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Abstract

We consider weighted graphs, where the edge weights are positive def-
inite matrices. The eigenvalues of a graph are the eigenvalues of its
adjacency matrix. We obtain another upper bound which is sharp on
the spectral radius of the adjacency matrix and compare with some
known upper bounds with the help of some examples of graphs. We
also characterize graphs for which the bound is attained.
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1. Introduction

We consider simple graphs, that is, graph which have no loops or parallel edges. Hence
a graph G = (V,E) consists of a finite set of vertices, V , and a set of edges, E, each
of whose elements are an unordered pair of distinct vertices. Generally, V is taken as
V = {1, 2, .., n} .

A weighted graph is a graph, each edge of which has been assigned a square matrix,
called the weight of the edge. All the weight matrices will be assumed to be of same
order and will be assumed to be positive matrix. In this paper, by ”weighted graph” we
will mean ”a weighted graph with each of its edges bearing a positive definite matrix as
weight”, unless otherwise stated.

Now we introduce some notations. Let G be a weighted graph on n vertices. Denote
by wi,j the positive definite weight matrix of order p of the edge ij, and assume that
wi,j = wj,i .We write i ∼ j if vertices i and j are adjacent. Let wi =

∑
j:j∼i

wi,j .
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The adjacency matrix of a graph G is a block matrix, denoted and defined as A(G) =
(aij) where

ai,j =

{
wi,j if i ∼ j
0 otherwise.

Note that in the definition above, the zero denotes the p× p zero matrix. Thus A(G) is
a square matrix of order np. For any symmetric matrix K, let ρ1(K) denote the largest
eigenvalue, in modulus (i.e., the spectral radius), of K.

Let us give some more definitions. Let G = (V,E). If V is the disjoint union of two
nonempty sets V1 and V2 such that every vertex i in V1 has the same ρ1(wi) and every
vertex j in V2 has the same ρ1(wj), then G will be called a weight-semiregular graph.
If ρ1(wi) = ρ1(wj) in weight semiregular graph, then G will be called a weight-regular
graph.

Upper and lower bounds for the spectral radius for unweighted graphs have been
investigated to a great extent in the literature [1,2,3,4,5,7,8]. The main result of this
paper, contained in Section 2, gives a new upper bounds on the spectral radius for
weighted graphs, where the edge weights are positive definite matrices. We compare our
bound with in [6] and [9].

2. An Upper Bound On The Spectral Radius Of Weighted Graphs

2.1. Theorem (Rayleigh-Ritz [10]). Let A ∈Mn be Hermitian, and let the eigenvalues
of A be ordered such that ρn ≤ ρn−1 ≤ ... ≤ ρ1. Then

ρnx
Tx ≤ xTAx ≤ ρ1xTx

and

ρmax = ρ1 = max
x 6=0

xTAx

xTx
= max

xT x=1
xTAx

ρmin = ρn = min
x 6=0

xTAx

xTx
= min

xT x=1
xTAx

for all x ∈ Cn.

2.2. Proposition. Let A ∈Mn have eigenvalues {ρi}. Even if A is not Hermitian, one
has the bounds

(2.1) min
x 6=0

∣∣∣∣xTAxxTx

∣∣∣∣ ≤ |ρi| ≤ max
x 6=0

∣∣∣∣xTAxxTx

∣∣∣∣
for i = 1, 2, .., n.

Proof. Let A ∈Mn be and {ρi} be eigenvalues of A for i = 1, 2, .., n. Since xTx ≥ 0 for
any x ∈ Cn, we get

xTAx

xTx
≤
∣∣∣∣xTAxxTx

∣∣∣∣ =

∣∣xTAx∣∣
xTx

i.e.,

(2.2) max
x 6=o

xTAx

xTx
≤ max

x 6=o

∣∣xTAx∣∣
xTx

On the other hand, from Cauchy-Schwarz inequality, we have

(2.3) ‖A‖ = max
x 6=o

xTAx

xTx
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Then we get

(2.4) |ρi| ≤ ‖A‖ ≤ max
x6=o

∣∣xTAx∣∣
xTx

= max
x 6=o

∣∣∣∣xTAxxTx

∣∣∣∣
from (2.2) and (2.3) such that {ρi} is eigenvalue of A for i = 1, 2, .., n. Now let x be
eigenvector corresponding to eigenvalue ρn of A. Then we get∣∣∣xTAx∣∣∣ = |ρn|xTx

i.e.,

(2.5) min
x 6=o

∣∣xTAx∣∣
xTx

= |ρn| ≤ |ρi|

Hence, we have

min
x 6=0

∣∣∣∣xTAxxTx

∣∣∣∣ ≤ |ρi| ≤ max
x 6=0

∣∣∣∣xTAxxTx

∣∣∣∣
from inequalities in (2.4) and (2.5). �

2.3. Corollary. Let A ∈ Mn have eigenvalues {ρi}. Even if A is not Hermitian, one
has the bounds

(2.6) min
x 6=0, y 6=0

∣∣∣∣xTAyxT y

∣∣∣∣ ≤ |ρi| ≤ max
x 6=0, y 6=0

∣∣∣∣xTAyxT y

∣∣∣∣
for any x ∈ Rn (x 6= 0), y ∈ Rn (y 6= 0) and for i = 1, 2, .., n.

Proof. If y is taken as eigenvector corresponding to eigenvalue ρn of A or eigenvector
corresponding to ρ1 eigenvalue of A, we can see inequality in (2.6) as similar to the proof
of Proposition 2.2. �

2.4. Lemma (Horn and Johnson [10]). Let B be a Hermitian n × n matrix with ρ1 as

its largest eigenvalue, in modulus. then for any x ∈ Rn (x 6= 0), y ∈ Rn (y 6= 0), the
spectral radius |ρ1| satisfies

(2.7)
∣∣∣xTBy∣∣∣ ≤ |ρ1|√xTx√yT y

Equality holds if and only if x is an eigenvector of B corresponding to ρ1 and y = αx for
some α ∈ R.

2.5. Theorem (Das et al. [6]). Let G be a weighted graph which is simple, connected
and let ρ1 be the largest eigenvalue (in modulus) of G so that |ρ1| is the spectral radius
of G. Then

(2.8) |ρ1| ≤ max
i∼j


√∑

k:k∼i

ρ1(wi,k)
∑

k:k∼j

ρ1(wj,k)


where wi,j is the positive definite weight matrix of order p of the edge ij. Moreover equality
holds in (2.8) if and only if

(i) G is a weighted-regular graph or G is a weight-semiregular bipartite graph;
(ii) wi,j have a common eigenvector corresponding to the largest eigenvalue ρ1(wi,j)

for all i, j.
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2.6. Theorem ([9]). Let G be a weighted graph which is simple, connected and let ρ1 be
the largest eigenvalue (in modulus) of G so that |ρ1| is the spectral radius of G. Then

(2.9) |ρ1| ≤ max
i


√∑

k:k∼i

ρ1(w2
i,k) +

∑
j

∑
k
′∈Ni∩Nj

ρ1(wi,k
′wk

′
,j)


where wi,j is the positive definite weight matrix of order p of the edge ij and Ni ∩Nj is
the set of common neighbors of i and j. Moreover equality holds in (2.9) if and only if

(i) G is a weighted-regular graph or G is a weight-semiregular bipartite graph;
(ii) wi,j have a common eigenvector corresponding to the largest eigenvalue ρ1(wi,j)

for all i, j.

2.7. Theorem. Let G be a weighted graph which is simple, connected and let ρ1 be the
largest eigenvalue (in modulus) of G ,so that |ρ1| is the spectral radius of G. Then

(2.10)

|ρ1| ≤ max
i∼j




∑
k:k∼i

ρ1(w2
i,k)

+
∑
t

∑
k
′∈Ni∩Nt

ρ1(w
i,k
′w

k
′
,t

)




∑
k:k∼j

ρ1(w2
j,k)

+
∑
t

∑
k
′∈Nj∩Nt

ρ1(w
j,k
′w

k
′
,t

)




1
4

where wi,j is the positive definite weight matrix of order p of the edge ij and Ni ∩Nj is
the set of common neighbors of i and j.

Proof. Let consider matrix A2(G) such that A(G) is the adjacency matrix of graph G
and |ρ1| the spectral radius of A(G) adjacency matrix. So, ρ21 is also the spectral radius

of A2(G). Let X = (x
T
1 , x

T
2 , ..., x

T
n )T be an eigenvector corresponding to the spectral

radius ρ21 for A2(G) . We assume that xi is the vector component of X such that

(2.11) x
T
i xi = max

k∈V

{
x
T
k xk

}
and for every k ∈ V we get

(2.12) x
T
j xj ≥ x

T
k xk

such that i ∼ j. Since X is nonzero, so is xi .The (i, j) th block of A2 is

A2(G) =


∑

k:k∼i

w2
i,k if i ∼ j∑

k:k∈Ni∩Nj

wi,kwk,j otherwise.

We have

(2.13) A2(G)X = ρ21X

From the i th equation of (2.13), we have

ρ21xi =
∑
k:k∼i

w2
i,kxi +

∑
t

∑
k:k∈Ni∩Nt

wi,kwk,txt

i.e.,

(2.14) ρ21x
T
i xi =

∑
k:k∼i

x
T
i w

2
i,kxi +

∑
t

∑
k:k∈Ni∩Nt

x
T
i (wi,kwk,t)xt
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Taking modulus on the both sides of equality in (2.14), we get

ρ21x
T
i xi =

∣∣∣∣∣∣
∑
k:k∼i

x
T
i w

2
i,kxi +

∑
t

∑
k:k∈Ni∩Nt

x
T
i (wi,kwk,t)xt

∣∣∣∣∣∣
≤
∑
k:k∼i

∣∣∣xTi w2
i,kxi

∣∣∣+
∑
t

∑
k:k∈Ni∩Nt

∣∣∣xTi (wi,kwk,t)xt

∣∣∣(2.15)

Since wi,k is the positive definite matrix for every i, k, w2
i,k matrices are also positive

definite. So, using inequality in (2.7),we have

ρ21x
T
i xi ≤

∑
k:k∼i

∣∣∣xTi w2
i,kxi

∣∣∣+
∑
t

∑
k:k∈Ni∩Nt

∣∣∣xTi (wi,kwk,t)xt

∣∣∣
≤
√
x
T
i xi

√
x
T
i xi

∑
k:k∼i

ρ1
(
w2

i,k

)
+
∑
t

∑
k:k∈Ni∩Nt

∣∣∣xTi (wi,kwk,t)xt

∣∣∣(2.16)

Now we will discuss the modulus
∣∣∣xTi (wi,kwk,t)xt

∣∣∣ at the two cases for k ∼ i and

k ∼ t such that 1 ≤ t ≤ n.
Case 1: Let wi,kwk,t be Hermitian matrix for k ∼ i and k ∼ t such that 1 ≤ t ≤ n.

Then, we have∣∣∣xTi (wi,kwk,t)xt

∣∣∣ ≤ ρ1 (wi,kwk,t)

√
x
T
i xi

√
x
T
t xt

from inequality in (2.7) and we have

(2.17) ρ21x
T
i xi ≤

√
x
T
i xi

√
x
T
i xi

∑
k:k∼i

ρ1
(
w2

i,k

)
+

√
x
T
i xi

√
x
T
t xt
∑
t

∑
k:k∈Ni∩Nt

ρ1 (wi,kwk,t)

from inequality in (2.16).
Case 2: Let wi,kwk,t not be Hermitian matrix for k ∼ i and k ∼ t such that 1 ≤ t ≤ n.

From equality in (2.11) and inequality in (2.12), the ratio of∣∣∣xTi (wi,kwk,t)xt

∣∣∣√
x
T
i xi

√
x
T
t xt

is minimum. So, from (2.6) and inequality in (2.16), we have

ρ21x
T
i xi ≤

√
x
T
i xi

√
x
T
i xi

∑
k:k∼i

ρ1
(
w2

i,k

)
+

√
x
T
i xi

√
x
T
t xt
∑
t

∑
k:k∈Ni∩Nt

|ρm| (wi,kwk,t)(2.18)

such that m = 1, 2, .., p. Let ρ1 (wi,kwk,t) the largest eigenvalue of wi,kwk,t. As we expand
inequality in (2.18), we get again in inequality (2.16). Hence, we have

(2.19) ρ21x
T
i xi ≤

√
x
T
i xi

√
x
T
i xi

∑
k:k∼i

ρ1
(
w2

i,k

)
+

√
x
T
i xi

√
x
T
t xt
∑
t

∑
k:k∈Ni∩Nt

ρ1 (wi,kwk,t)

from Case 1 and Case 2.
From the j th equation of (2.12), we have

ρ21xj =
∑

k:k∼j

w2
j,kxj +

∑
t

∑
k:k∈Nji∩Nt

wj,kwk,txt
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i.e.,

(2.20) ρ21x
T
j xj =

∑
k:k∼j

x
T
j w

2
j,kxj +

∑
t

∑
k:k∈Nj∩Nt

x
T
j (wj,kwk,t)xt

Taking modulus on both sides and using of inequality in (2.7), we get

ρ21x
T
j xj =

∣∣∣∣∣∣
∑

k:k∼j

x
T
j w

2
j,kxj +

∑
t

∑
k:k∈Nj∩Nt

x
T
j (wj,kwk,t)xt

∣∣∣∣∣∣
≤
∑

k:k∼j

∣∣∣xTj w2
j,kxj

∣∣∣+
∑
t

∑
k:k∈Nj∩Nt

∣∣∣xTj (wj,kwk,t)xt

∣∣∣
≤
√
x
T
j xj

√
x
T
j xj

∑
k:k∼j

ρ1
(
w2

j,k

)
+
∑
t

∑
k:k∈Nj∩Nt

∣∣∣xTj (wj,kwk,t)xt

∣∣∣(2.21)

Similarly, if we consider wj,kwk,t matrix is Hermitian matrix or not Hermitian for k ∼ j
and k ∼ t such that 1 ≤ t ≤ n, we have

(2.22) ρ21x
T
j xj ≤

√
x
T
j xj

√
x
T
j xj

∑
k:k∼j

ρ1
(
w2

j,k

)
+

√
x
T
j xj

√
x
T
t xt
∑
t

∑
k:k∈Nj∩Nt

ρ1 (wj,kwk,t)

Multiplying with x
T
j xj on right sides of inequality in (2.19) and from equality in (2.11),

we get

ρ21x
T
i xi ≤

(
x
T
j xj

)(
x
T
i xi
) ∑

k:k∼i

ρ1
(
w2

i,k

)
+
(
x
T
j xj

)(
x
T
i xi
)∑

t

∑
k:k∈Ni∩Nt

ρ1 (wi,kwk,t)(2.23)

Similarly, multiplying with x
T
i xi on right sides of (2.22) and from inequality in (2.12),

we have

ρ21x
T
j xj ≤

(
x
T
j xj

)(
x
T
i xi
) ∑

k:k∼j

ρ1
(
w2

j,k

)
+
(
x
T
j xj

)(
x
T
i xi
)∑

t

∑
k:k∈Nj∩Nt

ρ1 (wj,kwk,t)(2.24)

From inequalities in (2.23) and (2.24), we get

|ρ1| ≤




∑
k:k∼i

ρ1
(
w2

i,k

)
+
∑
t

∑
k:k∈Ni∩Nt

ρ1
(
wi,kwk,t

)



∑
k:k∼j

ρ1
(
w2

j,k

)
+
∑
t

∑
k:k∈Nj∩Nt

ρ1
(
wj,kwk,t

)



1
4

≤ max
i∼j




∑
k:k∼i

ρ1
(
w2

i,k

)
+
∑
t

∑
k:k∈Ni∩Nt

ρ1
(
wi,kwk,t

)



∑
k:k∼j

ρ1
(
w2

j,k

)
+
∑
t

∑
k:k∈Nj∩Nt

ρ1
(
wj,kwk,t

)



1
4

�

2.8. Corollary. Let G be a simple connected weighted graph where each edge weight wi,j

is a positive number. Then

|ρ1| ≤ max
i∼j



 ∑

k:k∼i

w2
i,k

+
∑
t

∑
k:k∈Ni∩Nt

wi,kwk,t




∑
k:k∼j

w2
j,k

+
∑
t

∑
k:k∈Nj∩Nt

wj,kwk,t




1
4
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Moreover equality if and only if G bipartite regular graph or a bipartite semiregular graph.

2.9. Corollary. Let G be a simple connected unweighted graph Then

|ρ1| ≤ max
i∼j


{(

di +
∑
t

|Ni ∩Nt|

)(
dj +

∑
t

|Nj ∩Nt|

)} 1
4


where di and dj are the degrees of the vertices i and j respectively. Moreover equality if
and only if G bipartite regular graph or a bipartite semiregular graph.

Proof. For unweighted graph, wi,j = 1 for i ∼ j. Therefore wi,kwk,t = Ni ∩ Nt. Using
Theorem 2.7 we get the required result. �

1. Exercise. Let G1 = (V1, E1) and G2 = (V2, E2) weighted graphs where V1 =
{1, 2, 3, 4, 5} , E1 = {{1, 2} , {2, 3} , {2, 4} , {2, 5}, {3, 4}, {4, 5}} and each weights are the
positive definite matrix of three order. Let

V2 = {1, 2, 3, 4, 5, 6} , E2 =

{
{1, 2} , {2, 3} , {2, 4} ,
{2, 5} , {5, 6}

}
such that each weights are the positive definite matrix of order two. Assume that the
following adjacency matrices of G1 and G2 we give

A(G1) =



0 0 0 2 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 2 0 0 0 0 0 0 0 0 0
2 −1 0 0 0 0 5 0 2 3 1 −1 11 −3 1
−1 2 −1 0 0 0 0 5 2 1 3 −1 −3 11 1
0 2 −1 0 0 0 2 2 5 −1 −1 5 1 1 8
0 0 0 5 0 2 0 0 0 10 7 5 0 0 0
0 0 0 0 5 2 0 0 0 7 10 5 0 0 0
0 0 0 2 2 5 0 0 0 5 5 17 0 0 0
0 0 0 3 1 −1 10 7 5 0 0 0 6 3 −1
0 0 0 1 3 −1 7 10 5 0 0 0 3 6 −1
0 0 0 −1 −1 5 5 5 17 0 0 0 −1 −1 9
0 0 0 11 −3 1 0 0 0 6 3 −1 0 0 0
0 0 0 −3 11 1 0 0 0 3 6 −1 0 0 0
0 0 0 1 1 8 0 0 0 −1 −1 9 0 0 0


and

A(G2) =



0 0 2 1 0 0 0 0 0 0 0 0
0 0 1 3 0 0 0 0 0 0 0 0
2 1 0 0 3 1 5 −3 11 1 0 0
1 3 0 0 1 4 −3 4 1 2 0 0
0 0 3 1 0 0 0 0 0 0 0 0
0 0 1 4 0 0 0 0 0 0 0 0
0 0 5 −3 0 0 0 0 0 0 0 0
0 0 −3 4 0 0 0 0 0 0 0 0
0 0 11 1 0 0 0 0 0 0 7 −1
0 0 1 2 0 0 0 0 0 0 −1 6
0 0 0 0 0 0 0 0 7 −1 0 0
0 0 0 0 0 0 0 0 −1 6 0 0


The spectral radius of G1 is ρ1 = 28, 61 and the spectral radius of G2 is ρ1 = 14.43 where
rounded two decimal places and the above mentioned bounds give the following results.

(2.25)
ρ1 (2.8) (2.9) (2.10)

G1 28.61 35.92 31.56 31.12
G2 14.43 22.41 17.21 16.08
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