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Abstract

In this paper, we recall the concept of strong largeness to define strongly
extending modules which are particular extending modules, and inves-
tigate some properties of strongly extending modules. We supply some
examples showing that extending modules need not be strongly ex-
tending. Under some conditions we prove that extending modules are
strongly extending.
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1. Introduction

Throughout all rings have identities and all modules are unital right modules. Let R
be a ring and M an R-module. For submodules A and B of M , A ≤ B denotes A is a
submodule of B and S = EndR(M) denotes the ring of right R-module endomorphisms of
M . ThenM is a left S-module, rightR-module and (S,R)-bimodule. In this work, for any
rings S and R and any (S,R)-bimodule M , rR(.) and lM (.) denote the right annihilator of
a subset of M in R and the left annihilator of a subset of R in M , respectively. Similarly,
lS(.) and rM (.) are the left annihilator of a subset of M in S and the right annihilator of a
subset of S in M , respectively. For m ∈M and N ≤M , the right ideal {r ∈ R | mr ∈ N}
of R is denoted by m−1N . When N = 0 the right ideal m−1N and rR(m) coincide. It
is clear that N is a large submodule of M if and only if m(m−1N) 6= 0 for each nonzero
m ∈M .

In this paper, our aim is to introduce and study strongly extending modules by using
the concept of strong largeness. We see that some known essential objects are in fact
strongly large and clearly every nonzero ideal in a commutative domain enjoys this prop-
erty. We make use strong large submodules to define strongly extending modules. At first
we give some elementary properties of strongly large submodules and introduce strongly
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extending modules strengthening extending modules. We produce some examples show-
ing that extending modules need not be strongly extending. Under some conditions we
prove that extending modules are strongly extending.

In what follows, we denote by Z, Q, Zn and Z/nZ integers, rational numbers, the ring
of integers modulo n and the Z-module of integers modulo n, respectively. And Zp∞ is
the Prüfer p-group for any prime p. For unexplained concepts and notations, we refer
the reader to [1].

2. Strong Largeness

In this section we establish the notation and state some results on strongly large
submodules which are required later.

2.1. Definition. A submodule N of a module M is called strongly large in M in case
of, for each m ∈M and each right ideal I of R, if mI 6= 0 then m(m−1N)I 6= 0.

2.2. Definition. Let N be a submodule of a module M . Then N is called an SL-closed
submodule of M if it has no proper strongly large extensions in M .

Let M be a module with a submodule N . The submodule N is called dense in M if for
any y ∈M and 0 6= x ∈M there exists r ∈ R such that xr 6= 0 and yr ∈ N (see namely
[6]). Note that every closed submodule of any module is SL-closed. But the converse is
not true in general.

2.3. Example. Let F be any field. Consider the ring R =

[
F F
0 F

]
and the right

R-module M = R. Then N =

[
0 F
0 F

]
is SL-closed and large in M .

Assume that R is a commutative ring. Then every dense submodule of any R-module
is strongly large. In this case for a nonsingular module M , a submodule N is essential
in M implies it is dense in M , and also a submodule N is SL-closed in M if and only if
it is closed in M .

2.4. Proposition. Let M be a module with a submodule N . Then the following are
equivalent.

(1) N is a strongly large submodule of M .
(2) For each m ∈M and s ∈ R with ms 6= 0, we have m(m−1N)s 6= 0.
(3) For each m ∈ M and s ∈ R with ms 6= 0, there exists r ∈ R such that mr ∈ N

and mrs 6= 0.

2.5. Lemma. Let N and L be submodules of a module M with N ≤ L. If N is strongly
large in L, then

(1) N ∩K = 0 implies L ∩K = 0 for any submodule K of M .
(2) NI = 0 implies LI = 0 for any right ideal I of R.

2.6. Lemma. Let M be a module and N,K submodules of M with N ≤ K. Then N is
strongly large in M if and only if N is strongly large in K and K is strongly large in M .

2.7. Lemma. Let M be a module. If N1 is strongly large in K1 ≤M and N2 is strongly
large in K2 ≤M , then N1 ∩N2 is strongly large in K1 ∩K2.

It is obvious that any direct summands of a module are SL-closed. Now we can say
that there are abundant examples of SL-closed submodules. For instance, consider the
following proposition.
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2.8. Proposition. Every cyclic submodule N = (a, b)Z of the Z-module Z ⊕ Z where
gcd(a, b) = 1 is SL-closed in Z⊕ Z.

Proof. Let L be a strongly large extension of N in Z⊕ Z and 0 6= (x, y) ∈ L. Since N is
large in L, there exists t ∈ Z with 0 6= (x, y)t ∈ N . So xt = az, yt = bz for some z ∈ Z.
Hence xb = ya. Then we have (x, y)b = (xb, yb) = (ya, yb) = (a, b)y. On the other hand,
aa′+ bb′ = 1 for some a′, b′ ∈ Z due to gcd(a, b) = 1. Then (x, y) = (x, y)aa′+(x, y)bb′ =
(xa, ya)a′ + (a, b)yb′ = (xa, xb)a′ + (a, b)yb′ = (a, b)xa′ + (a, b)yb′. Thus (x, y) ∈ N , and
so N = L. Therefore N is an SL-closed submodule of Z⊕ Z. �

2.9. Proposition. Let N be a cyclic SL-closed submodule of the Z-module Z⊕Z. Then
there exists (a, b) ∈ N such that gcd(a, b) = 1 and N = (a, b)Z.

Proof. Let N = (a, b)Z be an SL-closed submodule of Z ⊕ Z. If gcd(a, b) = 1, there is
nothing to show. Now let gcd(a, b) = d and d 6= 1. There exist a′, b′ ∈ Z such that
a = da′, b = db′ and gcd(a′, b′) = 1. It is clear that N ⊆ (a′, b′)Z. Let (a′, b′)u ∈ (a′, b′)Z
and s ∈ Z with (a′, b′)us 6= 0. For d ∈ Z, (a′, b′)ud = (a, b)u ∈ N and (a′, b′)uds 6= 0.
So N is strongly large in (a′, b′)Z. Since N is an SL-closed submodule of Z⊕ Z, we have
N = (a′, b′)Z. This completes the proof. �

2.10. Corollary. Let N be a cyclic submodule of the Z-module Z ⊕ Z. Then N is
SL-closed in Z⊕Z if and only if N = (a, b)Z for some (a, b) ∈ Z⊕Z where gcd(a, b) = 1.

Proof. Clear from Proposition 2.8 and Proposition 2.9. �

We have the following proposition due to Zorn’s Lemma.

2.11. Proposition. Every submodule N of a module M is contained in an SL-closed
submodule of M in which N is strongly large.

3. Strongly Extending Modules

A module M is called strongly extending if for every submodule N of M , there exists
a decomposition M = K⊕L such that N is a strongly large submodule of K. Since each
strongly large submodule is large, every strongly extending module is extending. But the
converse is not true in general, as it will be shown later with some examples. There are
some cases largeness implies strongly largeness.

3.1. Proposition. Let M be a module. Then every strongly large submodule of M is
large. The converse holds if M is a strongly extending module.

Proof. Clear. �

3.2. Theorem. Let M be a module. The following conditions are equivalent.

(1) M is a strongly extending module.
(2) For every submodule N of M , there exists a decomposition M = K⊕L such that

N ≤ K and N ⊕ L is a strongly large submodule of M .
(3) Every SL-closed submodule of M is a direct summand. (In fact, for any submod-

ule N of M , N is SL-closed in M if and only if N is a direct summand.)

Proof. (1) ⇒ (2) Let M be a strongly extending module and N ≤ M . Since M is
extending, there exists a decomposition M = K⊕L such that N ≤ K and N ⊕L is large
in M . From Proposition 3.1, M is a strongly large extension of N ⊕ L.
(2)⇒ (1) Let N be a submodule of M . By (2), there exists a decomposition M = K⊕L
such that N ≤ K and N ⊕ L is strongly large in M . Let k ∈ K and s ∈ R with ks 6= 0.
There exists r ∈ R such that kr ∈ N ⊕ L and krs 6= 0 because of strongly largeness of
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N ⊕ L in M . Since N ≤ K and K ∩ L = 0, we have kr ∈ N . Hence N is strongly large
in K. Therefore M is a strongly extending module.
(1) ⇒ (3) Let K be an SL-closed submodule of M . Then there exists a direct summand
M1 of M such that K is strongly large in M1. Since K has no proper strongly large
extensions in M , K = M1.
(3)⇒ (1) Let N be a submodule of M . From Proposition 2.11, there exists an SL-closed
submodule L of M in which N is strongly large. So L is a direct summand of M . Thus
M is a strongly extending module. �

We present some examples for motivation.

3.3. Examples. (1) Every semisimple module is strongly extending.
(2) Let R be a commutative domain. Then R is strongly extending as a right R-module.
(3) Let M be a module in which every nonzero submodule is strongly large. Then M is
strongly extending.

Of course, not every module is strongly extending. Note the following facts.

3.4. Example. Let R = Z[x] and consider M = R⊕R as an R-module. It is shown in
[2] that M is not an extending module, therefore it is not strongly extending. In fact the
cyclic submodule N = (x, 2)R is SL-closed in M but not a direct summand.

3.5. Example. Consider the ring R =

[
Z4 Z4

0 Z4

]
of upper triangular matrices over

the ring Z4 and let M denote R as an R-module. The submodule N =

[
0 1
0 2

]
R of M

is a complement of K =

{[
0 x
0 x

]
: x ∈ Z4

}
in M and consequently N is SL-closed in

M . On the other hand, N should include a nonzero idempotent in order to be a direct
summand of M . But this does not hold, and so M is not a strongly extending module.

As we mentioned before, every strongly extending module is extending, but there
exists an extending module which is not strongly extending.

3.6. Example. Let R =

[
F F
0 F

]
where F is any field. Consider R-module M =

R. It is easy to check that M is an extending module. Now consider R-submodules

N1 =

[
0 F
0 0

]
, N2 =

[
F F
0 0

]
and N3 =

[
0 F
0 F

]
of M . For the right ideal I =[

0 F
0 0

]
of R, N1I = 0 but N2I 6= 0. Thus N1 is not strongly large in N2 by Lemma 2.5.

On the other hand, N1 ∩N4 = 0 for the nonzero submodule N4 =

{[
0 x
0 x

]
: x ∈ F

}
of N3. Hence N1 is not a large submodule of N3. And so N1 is not strongly large in N3.
Since N1 has no proper strongly large extensions in M , N is an SL-closed submodule of
M . However, N1 is not a direct summand of M . Therefore M is not a strongly extending
module.

3.7. Example. Let M denote Z-module (Z/2Z) ⊕ (Z/4Z). It is well known that M is
extending. Let N = (1 + 2Z, 0 + 4Z)Z and K = (1 + 2Z, 2 + 4Z)Z. Then (N ⊕K)I = 0,
however MI 6= 0 for I = 2Z. From Lemma 2.5, N ⊕K is not strongly large in M . So
N ⊕ K is an SL-closed submodule of M . On the other hand, N ⊕ K is not a direct
summand. Hence M is not a strongly extending module.

3.8. Example. Consider the Z-module M = Z⊕Zp∞ . Then M is extending by [4]. Let
N = (0, 1/p+ Z)Z ≤ M . Then N is SL-closed in M and not a direct summand since it
is large in 0⊕ Zp∞ . Hence M is not strongly extending.
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We point out that strongly extending modules do not coincide with extending modules
over a principal ideal domain. On the other hand, in Example 3.4 the module M is finitely
generated torsion-free over a domain which is not principal ideal domain. In Example
3.7 the module M is finitely generated torsion over a principal ideal domain. Now the
next results provide another source of examples for strongly extending modules.

3.9. Proposition. Every finitely generated torsion-free module over a principal ideal
domain is strongly extending.

Proof. Let M be a finitely generated torsion-free module over a principal ideal domain R
and N a submodule of M . Assume firstly M/N is torsion-free. Then M/N is isomorphic
to a finite direct sum of copies of R and so it is a projective R-module. Hence N is a
direct summand of M . Suppose that M/N is not torsion-free. There exists a submodule
K of M containing N such that M/K is torsion-free and K/N is torsion. Hence M/K is
a torsion-free and finitely generated R-module. So M/K is projective and so K is a direct
summand of M . In order to see that K is a strongly large extension of N , let k ∈ K \N
and s ∈ R with ks 6= 0. Let k denote the image of k ∈ K under the natural map from K
to K/N . Since K/N is torsion and k is nonzero in K/N , there exists 0 6= r ∈ R such that

kr = 0 ∈ K/N . So kr ∈ N . By hypothesis rs 6= 0. If krs = 0, then k would be a nonzero
torsion element of M . Hence krs 6= 0. Therefore N is a strongly large submodule of
K. �

3.10. Example. Let M denote the Z-module M = Z ⊕ Z. By Proposition 3.9, M is
strongly extending. For this reason every SL-closed submodule of M is a direct summand.
Also by Proposition 2.8 and Proposition 2.9 it can be checked that N is a direct summand
of M if and only if N has the form N = (a, b)Z for some integers a, b with the property
that the greatest common divisor of a and b is 1. Now, in addition to Corollary 2.10, we
determine all SL-closed submodules of M .

3.11. Proposition. Let R be a principal ideal domain. Then every finitely generated
flat R-module is strongly extending.

Proof. This follows from Proposition 3.9 and the fact that a module over a principal
ideal domain is flat if and only if it is torsion-free. �

3.12. Proposition. Every finitely generated torsion-free module over a Prüfer ring is
strongly extending.

Proof. Let M be a finitely generated torsion-free module over a Prüfer ring R and N an
SL-closed submodule of M . We claim that M/N is also torsion-free. For, if otherwise,
there exists m ∈M \N such that mr ∈ N for some nonzero element r of R. To see that
N is a proper strongly large submodule of N + mR, let n + ma ∈ N + mR and s ∈ R
with (n + ma)s 6= 0. Then (n + ma)r ∈ N and (n + ma)rs 6= 0. But this contradicts
that N is SL-closed in M . Since M/N is finitely generated and R is a Prüfer ring, M/N
is a projective R-module. Therefore N is a direct summand of M . So M is strongly
extending. �

3.13. Proposition. Every finitely generated flat module over a Prüfer ring is strongly
extending.

Proof. We have known that if R is a Prüfer ring, then R-modules are flat if and only if
they are torsion-free. Hence Proposition 3.12 completes the proof. �

In some cases extending modules are strongly extending.
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3.14. Proposition. Let M be a torsion-free module. Then M is strongly extending if
and only if it is extending.

Proof. The necessity is clear. For the sufficiency, let N be an SL-closed submodule of M
and K a large extension of N in M . Now we prove that N is strongly large in K. Let
k ∈ K and s ∈ R with ks 6= 0. So there exists r ∈ R such that 0 6= kr ∈ N . Since M
is torsion-free, krs 6= 0. Hence N = K and so N is also closed in M . Therefore N is a
direct summand of M because M is extending. �

3.15. Proposition. Let M be a flat module over a commutative domain. Then M is
strongly extending if and only if it is extending.

Proof. Obvious by Proposition 3.14. �

3.16. Proposition. Let M be a prime module. Then M is strongly extending if and
only if it is extending.

Proof. For the sufficiency, let N be an SL-closed submodule of M and we prove that N
is also closed in M . Let K be a submodule of M and N large in K. Consider k ∈ K
and s ∈ R such that ks 6= 0. Then we have r ∈ R with 0 6= kr ∈ N . Since M is prime,
krRs 6= 0. And so there exists r1 ∈ R with krr1 ∈ N and krr1s 6= 0. Hence N is strongly
large in K and N = K. Then N is a direct summand by the extending property of
M . �

We have known the following lemma from [3].

3.17. Lemma. A free Z-module F is extending if and only if F has finite rank.

3.18. Proposition. Let F be a free Z-module. Then F is strongly extending if and only
if F has finite rank. Moreover, F is strongly extending if and only if F is extending.

Proof. Let F be a strongly extending free Z-module. Clearly F is an extending module.
Therefore F has finite rank by Lemma 3.17. Conversely, let F be a free Z-module with
finite rank. Then F is isomorphic to finite direct sum of copies of Z. Hence F is a
finitely generated torsion-free Z-module. And so F is a strongly extending module by
Proposition 3.9. �

Let M be a module. The module M is called SL-injective relative to a module N , if
each homomorphism f : K → M , where K is strongly large in N , can be extended to
N , i.e., there exists a homomorphism g : N →M such that g(k) = f(k) for all k ∈ K. If
M is SL-injective relative to every module, then it is called SL-injective. Clearly every
injective module is SL-injective. But the converse is not true in general. For example, as a
Z-module Z/2Z is SL-injective relative to Z/4Z, while it is not injective relative to Z/4Z.
It is well known that every injective module is an extending module. Unfortunately, this
is not the case when we deal with strongly largeness, as the following example shows.

3.19. Example. Let Π denote the set of positive prime integers. Consider the injective
Z-module

⊕
p∈Π

Zp∞ . Since every direct summand of an injective module is also injective,

Zp∞ is injective for any prime number p. Now consider a submodule K =
(
1/pk + Z

)
Z

of Zp∞ . For every n ∈ N with k ≤ n the submodule N = (1/pn + Z)Z of Zp∞ contains
K. Let I denote the right ideal pkZ of Z. Then we have KI = 0 and NI 6= 0. Therefore
K has no proper strongly large extensions in Zp∞ . Accordingly every submodule of Zp∞

is SL-closed but none of them are direct summand. Consequently, Zp∞ is not strongly
extending.

The following lemma is proved in [7].
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3.20. Lemma. Let a module M =
⊕
i∈I

Mi be a direct sum of submodules Mi (i ∈ I) and

let N be a fully invariant submodule of M . Then N =
⊕
i∈I

(N ∩Mi).

3.21. Proposition. Let M be a strongly extending module and N a fully invariant
submodule of M . Then N is a strongly extending module.

Proof. Let A be a submodule of N . Since M is strongly extending, there exists a de-
composition M = K ⊕ L such that A ≤ K and A ⊕ L is strongly large in M . Then by
Lemma 3.20, N = (N ∩K) ⊕ (N ∩ L). On the other hand, A ≤ K ∩N and by Lemma
2.7, (A⊕L)∩N = A⊕(L∩N) is strongly large in N. Therefore N is a strongly extending
module. �

3.22. Theorem. Let M be a strongly extending module. Then every submodule of M is
strongly extending if M satisfies any of the following conditions:

(1) M is a multiplication module (that is, every submodule of M is of the form MI,
for some ideal I of R).

(2) M is a duo module (that is, every submodule is fully invariant).
(3) M is a distributive module (that is, for any submodules K, L and N of M ,

K ∩ (N + L) = (K ∩N) + (K ∩ L)).

Proof. (1) Let N be a submodule of M . Since M is a multiplication module, there exists
an ideal I of R such that N = MI. Then for any f ∈ EndR(M), f(N) = f(MI) =
f(M)I ≤MI = N . And so N is a fully invariant submodule of M . Therefore the proof
is completed by Proposition 3.21.

(2) Clear from Proposition 3.21.
(3) Let N be a submodule of M and L an SL-closed submodule of N . Accordingly

Proposition 2.11, there exists an SL-closed submodule U of M containing L as a strongly
large submodule. ThenM = U⊕K for some submoduleK ofM . SinceM is a distributive
module, we have N = (U ∩ N) ⊕ (K ∩ N). Also by Lemma 2.7 L is a strongly large
submodule of U ∩ N . Hence L = U ∩ N . It follows that L is a direct summand of N .
This completes the proof. �

For any module M and N ≤ L submodules of M such that N is closed in L and L is
closed in M , it is well known that N is also closed in M . But “SL-closed” version of this
statement is an open question. So we have the following definition.

3.23. Definition. Let M be a module and N,L submodules of M with N ≤ L. The
module M is called SL-c-transitive if N is SL-closed in L and L is SL-closed in M , then
N is SL-closed in M .

The answer of the aforementioned question is affirmative in the next lemma.

3.24. Lemma. Let M be a module and N a submodule of M . If N is SL-closed in a
direct summand of M , then N is SL-closed in M .

Proof. Let M = M1 ⊕M2 with N SL-closed in M1 and K a strongly large extension of
N in M . Let π denote the projection of M on M1. Since N ≤M1, we have N = π(N) ≤
π(K) ≤ M1. Now we show that π(N) is strongly large in π(K). Let k ∈ K and s ∈ R
such that π(k)s 6= 0. Hence ks 6= 0 and so there exists r ∈ R with kr ∈ N and krs 6= 0.
Also k = m1 + m2 for some m1 ∈ M1 and m2 ∈ M2. Since kr = m1r + m2r ∈ N
and M1 ∩ M2 = 0, we have m2r = 0 and m1r ∈ N , also m1rs 6= 0. Thus π(k)r =
m1r ∈ N = π(N) and π(k)rs = m1rs 6= 0. Then π(K) is a strongly large extension of
N in M1. But N is SL-closed in M1, so N = π(K) ≤ K. Hence (1 − π)(K) ≤ K. Let
n = (1− π)(x) ∈ N ∩ (1− π)(K) with x = x1 + x2 for some n ∈ N, x ∈ K,x1 ∈M1 and
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x2 ∈ M2. Then n = x2 ∈ M1 ∩M2 = 0. So N ∩ (1 − π)(K) = 0. Since N is large in
K, (1− π)(K) = 0. Hence K ≤ π(K) ≤M1, and N = K because N is SL-closed in M1.
Therefore N is also SL-closed in M . �

3.25. Theorem. Let M be a strongly extending module. Then every direct summand of
M is strongly extending.

Proof. Let N be a direct summand of M and K an SL-closed submodule of N . Then K
is also SL-closed in M by Lemma 3.24. Since M is strongly extending, M = K ⊕ L for
some L ≤M . Thus N = K ⊕ (N ∩ L). Therefore N is strongly extending. �

3.26. Proposition. Let M = M1 ⊕ M2 be an SL-c-transitive module. Then M is
strongly extending if and only if every SL-closed submodule K of M with K ∩M1 = 0 or
K ∩M2 = 0 is a direct summand of M .

Proof. The necessity is clear. For the sufficiency, let L be an SL-closed submodule of
M . By Proposition 2.11, there exists an SL-closed submodule H of L in which L ∩M1

is strongly large. Because M is SL-c-transitive, H is SL-closed in M . Since H ∩M2 =
0, by hypothesis H is a direct summand of M . Let M = H ⊕ H ′. By modularity
condition L = H ⊕ (L ∩ H ′). Hence L ∩ H ′ is SL-closed in L and also in M . Clearly
(L∩H ′)∩M1 = 0. By hypothesis M = (L∩H ′)⊕H ′′ for some submodule H ′′ of M . So
H ′ = (L ∩H ′)⊕ (H ′ ∩H ′′). We have M = H ⊕ (L ∩H ′)⊕ (H ′ ∩H ′′) = L⊕ (H ′ ∩H ′′).
Thus M is strongly extending. �

If M1 and M2 are strongly extending modules, then the module M1 ⊕M2 need not
be a strongly extending module, as the following example shows.

3.27. Example. Consider Z-module M = (Z/pZ)⊕ Q for any prime p. It is clear that
Z/pZ is strongly extending. Now we show that Q is also strongly extending. Let N be
a nonzero submodule of Q, a/b ∈ Q and s ∈ Z with (a/b)s 6= 0. Let 0 6= x/y ∈ N .
Then ax ∈ N . Hence (a/b)bx ∈ N and (a/b)bxs 6= 0 for bx ∈ Z. Thus N is a strongly
large submodule of Q. Since Q is a module in which every nonzero submodule is strongly
large, Q is strongly extending. Now consider the submodule N = (1 + pZ, 1)Z of M . For
the submodule K = (p − 1 + pZ, 0)Z of M , N ∩K = 0. Then N is not large in M , so
N is not strongly large in M . Also N has no proper strongly large extensions in M and
then N is an SL-closed submodule of M . Next we show N is not a direct summand.
Otherwise we assume that there exists a submodule L of M such that M = N ⊕ L. For
(1 + pZ, 1/(p+ 1)) ∈M there exist a ∈ Z and (u+ pZ, v) ∈ L with (1 + pZ, 1/(p+ 1)) =
(1 + pZ, 1)a+ (u+ pZ, v). Then (1 + pZ, 1) = (1 + pZ, 1)a(p+ 1) + (u+ pZ, v(p+ 1)), so
(u+ pZ, v(p+ 1)) = (1 + pZ, 1)− (1 + pZ, 1)a(p+ 1) ∈ N ∩L = 0. So 1 = a(p+ 1). This
is a contradiction. Hence M does not have a submodule L with M = N ⊕ L. Therefore
M is not strongly extending.

3.28. Remark. It is not necessary that any factor module of a strongly extending
module is strongly extending. For example Q/Z as a Z-module is not strongly extending,
however, we have seen in Example 3.27 that Q is a strongly extending Z-module. We
show that Q/Z is not strongly extending. Assume that it is strongly extending and
reach a contradiction. Let Π denote the set of positive prime integers. Z-module Q/Z ∼=⊕
p∈Π

Zp∞ and let M denote the module
⊕
p∈Π

Zp∞ . Let p ∈ Π and consider the submodule

N = (0, . . . , 0, 1/p+ Z, 0, . . . )Z of M . We claim that N is SL-closed in M but not a
direct summand. Let K be a strongly large extension of N in M . If K contains an
element which the p-th component is zero, then we contradict with strongly largeness
of N in K. So all elements of K have p components nonzero. Now if K contains an
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element which the q-th component is nonzero with q 6= p for some q ∈ Π, some like
k =

(
. . . , x/qi + Z, . . . , a/pj + Z, . . .

)
such that 0 6= x/qi + Z ∈ Zq∞ and 0 6= a/pj + Z ∈

Zp∞ , then kpj−1 ∈ K. Also k′ = (0, . . . , 0, a/p+ Z, 0, . . . ) ∈ K, and hence the p-th
component of kpj−1 − k′ ∈ K is zero, but this is a contradiction. Accordingly, K must
be a submodule of Zp∞ ⊕ 0. However N is SL-closed in Zp∞ ⊕ 0, so K = N . Therefore
N is also SL-closed in M . By assumption N is a direct summand of M and Zp∞ ⊕ 0.
But N is a large submodule of Zp∞ ⊕ 0. This is the desired contradiction. So N is not
a direct summand of M .

Recall that any R-modules {Mi | i ∈ I} are called relatively injective if Mi is Mj-
injective for all distinct i, j ∈ I. The following lemma is well known [4].

3.29. Lemma. Let M1 and M2 be R-modules and let M = M1 ⊕ M2. Then M1 is
M2-injective if and only if for every submodule N of M such that N ∩M1 = 0 there
exists a submodule M ′ of M such that M = M1 ⊕M ′ and N ≤M ′.

We have already observed that the direct sum of strongly extending modules need not
be strongly extending. Note the following fact.

3.30. Theorem. Let M = M1⊕M2 be an SL-c-transitive module where M1 and M2 are
strongly extending modules. If M1 and M2 are both relatively injective modules, then M
is also a strongly extending module.

Proof. Let N be an SL-closed submodule of M with N ∩M1 = 0. By Lemma 3.29, there
exists a submodule M ′ of M such that M = M1⊕M ′ and N ≤M ′. Since M2 is strongly
extending and M ′ ∼= M2, M ′ is strongly extending. Clearly, N is SL-closed in M ′ and
hence N is a direct summand of M ′, whence a direct summand of M . Now let K be
SL-closed in M with K ∩M2 = 0. Similarly, K is a direct summand of M . Therefore M
is strongly extending by Proposition 3.26. �

3.31. Corollary. Let M =
n⊕

i=1

Mi (n ∈ N) be an SL-c-transitive module where every Mi

is relatively injective. Then M is strongly extending if and only if all Mi are strongly
extending.

Proof. Theorem 3.25 and Theorem 3.30 complete the proof by induction on n. �

The following example is noteworthy in order to show that the sufficiency of Corollary
3.31 does not hold for infinite direct sum of strongly extending modules.

3.32. Example. The Z-module Z(N) is SL-c-transitive by Lemma 4.8 and it is well
known that Z is strongly extending. However Z(N) is not strongly extending since it is
not an extending Z-module.

4. The Set ZS(M)

Now we remind of some information in [9]. Let M be a module. M is said to satisfy
condition (*) in case of, for each 0 6= m ∈ M and r1, r2 ∈ R, if ri 6∈ rR(m) for some
i = 1, 2 and r1Rr2 ⊆ rR(m), then rj = 0 for j 6= i. Examples of modules with the
condition (*) include any faithful prime module, any free module over a domain and any
ring with no nonzero divisors of zero as a module over itself.

We set ZS(M) = {m ∈ M | rR(m) is strongly large in RR}. Then ZS(M) is always
an abelian subgroup of M . If M is a module with the condition (*), then ZS(M) is
a submodule of M . If M is a module over a commutative ring or a semiprime ring,
then ZS(M) is a submodule of M . In this case ZS(M) is called a strongly singular
submodule. Also M is called a strongly singular module if ZS(M) = M , and M is called
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a non-strongly singular module if ZS(M) = 0. Note that ZS(M) ⊆ Z(M) since strongly
largeness implies largeness, but there is not the other inclusion in general. The next two
lemmas are proved in [9] we record for future use.

4.1. Lemma. Let M be a module with the condition (*). If K is a strongly large sub-
module of M , then M/K is a strongly singular R-module.

4.2. Lemma. If M is a non-strongly singular R-module, then HomR(N,M) = 0 for all
strongly singular modules N . The converse holds if ZS(M) is a submodule of M .

Let M be a module and assume that ZS(M) is a submodule. We denote the residue
class of anm ∈M inM/ZS(M) bym. Consider Z2

S(M) = {m ∈M : m ∈ ZS(M/ZS(M))}.
We provide some properties of Z2

S(M).

4.3. Proposition. Let M be a module with the condition (*). Then Z2
S(M) is a sub-

module of M and ZS(M/ZS(M)) = Z2
S(M)/ZS(M).

Proof. Let m ∈ Z2
S(M) and x ∈ R. We show that rR(mx) is a strongly large right ideal

in R. Let t ∈ R \ rR(mx) and s ∈ R such that ts 6= 0. Then mxt 6= 0. Hence xt does not
belong to rR(m). Consider the following cases:

(1) If xts 6= 0, there exists t1 ∈ R such that xtt1 ∈ rR(m) and xtt1s 6= 0 because
rR(m) is strongly large in R. Thus tt1 ∈ rR(mx) and tt1s 6= 0.

(2) If xts = 0, there exists t2 ∈ R such that mxtt2s 6= 0 by the condition (*). Hence
xtt2s 6= 0. Since rR(m) is strongly large in R, there exists t3 ∈ R such that
xtt2t3 ∈ rR(m) and xtt2t3s 6= 0. Thus tt2t3 ∈ rR(mx) and tt2t3s 6= 0.

Therefore mx ∈ Z2
S(M), and so Z2

S(M) is a submodule of M . Thus ZS(M/ZS(M)) =
Z2

S(M)/ZS(M). �

As well as Proposition 4.3, Z2
S(M) is a submodule of a module M over the ring which

mentioned in the following proposition.

4.4. Proposition. Z2
S(M) is a submodule of M if M is a module over any of the

following rings:

(1) commutative ring,
(2) semiprime ring,

Proof. Let M be a module, m ∈ Z2
S(M) and x ∈ R. For each case of R we prove that

rR(mx) is strongly large in RR. Assume that t, s ∈ R with ts 6= 0.
(1) Let R be a commutative ring. Since rR(m) is strongly large in RR, there exists

t1 ∈ R such that tt1 ∈ rR(m) and tt1s 6= 0. So mtt1 ∈ ZS(M) and then mtt1x = mxtt1 ∈
ZS(M). Thus tt1 ∈ rR(mx) and the proof is completed in this case.

(2) Let R be a semiprime ring and consider the following situations:

(2a) Assume that mxts 6= 0. Then xts 6= 0, and so there exists t2 ∈ R such that
xtt2 ∈ rR(m) and xtt2s 6= 0. Hence tt2 ∈ rR(mx), and tt2s 6= 0.

(2b) Assume that mxts = 0. So mxts ∈ ZS(M). On the other hand, there exists
t3 ∈ R with tst3ts 6= 0, because R is semiprime. Also mxtst3t ∈ ZS(M), and
then tst3t ∈ rR(mx).

Therefore rR(mx) is strongly large in RR. So ZS(M/ZS(M)) = Z2
S(M)/ZS(M). �

4.5. Remark. The second singular submodule Z2(M) of an R-module M contains
Z2

S(M) when Z2
S(M) is a submodule of M . In order to see this inclusion let

m ∈ Z2
S(M). Also ZS(M) ≤ Z(M), then f : M/ZS(M) −→ M/Z(M) with f(x +

ZS(M)) = x+Z(M) is a homomorphism. Since rR(m+ZS(M)) ≤ rR(f(m+ZS(M))) =
rR(m+Z(M)) and rR(m+ZS(M)) is strongly large in R, rR(m+Z(M)) is large in R.
Therefore m ∈ Z2(M).
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4.6. Proposition. Let M be a module with the condition (*). Then ZS(M) is strongly
large in Z2

S(M).

Proof. Let m ∈ Z2
S(M) \ ZS(M) and s ∈ R with ms 6= 0. Since rR(m) is strongly

large in RR, there exists a nonzero element x in R such that x ∈ rR(m) and xs 6= 0. It
follows that mx ∈ ZS(M). If mxs 6= 0, then there is nothing to prove. Now suppose
that mxs = 0. Since s 6∈ rR(m) and x 6= 0, there exists y ∈ R such that mxys 6= 0 in
accordance with the condition (*) and mxy ∈ ZS(M). Hence ZS(M) is a strongly large
submodule of Z2

S(M). �

4.7. Proposition. Let M be a module with the condition (*). Then Z2
S(M) is an SL-

closed submodule of M .

Proof. Let N be a proper submodule of M in which Z2
S(M) is strongly large. Then

ZS(M) is a strongly large submodule of N by Lemma 2.6. Since M is a module with the
condition (*), also N satisfies the condition (*). It follows that N/ZS(M) is a strongly
singular module from Lemma 4.1. Hence ZS (N/ZS(M)) = N/ZS(M) ≤ ZS (M/ZS(M))
= Z2

S(M)/ZS(M). Therefore N = Z2
S(M), and so Z2

S(M) is SL-closed in M . �

The answer of the mentioned open question is also affirmative in the next lemma.

4.8. Lemma. Let M be a module with the condition (*). Then M is an SL-c-transitive
module.

Proof. Let N and K be submodules of M with N SL-closed in K and K SL-closed in
M . By assumption, every submodule of M satisfies the condition (*). And so largeness
implies strongly largeness in every submodule of M . It follows that N is closed in K and
K is closed in M . Then N is also closed in M . Therefore N is an SL-closed submodule
of M . �

In the extending case we have known from [5] that a module M is extending if and
only if M = Z2(M)⊕N , where the second singular submodule Z2(M) of M and N are
extending and Z2(M) is N -injective. Now we present the analogue of this statement for
the strongly extending case.

4.9. Theorem. Let M be a module with the condition (*). Then M is strongly extending
if and only if M = Z2

S(M)⊕M ′ for some submodule M ′ of M such that Z2
S(M) and M ′

are both strongly extending and Z2
S(M) is M ′-injective.

Proof. Assume that M is a strongly extending module. We have known that Z2
S(M)

is SL-closed in M by Proposition 4.7, so there exists a submodule M ′ of M with M =
Z2

S(M) ⊕M ′. By Theorem 3.25, Z2
S(M) and M ′ are both strongly extending. On the

other hand, let N be a submodule of M with N ∩ Z2
S(M) = 0. Since M is strongly

extending, there exists a decomposition M = L1 ⊕ L2 such that N is strongly large in
L1. It follows that L1 ∩ Z2

S(M) = 0. Then L1 is a non-strongly singular module since
ZS(L1) = L1∩ZS(M) ≤ L1∩Z2

S(M) = 0. Hence ZS(M) = ZS(L2) ≤ Z2
S(L2) ≤ Z2

S(M).
So Z2

S(M) is a strongly large extension of Z2
S(L2). Since L2 satisfies the condition (*),

Z2
S(L2) is an SL-closed submodule of L2. Also Z2

S(L2) is SL-closed in M by Lemma 4.8.
Thus we have Z2

S(M) = Z2
S(L2), and so Z2

S(M) ≤ L2. HenceM = Z2
S(M)⊕(M ′∩L2)⊕L1

and N ≤ (M ′ ∩ L2)⊕ L1. Then by Lemma 3.29, Z2
S(M) is M ′-injective.

Conversely, assume that M = Z2
S(M)⊕M ′ where Z2

S(M) and M ′ are both strongly ex-
tending and Z2

S(M) is M ′-injective. Let x ∈ ZS(M ′). Then x+ZS(M) ∈ Z2
S(M)/ZS(M),

and so x = 0. Hence M ′ is a non-strongly singular module. Now we show that
HomR(Z2

S(M),M ′) = 0. Let f ∈ HomR(Z2
S(M),M ′) and m ∈ ZS(M). Since rR(m)

is strongly large in RR, rR(f(m)) is also strongly large in RR from Lemma 2.6. Thus
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f(m) ∈ ZS(M) ∩M ′ = 0 and so m ∈ Kerf . Then there exists a homomorphism g :
Z2

S(M)/ZS(M) −→M ′ such that gπ = f where π is the natural epimorphism of Z2
S(M)

onto Z2
S(M)/ZS(M). But g = 0 due to g

(
Z2

S(M)/ZS(M)
)

= g (ZS (M/ZS(M))) ≤
ZS(M ′) = 0, and hence f = 0. Therefore M ′ is Z2

S(M)-injective. Then Lemma 4.8 and
Theorem 3.30 complete the proof. �

4.10. Remark. For any module M with the condition (*), M is strongly extending
if and only if M is extending. So the submodules Z2(M) and Z2

S(M) are both direct
summands of M , however they are unequal. In addition, Z2

S(M) is also a direct summand
of Z2(M).

5. Strongly Extending and Singularities

In this section we investigate some relations between strongly extending modules and
Baer modules. In [8], an R-module M with S = EndR(M) is called Baer if for any
submodule N of M , lS(N) = Se with e2 = e ∈ S. A module M is said to be K-
nonsingular if Kerϕ is large in M for all ϕ ∈ S, implies ϕ = 0. The module M is said to
be K-cononsingular if for any submodule N of M , lS(N) = 0 implies N is large in M .
Since every strongly extending module is extending, every strongly extending module is
K-cononsingular, and every K-nonsingular strongly extending module is Baer from [8].
In general, a Baer module need not be strongly extending, as shown in the following
example.

5.1. Example. Consider Q ⊕ (Z/2Z) as a Z-module. Since HomZ(Q,Z/2Z) = 0 and

HomZ(Z/2Z,Q) = 0, the endomorphism ring S of Q⊕(Z/2Z) is isomorphic to

[
Q 0
0 Z/2Z

]
.

Let N be a submodule of Q ⊕ (Z/2Z). If N = 0, then lS(N) = S. Assume that N is
nonzero. Let (x, y+2Z) be a nonzero element of N . Then either x 6= 0 or y+2Z = 1+2Z.
We have three cases:
Case 1. All elements of N have first components zero, that is, N =

{(0, 0 + 2Z), (0, 1 + 2Z)}. Then lS(N) =

[
Q 0
0 0

]
= S

[
1 0
0 0 + 2Z

]
.

Case 2. If x 6= 0 and y + 2Z = 0 + 2Z, then lS(N) =

[
0 0
0 Z/2Z

]
= S

[
0 0
0 1 + 2Z

]
.

Case 3. If x 6= 0 and y + 2Z = 1 + 2Z, then lS(N) = 0.
As a result Q⊕(Z/2Z) is a Baer module, however it is not strongly extending by Example
3.27.

5.2. Proposition. Let M be a finitely generated module over a principal ideal domain.
If M is Baer, then M is strongly extending.

Proof. Let M be a Baer module. We know from [8] that M is semisimple or torsion-free.
So M is strongly extending by Example 3.3 or Proposition 3.9. �

5.3. Definition. Let M be an R-module with S = EndR(M). Then M is called weakly
K-nonsingular if for any f ∈ S, Kerf is strongly large in M implies f = 0. The module
M is said to be strongly K-cononsingular if for any submodule N of M , lS(N) = 0 implies
N is strongly large in M .

Clearly, every K-nonsingular module is weakly K-nonsingular and every strongly K-
cononsingular module is K-cononsingular.

5.4. Proposition. Let R be a ring. Then the following hold.

(1) Every strongly extending R-module is strongly K-cononsingular.
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(2) Every weakly K-nonsingular strongly extending R-module is Baer.
(3) Every Baer R-module is weakly K-nonsingular.

Proof. (1) Let M be a strongly extending R-module with S = EndR(M) and N a sub-
module of M with fN 6= 0 for all 0 6= f ∈ S. Assume that N is not strongly large in
M . Then N is strongly large in eM for some 1 6= e2 = e ∈ S, and so 1 − e 6= 0 and
(1− e)N = 0. Hence we have a contradiction. Therefore N is strongly large in M .
(2) Let M be a weakly K-nonsingular strongly extending R-module with S = EndR(M)
and f ∈ S with Kerf large in M . Then Kerf is strongly large in eM for some e2 = e ∈ S.
This implies that eM is large in M , and so e = 1. Hence Kerf is strongly large in M . It
follows that f = 0. Thus M is K-nonsingular. Also M is an extending module. Therefore
M is Baer by [8, Lemma 2.14].
(3) Clear from [8, Lemma 2.15]. �

5.5. Proposition. Let M be a Baer and strongly K-cononsingular module. If every
proper direct summand of M is strongly extending, then M is also strongly extending.

Proof. Let S = EndR(M) and N be an SL-closed submodule of M . Then lS(N) = Sf for
some f2 = f ∈ S. If f = 0, then N is strongly large in M , and so N = M . Let f 6= 0. We
have N ≤ rM (lS(N)) = (1−f)M . If N is strongly large in (1−f)M , then N = (1−f)M .
Now assume that N is not strongly large in (1 − f)M . Due to f 6= 0, (1 − f)M 6= M .
By assumption (1− f)M is strongly extending, and by Proposition 3.1 N is not large in
(1 − f)M . Hence there exists a submodule P of (1 − f)M such that N ∩ P = 0. Let
K be a complement of P in M with N ≤ K. By strongly K-cononsingularity of M , we
have lS(K) 6= 0 since K is not strongly large in M . There exists 0 6= s ∈ lS(K), and
so s ∈ lS(N). Hence s(K ⊕ P ) = 0 because sP ≤ s(1 − f)M = 0. Thus K ⊕ P ≤
Kers. Since K ⊕ P is a large submodule of M , Kers is also large in M . On the other
hand, Kers is a direct summand of M because M is Baer. Hence Kers = M , so s = 0.
This is a contradiction. Therefore N is a direct summand of M , and then M is strongly
extending. �

Theorem 5.6 is an immediate consequence of Proposition 5.4 and Proposition 5.5.

5.6. Theorem. Let M be a module. If M is strongly extending and weakly K-nonsingular,
then it is Baer and strongly K-cononsingular. The converse holds if every proper direct
summand of M is a strongly extending module.
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