Xo
i = [xo

i,1 . . . xo
i,ci

], i = 1, . . . , s, where xo
i,t denotes the tth column of Xo

i , and
recalling Vi in (1.2), we foundthe that

Xo
i ViX

o
i

⊤ =
ci∑

h=1

ci∑
l=1

σ2
i,h,lx

o
i,hxo

i,l
⊤, (2.3)

and, therefore,

Σ(y) = E[yy⊤] =
s∑

i=1

ci∑
h=1

ci∑
l=1

σ2
i,h,lx

o
i,hxo

i,l
⊤. (2.4)

According with Proposition A.2 of Appendix, together with vec operator (see Definition
A.1) and expectation properties, the following result follows:

Proposition 2.1. E[vec(yy⊤)] =
∑s

i=1
∑ci

h=1
∑ci

l=1 σ2
i,h,lx

o
i,l ⊗ xo

i,h.

Proof.

E
[
vec

(
yy⊤

)]
= vec

(
E
[
yy⊤

])
= vec

(
s∑

i=1

ci∑
h=1

ci∑
l=1

σ2
i,h,lx

o
i,hxo

i,l
⊤
)

=
s∑

i=1

ci∑
h=1

ci∑
l=1

σ2
i,h,lvec

(
xo

i,hxo
i,l

⊤
)

=
s∑

i=1

ci∑
h=1

ci∑
l=1

σ2
i,h,lx

o
i,l ⊗ xo

i,h. (2.5)

The third row of (2.5) is due to the linearity of vec operator, while the fourth one due to
Proposition A.2 of Appendix. �

Lets define a new vector:
yoo = vec

[
yy⊤

]
= y ⊗ y. (2.6)

Then we have the following result.
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Proposition 2.2. Let Nn = 1
2Knn + 1

2In2, where Knn is a commutation matrix (see
Definition A.5 in Appendix) and add normality to the restricted model (2.2), i.e
yoo ∼ Nn

(
0n,

∑s
i=1 Xo

i ViX
o
i

⊤
)
. Then,

Σ(yoo) = Nn

s∑
i=1

s∑
j=1

[(
Xo

i ViX
o
i

⊤
)

⊗
(
Xo

j VjXo
j

⊤
)]

= Nn

s∑
i=1

s∑
j=1

(
Xo

i ⊗ Xo
j

)
(Vi ⊗ Vj)

(
Xo

i ⊗ Xo
j

)⊤
. (2.7)

Proof. According with Theorem 9.20 of [9], and Proposition A.3 (due to [10]) of Ap-
pendix, we found that

Σ (yoo) = Σ(y ⊗ y)

= Nn

[(
s∑

i=1
Xo

i ViX
o
i

⊤
)

⊗
(

s∑
i=1

Xo
i ViX

o
i

⊤
)]

= Nn

s∑
i=1

s∑
j=1

[(
Xo

i ViX
o
i

⊤
)

⊗
(
Xo

j VjXo
j

⊤
)]

= Nn

s∑
i=1

s∑
j=1

(
Xo

i ⊗ Xo
j

)
(Vi ⊗ Vj)

(
Xo

i ⊗ Xo
j

)⊤
. (2.8)

�

Now we define the following Matrix and vector, respectively:

Xoo =
[
vec

(
xo

1,1xo
1,1

⊤
)

. . . . . . vec
(
xo

s,cs
xo

s,cs

⊤
)]

=
[
xo

1,1 ⊗ xo
1,1 . . . . . . xo

s,cs
⊗ xo

s,cs

]
, (2.9)

σoo = vec([V1 . . . Vs])

=
[
σ2

1,1,1 . . . . . . σ2
s,cs,cs

]⊤
, (2.10)

recalling that Vi =

σ2
i,1,1 . . . σ2

i,1,ci
... . . . ...

σ2
i,ci,1 . . . σ2

i,ci,ci

, i = 1, . . . , s.

One must note that Xoo is a matrix whose columns are the columns of the design ma-
trices for the random effects X1, . . . , Xs, whereas σoo is a vector whose entries are the
elements of the random effects variance-covariance matrices V1, . . . , Vs.

According with Proposition 2.1 we have that E(yoo) = Xooσoo; because of this, and
recalling the covariance structure of yoo in (2.8), we may propose a new model:

yoo = Xooσoo + e, (2.11)

where

e ∼ Nn2(0n2 , ∆n), with

∆n = Nn

s∑
i=1

s∑
j=1

[(
Xo

i ViX
o
i

⊤
)

⊗
(
Xo

j VjXo
j

⊤
)]

.
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In the last square estimation we are interested in choosing the parameter σ̃oo which min-
imizes the quadratic error

(yoo − Xoo)⊤ (yoo − Xoo) .

Since σoo ∈ IRk, with k =
∑s

i=1 ci, is allowed to be chosen from anywhere in IRk,
i.e. in the set of all vectors η = Xooσoo ranging over columns space of Xoo. Then, we
have to choose η closest to the vector yoo so as to minimizes ∥yoo − Xooσoo∥2. According
with Theorem A.4, the unique closest vector is Py, where P is the projection matrix
onto columns space of Xoo, which is given by P = Xoo(Xoo⊤

Xoo)+Xoo⊤ ; that is, Py =
Xoo(Xoo⊤

Xoo)+Xoo⊤
yoo is the closest vector to the vector η in the columns space of Xoo,

and so the well known ordinary least square estimator (OLS) for σoo is given by

σ̃oo = (Xoo⊤
Xoo)+Xoo⊤

yoo (2.12)

2.2. Estimating the fixed effects - βo

In this section we use the LSE for σoo ∈ IRk to deduce an estimator for βo.
Recalling the linear mixed model (1.1), and letting Σo =

∑s
i=1 XiViX

⊤
i , the GLSE for

βo in such a model is:

argminβo∈IRco (z − Xoβo)⊤Σ⊤
o (z − Xoβo),

which is achieved when
β̂o =

(
X⊤

o Σ+
o Xo

)+
X⊤

o Σ+
o z.

Once β̂o depends on the unknown parameters V1 . . . V s, with

Vi =

σ2
i,1,1 . . . σ2

i,1,ci
... . . . ...

σ2
i,ci,1 . . . σ2

i,ci,ci


=

[
σ2

i,h,l

]
, h = 1, . . . , ci; l = 1, . . . , ci and i = 1, . . . , s, (2.13)

using β̂o to estimate βo is not so practical, since it depends on the unknown parameters
V1 . . . V s.

Now, noting that σoo = V ec[V1 . . . Vs], and so its LSE (deduced in the previous section)
given by σ̃oo = V ec[Ṽ1 . . . Ṽs], with

Ṽi =


σ̃2

i,1,1 . . . σ̃2
i,1,ci

... . . . ...
σ̃2

i,ci,1 . . . σ̃2
i,ci,ci


=

[
σ̃2

i,h,l

]
, h = 1, . . . , ci; l = 1, . . . , ci and i = 1, . . . , s, (2.14)

if we replace Vi with its corresponding unbiased estimator Ṽi, i = 1, . . . , s, an unbiased
estimator for Σo, which we denoted by Σ̃o, is

Σ̃o =
s∑

i=1
XiṼiX

⊤
i .

We are now in position to propose a new estimator for βo; it is denoted by β̃o, and
defined as follows:

β̃o =
(
X⊤

o Σ̃o
+

Xo

)+
X⊤

o Σ̃o
+

z. (2.15)



584 A. Silva, M. Fonseca

3. The quality of adjustments
In this section we aim to discuss the quality of estimators introduced in the previous

section, through their respective coefficient of determination. Several slightly different
definitions can be found in the literature, but, usually, they are all equivalent in the essen-
cial (the readers are invited to consult others sources). The coefficient of determination,
usually denoted by R2 (and pronounced “r-squared”), is the proportion of the variance in
the dependent (response) variable that is predictable from the independent (explanatory)
variables; it is used as a guideline to assess how well a model explain and predict future
outcomes, based on the proportion of total variation of outcomes explained by the model.

Precisely, given the fraction of the unexplained variance (FUV), i..e. the fraction of
variance of the dependent variable which cannot be correctly predicted (explained) by
the explanatory (independent) variables, defined as FUV = S2

e

S2
T

, where S2
e is the resid-

ual/regression sums of square (sample variance) and S2
T the total sum of squares (variance

of the observed data); it quantifies how much the data points vary around their mean. R2

is given by

R2 = 1 − FUV = 1 − S2
e

S2
T

.

Once S2
T cannot be zero (otherwise R2 is not defined/applicable), R2 is a decreasing

function of S2
e , that is the higher the residual sum of square (sample variance) is, the

smaller the R2 is, and so the lower the quality of regression is. R2 cannot be larger than
1, it is at most equal 1.

- R2 is equal 1 when the residual sum of square (sample variance) is zero; this
indicates that the regression is perfect, that is the fitted model explain perfectly
all variability in depend variable;

- R2 is equal 0 when the sample variance is equal to the variance of the observed
data. It indicates that predicting the observed data with the underling fitted model
is not better than using the sample mean of observed data as a prediction tool,
that is there is no “linear” relationship between the regressors and the response
variable, and so the the fitted model may be discarded;

- R2 = α, with 0 < α < 1, indicates that 100α% of variation in the response variable
can be very well explained by the explanatory variable, and the remain 100(1−α)%
cannot be explained by such a fitted model

It worths to remark that the coefficient of determination gives an estimate of the re-
lationship between movements of dependent variable based on the independent variable’s
movement; it does not tell whether the chosen model is good or bad, nor will it tell whether
the data and predictors are biased.

3.1. R squared of σ̃oo

Recall that σ̃oo = (Xoo⊤
Xoo)+Xoo⊤

yoo is the OLS for σoo in the model

yoo = Xooσoo + e.

Let yoo
t be the tth element of vector yoo and µ = 1

k

∑k
t=1 yoo

t = 1
k I⊤

k yoo the mean of the
observation vector yoo. Then, the total sum of square, S2

T (σ), for the model is given by

S2
T (σ) = 1

k
[yoo − µ1k]⊤[yoo − µ1k]

= 1
k

(
yoo⊤

yoo − 2µ1k + kµ2
)

, (3.1)



Estimation in heteroscedastic additive design 585

and the residual sum of square , S2
e (σ), given by

S2
e (σ) = 1

k
[yoo − Xooσ̃oo]⊤[[yoo − Xooσ̃oo]

= 1
k

yoo⊤[Ik − Xoo(Xoo⊤Xoo)+Xoo⊤]yoo

= 1
k

yoo⊤PR(X)⊥yoo. (3.2)

Now we are ready to set the coefficient of determination for σ̃oo, denote here by R2
(
σ̃oo
)
:

R2
(
σ̃oo
)

= 1 − S2
e (σ)

S2
T (σ)

= 1 −
1
k yoo⊤PR(X)⊥yoo

1
k

(
yoo⊤yoo − 2µ1k + kµ2

)
= 1 −

yoo⊤PR(X)⊥yoo

yoo⊤yoo − 2µ1k + kµ2

3.2. R squared of β̃o

In order to discuss the R2 for β̃o, we recall the initial additive model (1.1):

z = Xoβo +
s∑

i=1
Xiβi (3.3)

and the estimator β̃o =
(
X⊤

o Σ̃o
+

Xo

)+
X⊤

o Σ̃o
+

z for βo. Let zt be the tth elements of vector
z and ζ = 1

m

∑m
t=1 zt = 1

mz⊤Im the mean of observations in vector z. Then the total sum
of square, S2

T (σ), for the model is given by

S2
T (σ) = 1

m
[z − η1m]⊤[z − ζ1m]

= 1
m

z⊤z − 2ζ1m + mη2 (3.4)

and the residual sum of square , S2
e (σ), given by

S2
e (σ) = 1

k
[z − Xoβ̃o]⊤[z − Xoβ̃o]

= 1
k

z⊤
[
Im − 2PoΣ̃o

+
+ Σ̃o

+
P 2

o Σ̃o
+]

z

= 1
k

z⊤P ∗
o z, (3.5)

where Po = Xo(X⊤
o Σ̃o

+
Xo)+X⊤

o and P ∗
o = Im − 2PoΣ̃o

+
+ Σ̃o

+
P 2

o Σ̃o
+

.
Finally, the coefficient of determination for β̃o, denoted here by R2(β̃o), id given by

R2(β̃o) = 1 − S2
e (β)

S2
T (β)

= 1 −
1
mz⊤P ∗

o z
1
m (z⊤z − 2ζ1m + mζ2)

= 1 − z⊤P ∗
o z

z⊤z − 2ζ1m + mζ2 .

4. Simulations
4.1. Simulation study

Here we carry simulation study in order to test the unbiased estimator (2.12). It will
be conducted in two particular linear mixed model. Specifically, the estimator (2.12) will
be applied in a simulated balanced “one-way” random design (see subsection 4.1.1) and a
simulated unbalanced “one-way” random design (subsection 4.1.2).
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4.1.1. Balanced “one-way” random design. Lets suppose the data come from the
particular random “one-way” balanced design

z = Xoβo + X1β1 + X2e, (4.1)

where s = 2, c1 = 3, c2 = 9, Xo = 1c2 , Xo = 1c2 a vector of ones, X1 =

13 03 03
03 13 03
03 03 13

 and

X2 = I9, with β1 ∼ (0c1 , V1) and e ∼ (0c2 , V2). Also suppose that

V1 =

0.2 0.4 0.1
0.4 0.5 0.65
0.1 0.65 0.3

 and V2 =



0.1 0.5 0.3 0.3 0.2 0.3 0.2 0.3 0.7
0.5 0.4 0.3 0.2 0.3 0.3 0.2 0.3 0.3
0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.2
0.3 0.2 0.3 0.4 0.3 0.3 0.2 0.3 0.2
0.2 0.3 0.3 0.3 0.5 0.3 0.3 0.2 0.3
0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.9 0.2
0.2 0.2 0.3 0.2 0.3 0.3 0.5 0.3 0.3
0.3 0.3 0.3 0.3 0.2 0.9 0.3 0.5 0.3
0.7 0.3 0.2 0.2 0.3 0.2 0.3 0.3 0.4


. (4.2)

Thus, PR(Xo) = Ic2 − Jc2
c2

,

A =



0.9428 0.000 0.000 0.000 0.000 0.000 0.000 0.000
−0.118 −0.232 0.000 0.000 0.000 0.000 0.000 0.906
−0.118 −0.389 0.796 0.000 0.000 0.000 −0.180 −0.238
−0.118 −0.389 −0.554 0.000 0.000 0.000 0.000 −0.238
−0.118 −0.389 −0.243 0.000 0.000 0.000 0.779 −0.238
−0.118 0.350 0.000 0.216 0.000 0.839 0.000 −0.0481
−0.118 0.350 0.000 0.467 −0.707 −0.178 0.000 −0.0481
−0.118 0.350 0.000 0.467 0.707 −0.178 0.000 −0.0481
−0.118 0.350 0.000 0.719 0.000 −0.483 0.000 −0.0481


, (4.3)

Xo
1 = A⊤X1 =



0.707 −0.354 −0.354
−0.622 −0.429 1.051
0.796 −0.796 0.000

−0.000 0.216 −0.216
0.000 0.000 0.000
0.000 0.839. −0.839

−0.180 0.180 0.000
0.668 −0.524 −0.144


, and

Xo
2 = A⊤X2 =


0.943 −0.118 −0.118 −0.118 −0.118 −0.118 −0.118 −0.118 −0.118
0.000 −0.232 −0.389 −0.389 −0.389 −0.389 −0.389 −0.389 −0.389
0.000 0.000 0.796 −0.554 −0.243 0.000 0.000. 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.216. −0.467 −0.467 0.719
0.000 0.000 0.000 0.000 0.000 0.000 −0.707 0.707 0.000
0.000 0.000 0.000 0.000 0.000 0.839 −0.180 −0.180 −0.483
0.000 0.000 −0.180 −0.599 0.780 0.000 0.000 0.000 0.000
0.000 0.906 −0.238 −0.238 −0.238 −0.481 −0.048 −0.048 −0.048

. (4.4)

Then, the restricted design is given as

y = Xo
1β1 + Xo

2e. (4.5)

We computed

Xo1 = [xo
1,1 ⊗ xo

1,1 . . . xo
1,c1 ⊗ xo

1,c1 ] ∈ Mc2−1×c2
1 and

Xo2 = [xo
2,1 ⊗ xo

2,1 . . . xo
2,c2 ⊗ xo

2,c2 ] ∈ M(c2−1)2×c2
2 ,
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(using kronecker function in R Studio), and then we found Xoo ∈ M(c2−1)2×(c2
1+c2

2) (a
matrix of dimension 64×90) by concatenating Xo1 and Xo2 (using the function cbindX in R
Studio). For the simulation purpose we assume that β1 ∼ N (0c1 , V 1) and e ∼ N (0c2 , V2).

The design (4.5) is reproduced 1000 times, and for each observed y the estimator (2.12)
is applied and the matrices V1 and V2 are estimated. After that, the average of the
estimated values for the parameters are computed, as well as the correspondents standard
deviations of the estimated values. The achieved (unbiased) estimates for V1 and V2 are
respectively

Ṽ1 =
[

0.196 0.410 0.089
0.410 0.519 0.671
0.089 0.671 0.296

]
and Ṽ2 =



0.131 0.516 0.270 0.325 0.201 0.311 0.182 0.320 0.64
0.516 0.42 0.314 0.200 0.303 0.293 0.221 0.293 0.292
0.270 0.314 0.421 0.309 0.283 0.313 0.332 0.294 0.202
0.325 0.200 0.309 0.389 0.317 0.289 0.204 0.311 0.215
0.201 0.303 0.283 0.317 0.521 0.302 0.332 0.183 0.310
0.311 0.293 0.313 0.289 0.302 0.400 0.306 1.058 0.222
0.182 0.221 0.332 0.204 0.332 0.306 0.485 0.319 0.273
0.320 0.293 0.294 0.311 0.183 1.058 0.319 0.511 0.313
0.640 0.292 0.202 0.215 0.310 0.222 0.273 0.313 0.455

.

Taking a look at the absolute value of the “bias quantities” of V1 and V2, respectively
given by

bV1 = |V1 − Ṽ1| =
[

0.004 0.01 0.011
0.010 0.019 0.021
0.011 0.021 0.004

]
and

bV2 = |V2 − Ṽ2| =



0.031 0.016 0.030 0.025 0.001 0.011 0.018 0.020 0.060
0.016 0.020 0.014 0.000 0.003 0.007 0.021 0.007 0.008
0.030 0.014 0.021 0.009 0.017 0.013 0.032 0.006 0.002
0.025 0.000 0.009 0.011 0.017 0.011 0.004 0.011 0.015
0.001 0.003 0.017 0.017 0.021 0.002 0.032 0.017 0.010
0.011 0.007 0.013 0.011 0.002 0.000 0.006 0.158 0.022
0.018 0.021 0.032 0.004 0.032 0.006 0.015 0.019 0.027
0.020 0.007 0.006 0.011 0.017 0.158 0.019 0.011 0.013
0.060 0.008 0.002 0.015 0.010 0.022 0.027 0.013 0.055


it becomes clear that our estimator (see (2.12)) produces estimates significantly accurate.

4.1.2. Unbalanced “one-way” random design. Now we suppose that the data come
from the particular random “one-way” unbalanced design

z∗ = X∗
o βo + X1 ∗ β1 + X∗

2 e, (4.6)

where s = 2, c1 = 4, c2 = 9, X∗
o = 1c2 , X∗

2 = 1c2 a vector of ones, X∗
1 =


12 02 02 02
04 14 04 04
02 03 13 03
01 01 01 11


and X2 = I9, with β1 ∼ (0c1 , V ∗

1 ) and e ∼ (0c2 , V ∗
2 ). Also suppose that

V ∗
1 =

[0.2 0.4 0.1 0.5
0.4 0.5 0.65 0.45
0.1 0.65 0.3 0.5
0.5 0.45 0.5 0.2

]
and V ∗

2 = V2 =



0.1 0.5 0.3 0.3 0.2 0.3 0.2 0.3 0.7
0.5 0.4 0.3 0.2 0.3 0.3 0.2 0.3 0.3
0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.2
0.3 0.2 0.3 0.4 0.3 0.3 0.2 0.3 0.2
0.2 0.3 0.3 0.3 0.5 0.3 0.3 0.2 0.3
0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.9 0.2
0.2 0.2 0.3 0.2 0.3 0.3 0.5 0.3 0.3
0.3 0.3 0.3 0.3 0.2 0.9 0.3 0.5 0.3
0.7 0.3 0.2 0.2 0.3 0.2 0.3 0.3 0.4

.

It worts to remind that V ∗
1 was obtained by introducing the fourth raw [0.0 0.45 0.5 0.2]

and the fourth column [0.0 0.45 0.5 0.2]⊤ into V1.

The matrix A is given as in the previous case (see (4.3)).
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X0∗
1 = A⊤X∗

1 =



0.825 −0.471 −0.236 −0.118
−0.232 −0.818 0.701 0.350
0.000 0.000 0.000 0.000
0.000 0.216 −0.935 0.718
0.000 0.000 0.000 0.000
0.000 0.839 −0.356 −0.483
0.000 0.000 0.000 0.000
0.906 −0.762 −0.096 −0.481


and Xo∗

2 = Xo
2 (see (4.4)).

Then, the restricted design is given as
y∗ = Xo∗

1 β1 + Xo∗
2 e. (4.7)

To compute Xoo∗ ∈ M(c2−1)2×c2
2 we proceed as in the case of Xoo (previous case). For

the simulation purpose we assume that β1 ∼ N (0c1 , V 1) and e ∼ N (0c2 , V2).
The design (4.5) is reproduced 1000 times, and for each observed y∗ the estimator (2.12)

is applied and the matrices V ∗
1 and V2∗ are estimated. After that, as in the previous

case, the average of the estimated values for the parameters are computed, as well as
the correspondents standard deviations of the estimated values. The achieved (unbiased)
estimates for V ∗

1 and V ∗
2 are respectively

V ∗
1 =

[0.209 0.421 0.093 0.517
0.421 0.481 0.622 0.434
0.093 0.622 0.288 0.511
0.517 0.434 0.511 0.214

]
and

V ∗
2 =



0.142 0.492 0.285 0.312 0.240 0.317 0.222 0.295 0.811
0.492 0.408 0.315 0.214 0.331 0.286 0.213 0.295 0.319
0.285 0.315 0.428 0.333 0.301 0.310 0.298 0.296 0.211
0.312 0.214 0.333 0.398 0.273 0.292 0.198 0.310 0.192
0.240 0.331 0.301 0.273 0.497 0.324 0.286 0.222 0.319
0.317 0.286 0.310 0.292 0.324 0.412 0.321 1.101 0.214
0.222 0.213 0.298 0.198 0.286 0.321 0.531 0.301 0.294
0.295 0.295 0.296 0.310 0.222 1.101 0.301 0.511 0.302
0.811 0.319 0.211 0.192 0.319 0.214 0.294 0.302 0.445

.

Taking a look at the absolute value of the bias quantities of V ∗
1 and V ∗

2 , respectively
given by

bV ∗
1

= |V ∗
1 − Ṽ ∗

1 | =
[0.009 0.021 0.007 0.017

0.021 0.019 0.028 0.016
0.007 0.028 0.012 0.011
0.017 0.016 0.011 0.014

]
and

bV ∗
2

= |V ∗
2 − Ṽ ∗

2 | =



0.042 0.008 0.015 0.012 0.040 0.017 0.022 0.005 0.111
0.008 0.008 0.015 0.014 0.031 0.014 0.013 0.005 0.019
0.015 0.015 0.028 0.033 0.001 0.010 0.002 0.004 0.011
0.012 0.014 0.033 0.002 0.027 0.008 0.002 0.010 0.008
0.040 0.031 0.001 0.027 0.003 0.024 0.014 0.022 0.019
0.017 0.014 0.010 0.008 0.024 0.012 0.021 0.201 0.014
0.022 0.013 0.002 0.002 0.014 0.021 0.031 0.001 0.006
0.005 0.005 0.004 0.010 0.022 0.201 0.001 0.011 0.002
0.111 0.019 0.011 0.008 0.019 0.014 0.006 0.002 0.045

.

Clearly, as we may see here, our estimator (see (2.12)) also produces estimates significantly
accurate in unbalanced designs.

4.2. A numerical example
In this section we give an example of a situation in which the tools discussed in the

previous sections are useful.
Lets consider that, for some country an engineer had the duty to study the strain

(stress) of glass cathode supports on the production machines. Since the available source is
restricted it was allowed to (randomly) choose at most four machines, say Mi, i = 1, 2, 3, 4,
all over the country. For each machine Mi, ai heads was randomly selected, and for each
head i, aij , i = 1, 2, 3, 4, j = 1, . . . , ai, glass was observed and the results organized in the
following tables. This is an example of an unbalanced “two-way” neste design (the heads
are nested within the heads).
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Table 1. Selected heads for each Machine: a1 = 2 heads within M1; a2 = 3 heads
within M2; a3 = 4 heads within M3; a4 = 2 heads within M4.

Machines M1 M2 M3 M4

Heads H11 H12 H21 H22 H23 H31 H32 H33 H34 H41 H42

Table 2. Observed glasses for each head: a11 = 5 glasses for head H11; a12 = 3
glasses for head H12; a21 = 4 glasses for head H21; a22 = 3 glasses for head H22;
a23 = 3 glasses for head H23; a31 = 6 glasses for head H31; a32 = 3 glasses for
head H32; a33 = 3 glasses for head H33; a34 = 2 glasses for head H34; a41 = 3
glasses for head H41; a42 = 4 glasses for head H42.

Heads H11 H12 H21 H22 H23 H31 H32 H33 H34 H41 H42
2 10 10 2 7 5 4 7 7 1 6
8 5 12 1 1 0 1 5 8 4 0
0 3 9 1 12 0 7 2 3 15
1 7 2 9
5 3

1

The “two-way” design for this data is

z = βXo + X1α + X2β + X3ϵ, (4.8)
where:

• β is the model general mean;
• z = [z111 . . . z123 z211 . . . z233 z311 . . . z342 z411 . . . z424]⊤ is the vector for the observed

glass cathode supports (data);
• α = [α1 α2 α3 α4]⊤ is the vector for the effects due to the four machines;
• β = [β11 β12 β21 β22 β23 β31 . . . β34 . . . β41 β42]⊤ is the vector for the effects due to

the
∑4

i=1 ai = 11 heads;
• ϵ = [ϵ111 . . . ϵ123 ϵ211 . . . ϵ233 ϵ311 . . . ϵ342 ϵ411 . . . ϵ424]⊤ is the vector for the errors;
• Xo = 139 is the design matrix (vector) for general mean;

• X1 =


18 08 08 08
010 110 010 010
014 014 114 014
07 07 07 17

 is the design matrix for the effects due to the different

machines effects;

• X2 =



15 05 05 05 05 05 05 05 05 05 05
03 13 03 . . . . . . . . . . . . . . . . . . . . . 03
04 04 14 04 . . . . . . . . . . . . . . . . . . 04
03 . . . 03 13 03 . . . . . . . . . . . . . . . 03
03 . . . . . . 03 13 03 . . . . . . . . . . . . 03
06 . . . . . . . . . 06 16 06 . . . . . . . . . 06
03 . . . . . . . . . . . . 03 13 03 . . . . . . 03
03 . . . . . . . . . . . . . . . 03 13 03 . . . 03
02 . . . . . . . . . . . . . . . . . . 02 12 02 02
03 . . . . . . . . . . . . . . . . . . . . . 03 13 03
04 . . . . . . . . . . . . . . . . . . . . . . . . 04 14



is the design matrix for

the effects due to the different heads nested within different machines;
• X3 = I39 the design matrix for the errors effects.
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It is assumed that the α, β and ϵ are independently observed. More over,

α ∼ (04, V1), where V1 =

σ2
1,1,1 . . . σ2

1,1,4
... . . . ...

σ2
1,4,1 . . . σ2

1,4,4

 ;

β ∼ (011, V2), where V2 =

 σ2
2,1,1 . . . σ2

2,1,4
... . . . ...

σ2
2,11,1 . . . σ2

1,11,11

 ;

ϵ ∼ (039, V3), where V3 =

 σ2
3,1,1 . . . σ2

3,1,39
... . . . ...

σ2
3,39,1 . . . σ2

3,39,39

 ,

with σ2
3,i,j = 0, for i ̸= j.

Vi, i = 1, 2, 3, and µ are the model unknown parameters. In the next steps we will use
the estimators proposed in the previous section to estimated them.

Let B be the matrix whose the columns are the eigenvectors associated to the null
eigenvalues of PR(Xo) = 1

39J39. Then,

B⊤B = I38 and BB⊤ = PR(Xo)⊥ = I39 − 1
39

J39.

The new model is:
y = B⊤z ∼ (038, Σo) , (4.9)

where Σo =
∑3

i=1 Xo
i ViX

o⊤
i , with

Xo
i = B⊤Xi = [xo

i,1 . . . xo
i,ci

], i = 1, 2, 3, and c1 = 4, c2 = 11, c3 = 39.

We found that Ṽ1 =


0.0004 −0.0528 0.0018 0.0505

−0.0528 1.3374 −0.1997 −1.0849
0.0018 −0.1997 0.0091 0.1888
0.0505 −1.0849 0.1888 0.8456

,

Ṽ2 =



2.15 −1.84 −6.73 4.84 −2.64 4.15 0.95 0.02 −3.81 2.73 0.17
−1.84 1.52 5.89 −3.84 2.43 −3.54 −0.84 −0.06 3.13 −2.50 −0.35
−6.73 5.89 20.59 −16.02 7.64 −12.95 −2.86 0.09 12.22 −8.00 0.13
4.84 −3.84 −16.02 9.11 −7.02 9.38 2.33 0.32 −7.84 7.12 1.62

−2.64 2.43 7.64 −7.02 2.44 −5.07 −0.99 0.18 4.99 −2.61 0.66
4.15 −3.54 −12.95 9.38 −5.07 7.97 1.86 0.05 −7.41 5.26 0.29
0.95 −0.84 −2.86 2.33 −0.99 1.86 0.39 −0.03 −1.69 1.02 −0.13
0.02 −0.06 0.09 0.32 0.18 0.05 −0.03 −0.04 −0.09 −0.19 −0.25

−3.81 3.13 12.22 −7.84 4.99 −7.41 −1.69 −0.09 6.29 −5.09 −0.71
2.73 −2.50 −8.00 7.12 −2.61 5.26 1.02 −0.19 −5.09 2.82 −0.54
0.17 −0.35 0.13 1.62 0.66 0.29 −0.13 −0.25 −0.71 −0.54 −0.89



,

and

Ṽ3 =


V31
V32
V33
V34

, where

V31 = [4.55 11.02 18.40 10.48 − 1.22 28.48 − 1.91 − 0.06 6.58]⊤,

V32 = [32.73 − 3.50 − 17.66 − 2.71 3.21 3.21 1.85 7.39 52.24 − 6.40]⊤,

V32 = [13.22 13.22 − 0.63 − 4.55 5.30 0.04 11.81 6.27 6.40 0.24]⊤,
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and

V34 = [6.01 − 1.21 4.86 9.07 − 2.70 − 0.77 2.31 19.85 6.39 0.23]⊤.

The negatives values in the estimated matrices variance components is due to the non-
uniqueness of the generalized inverse (instead of Moore-Penrose inverse) used to compute
the inverse of Σ̃o.

Finally, using the estimator in (2.15), we found that β̃ = 5.3360 is an estimate for β.
As it can be quickly seen, the mean of z (

∑39
i=1 zi, with zi the ith observation of vector z)

is 4.7692, which is 0.5 less then β̃. We also found that:
• R2

(
σ̃oo
)

= 1, that is the linear model (2.11) perfectly explain all variability in the
vector yoo = y ⊗ y;

• R2
(
β̃
)

= 0.9596, that is 95.96% of variation in the response variable z is very well
explained by the the linear mixed model (4.8), while the remaining 4.04% cannot
be explained by such a model.

5. Final comments
This work reveals an efficient method to estimate the variability in Heteroscedastic

linear mixed models whose covariance structure has an arbitrary number of unknown ma-
trices (Section 2.2); it is well known that the hetoroscidasticity is a major concern in
this kind of models, mainly because of the limitation of the available techniques. The
method proposed here has successfully passed the quality of adjustments test as we may
see through the theoretical results (Section 3), which is corroborated by the simulation
study carried out at Section 4. Thus, it seems that the discussed method constitutes an
useful tool for variances components in such a kind of models.
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Appendix
Here we recall a few needed notions on specific topics of mathematics, and discuss a few
results that was used in this work main body without additional comments.

A.1. Vectorization of a matrix - vec operator
Definition A.1. The vectorization of a n × m matrix (the vec operator), denoted vec(),
is a linear transformation which converts such a matrix into a nm × 1 (column) vector, by
stacking its columns on top of one another. More precise, given a n × m matrix

A =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

... . . . ...
an1 an2 . . . anm

 its vectorization is given as

vec(A) = [a11 a12 . . . a1ma21 a22 . . . a2m . . . an1 an2 . . . anm]⊤. (A.1)

A.2. Kronecker product
Proposition A.2. Let a and b be any vectors of reals. Then,

(1) vec[ba⊤] = a ⊗ b;
(2) vec[aa⊤] = a ⊗ a, when, in particular, a = b.

See [9].

Proposition A.3. Let Aj ∈ Mmj×hj , Bj ∈ Mhj×qj , Ca ∈ Mo×p, and Db ∈ Mu×v,
j = 1, . . . , r > 2, a = 1, . . . , s, b = 1, . . . , t, with s and t denoting natural numbers. Then,

(a)  r⊗
j=1

Aj

( r⊗
i=1

Bi

)
=

 r⊗
j=1

AjBj

 ∈ Mm×q,

where m =
∏r

j=1 mj and q =
∏r

j=1 qj;
(b) (

s∑
a=1

Ca

)
⊗
(

t∑
b=1

Db

)
=

s∑
a=1

t∑
b=1

Ca ⊗ Db

Proof: See [9] and [10].

A.3. Orthogonal projection
Theorem A.4. Let y ∈ IRn and suppose that the subspace S ⊂ IR has an orthogonal
projection matrix P . Then the closest vector in S to y, in euclidean distance, is Py
uniquely.
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Proof: Lev x ∈ S. Put
y − x = (Py − x) + (y − Py)

and note that
(Py − x) ∈ S and y − Py = (In − P )y ∈ S⊥.

With ∥.∥ denoting the euclidean norm, and according with Theorem 2.9 of [3], we have
that

∥y − x∥2 = ∥P (y − x)∥2 + ∥(In − P )(y − x)∥2

= ∥Py − x∥2 + ∥y − Py∥2

≥ ∥y − Py∥2. (A.2)
The equality in (A.2) holds if and only if x = Py, and so the proof is completed.

A.4. Commutation matrix - Knn

Let Hij be the n × n matrix that has its only nonzero elements, a one, in the (i, j)th
position. Such a matrix can be conveniently expressed in terms of columns from the
identity matrix In, in the following manner: if eij denotes the ith column of In, then
Hij = eine⊤

jn.

Definition A.5. The n2 × n2 commutation matrix, denoted by Knn, is given by

Knn =
n∑

i=1

n∑
j=1

Hij ⊗ H⊤
ij (A.3)

=
n∑

i=1

n∑
j=1

(
eine⊤

jn

)
⊗
(
ejne⊤

in

)
. (A.4)

The commutation matrix is a special case of permutation matrices. Additional consid-
eration can be found in [9].


