
Hacettepe Journal of Mathematics and Statistics
Volume 42 (4) (2013), 347 – 357

A COUPLED FIXED POINT RESULT IN
PARTIALLY ORDERED PARTIAL METRIC
SPACES THROUGH IMPLICIT FUNCTION
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Abstract

In this manuscript, we discuss the existence of coupled fixed points in
the context of partially ordered metric spaces through implicit relations
for mappings F : X × X → X such that F has the mixed monotone
property. Our main theorem improves and extends various results in
the literature. We also state an example to illustrate our work.
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1. Introduction and Preliminaries

The notion of partial metric space, introduced by Matthews [46], is a generalization
of metric space defined by Fréchet [20] in 1906. Roughly speaking the most remarkable
property in a partial metric space is that the self-distance need not be zero. Nonzero
self-distance makes perfect sense in the framework of Computer Sciences, in particular,
in the Domain Theory and Semantics (see e.g., [39, 40, 51, 23, 57, 65, 66, 74, 75]). In
the paper [46], Matthews proved an analog of the well-known Banach contraction prin-
ciple in the context of complete partial metric spaces. After this result, many authors
have conducted further research on fixed point theorems in the same class of spaces.
Furthermore they studied topological properties of partial metric spaces (see e.g.,[2]-[7],
[9, 16, 18, 24, 25] [35]-[33],[40],[60]-[64],[67, 73]).

A partial metric is a function p : X × X → [0,∞) which satisfies the following
conditions
(P1) p(x, y) = p(y, x),
(P2) If p(x, x) = p(x, y) = p(y, y), then x = y,
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(P3) p(x, x) ≤ p(x, y),
(P4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z),
for all x, y, z ∈ X. Then the pair (X, p) is called a partial metric space.

1.1. Example. (See [68]) Let (X, d) and (X, p) be a metric space and a partial metric
space, respectively. Mappings ρi : X ×X −→ R+ for i ∈ {1, 2, 3} defined by

ρ1(x, y) = d(x, y) + p(x, y)

ρ2(x, y) = d(x, y) + max{ω(x), ω(y)}
ρ3(x, y) = d(x, y) + a

induce partial metrics on X, where ω : X −→ R+ is an arbitrary function and a ≥ 0.

Each partial metric p on X generates a T0 topology τp on X with the family of open p-
balls {Bp(x, ε) : x ∈ X, ε > 0} as a base, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x)+ε}
for all x ∈ X. Similarly, a closed p-ball is defined as Bp[x, ε] = {y ∈ X : p(x, y) ≤
p(x, x) + ε}.
1.2. Definition. (See [46]) Let (X, p) be a partial metric space.

(i) A sequence {xn} in X converges to x ∈ X whenever lim
n→∞

p(x, xn) = p(x, x),

(ii) A sequence {xn} in X is called Cauchy whenever lim
n,m→∞

p(xn, xm) exists (and

finite),
(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with

respect to τp, to a point x ∈ X, such that, lim
n,m→∞

p(xn, xm) = p(x, x).

(iv) A mapping f : X → X is said to be continuous at x0 ∈ X if for each ε > 0 there
exists δ > 0 such that f(B(x0, δ)) ⊂ B(f(x0), ε).

Romaguera (see [60]) defined the notion of 0-Cauchy sequence in partial metric spaces.
Furthermore, he introduced the concept of 0-completeness in the same class of spaces.

1.3. Remark. Notice that the limit of a sequence in partial metric space need not to
be unique. For more details and examples see e.g. [37].

1.4. Definition. (See [60]) A sequence {xn} in a partial metric space (X, p) is called
0-Cauchy if lim

n,m→∞
p(xn, xm) = 0. A partial metric space (X, p) is said to be 0-complete

if every 0-Cauchy sequence in X converges, with respect to τp, to a point x ∈ X such
that p(x, x) = 0. In this case, p is said to be a 0-complete partial metric on X.

Observe that each 0-Cauchy sequence is also a Cauchy sequence in a partial metric
space. In particular, we note that each complete partial metric is a 0-complete partial
metric on X. However the converse is not true and the following example demonstrate
that there exists a 0-complete partial metric that is not complete.

1.5. Example. (See [60, 61]) Let (Q ∩ [0,∞), p) be the partial metric space, where
Q and p(x, y) represent the set of rational numbers and the partial metric max{x, y},
respectively.

One of the characterizations of continuity of mappings in partial metric spaces was
given by Samet at al. [64] as follows:

1.6. Lemma. (See [64]) Let (X, p) be a partial metric space. The function F : X → X
is continuous if given a sequence {xn} ∈ N and x ∈ X such that p(x, x) = lim

n→+∞
p(x, xn),

then

p(Fx, Fx) = lim
n→+∞

p(Fx, Fxn).
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1.7. Example. (See [64]) Consider X = [0,∞) endowed with the partial metric p :
X × X → [0,∞) defined by p(x, y) = max{x, y} for all x, y ≥ 0. Let F : X → X
be a non-decreasing function. If F is continuous with respect to the standard metric
d(x, y) = |x− y| for all x, y ≥ 0, then F is continuous with respect to the partial metric
p.

There is a close relationship between metrics and partial metrics. Indeed, if p is a
partial metric on X, then the function dp : X ×X → [0,∞) given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X. Moreover,

(1.1) lim
n→∞

dp(x, xn) = 0⇔ lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm) = p(x, x).

1.8. Lemma. (See e.g. [46]) Let (X, p) be a partial metric space.

(a) A sequence {xn} is Cauchy if and only if {xn} is a Cauchy sequence in the
metric space (X, dp),

(b) (X, p) is complete if and only if the metric space (X, dp) is complete.

The following lemmas will be frequently used in the proof of the main result.

1.9. Lemma. Let (X, p) be a partial metric space. Then
(a) If p(x, y) = 0, then x = y,
(b) If x 6= y, then p(x, y) > 0.
(c) If xn → z with p(z, z) = 0, then lim

n→∞
p(xn, y) = p(z, y) for all y ∈ X.

In [26], Guo and Lakshmikantham introduced the notion of coupled fixed point. In
2006, Gnana-Bhaskar and Lakshmikantham[10] defined the notion of mixed monotone
mapping and reconsidered coupled fixed point in the context of partially ordered set. In
this initial paper, the authors proved some coupled fixed point theorems for the mixed
monotone mappings and discussed the existence and uniqueness of solution for a periodic
boundary value problem. Next, we recall the necessary definitions and their basic results
in this direction.

1.10. Definition. (See [10]) Let (X,�) be a partially ordered set. The mapping F :
X × X → X is said to have the mixed monotone property if F (x, y) is monotone non-
decreasing in x and is monotone non-increasing in y, that is, for any x, y ∈ X ,

x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y)

and
y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2).

1.11. Definition. (See [10]) An element (x, y) ∈ X ×X is called a coupled fixed point
of the mapping F : X ×X → X if

x = F (x, y) and y = F (y, x).

We state now the main results of Gnana-Bhaskar and Lakshmikantham in [10].

1.12. Theorem. (See [10]) Let (X,�) be a partially ordered set. Suppose there exists a
metric d on X such that (X, d) is a complete metric space. Assume that there exists a
k ∈ [0, 1) with

d (F (x, y) , F (u, v)) ≤ k

2
[d (x, u) + d (y, v)]

for all x � u and y � v. Let either

(a) F : X ×X → X be a continuous mapping with the mixed monotone property on
X, or,
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(b) X has the following property:
(i) if a non-decreasing sequence {xn} → x , then xn � x for all n,

(ii) if a non-increasing sequence {yn} → y , then y � yn for all n.

If there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F (y0, x0)

then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x).

Following Theorem 1.12, several coupled coincidence/fixed point theorems and their
applications to integral equations, matrix equations, periodic boundary value problems
have been reported (see e.g. [9, 11, 12, 13, 21, 38, 29, 34, 41, 43, 44, 42, 45, 63] and
references therein).

In nonlinear analysis, especially in fixed point theory, implicit relations on metric
spaces have been investigated heavily in many articles (see, e.g., [6], [19, 22], [53] and
references therein). In this paper, by using implicit relations, we examine the existence
of a coupled fixed point theorem for mappings F : X × X → X satisfying the mixed
monotone property in the context of partial metric spaces. A set of implicit relations,
denoted by H, is the collection of all continuous functions H : (R+)5 → R which satisfy

(H1) H(t1, t2, t3, t4, t5) is non-increasing in t2 and t5, and
(H2) there exists a function ϕ ∈ Φ such that

H(u, u+ v, v, w, u+ v) ≤ 0 implies u ≤ ϕ(max{v, w})
where Φ denotes the set of all functions ϕ : R+ → R+ with the properties

(i) ϕ is continuous and non-decreasing,
(ii) ϕ(t) < t for each t > 0 and ϕ(0) = 0.

1.13. Example. It is easy to check that the following functions are in H
(H1) H(t1, t2, t3, t4, t5) = t1 − αt2 − βt3 − γt4 − θt5, where α, β, γ, θ are non-negative

real numbers satisfying 2α+ β + γ + 2θ < 1.
(H2) H(t1, t2, t3, t4, t5) = t1 − αmax{t2/2, t3, t4, t5/2}, where α ∈ (0, 1).
(H3) H(t1, t2, t3, t4, t5) = t1 − ϕ(max{t3, t4}, where ϕ ∈ Φ.

In this paper, we prove a coupled fixed point theorem for mappings satisfying certain
implicit relations in the framework of partial metric spaces.

2. Coupled fixed point theorem

We start this section with our main result.

2.1. Theorem. Let (X, p,�) be a partially ordered complete partial metric space. Sup-
pose F : X × X → X be a mapping such that F has the mixed monotone property.
Assume that there exists H ∈ H such that

(2.1) H

(
p(F (x, y), F (u, v)), p(F (x, y), x) + p(F (u, v), u),
p(x, u), p(y, v), p(F (x, y), u) + p(F (u, v), x)

)
≤ 0

for all x, y, u, v ∈ X with x � u and y � v. Suppose that either

(a) F is continuous or
(b) X has the following property

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.
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If there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F (y0, x0),

then F has a coupled fixed point in X.

Proof. Let x0, y0 ∈ X be such that x0 � F (x0, y0) and y0 � F (y0, x0). We construct the
iterative sequences {xn} and {yn} in X as follows

(2.2) xn+1 = F (xn, yn) and yn+1 = F (yn, xn) for all n ≥ 0.

By using the mathematical induction and the mixed monotone property of F , we can
show that

(2.3) xn � xn+1 and yn � yn+1 for all n ≥ 0.

If there is some n0 ∈ N∗ such that xn0 = xn0+1 and yn0 = yn0+1 then

xn0 = xn0+1 = F (xn0 , yn0) and yn0 = yn0+1 = F (yn0 , xn0)

which concludes that (xn0 , yn0) is a coupled fixed point of F . Thus we assume that xn0 6=
xn0+1 or yn0 6= yn0+1 for all n. By Lemma 1.9, we have max{p(xn+1, xn), p(yn+1, yn)} >
0 for all n.

Since xn+1 � xn and yn+1 � yn, from (2.1), we have

H

(
p(F (xn+1, yn+1), F (xn, yn)), p(F (xn+1, yn+1), xn+1) + p(F (xn, yn), xn),
p(xn+1, xn), p(yn+1, yn), p(F (xn+1, yn+1), xn) + p(F (xn, yn), xn+1)

)
≤ 0

or

(2.4) H

(
p(xn+2, xn+1), p(xn+2, xn+1) + p(xn+1, xn),

p(xn+1, xn), p(yn+1, yn), p(xn+2, xn) + p(xn+1, xn+1)

)
≤ 0.

Due to (P4) we have,

(2.5)
p(xn+2, xn) ≤ p(xn+2, xn+1) + p(xn+1, xn)− p(xn+1, xn+1)

≤ p(xn+2, xn+1) + p(xn+1, xn).

By the properties of H and (2.5), the inequality in (2.4) turns into

H

(
p(xn+2, xn+1), p(xn+2, xn+1) + p(xn+1, xn),

p(xn+1, xn), p(yn+1, yn), p(xn+2, xn+1) + p(xn+1, xn)

)
≤ 0

which yields that

(2.6) p(xn+2, xn+1) ≤ ϕ(max{p(xn+1, xn), p(yn+1, yn)}).
Similarly, one can show that

(2.7) p(yn+2, yn+1) ≤ ϕ(max{p(xn+1, xn), p(yn+1, yn)}).
From (2.6) and (2.7), we have

(2.8) max{p(xn+2, xn+1), p(yn+2, yn+1)} ≤ ϕ(max{p(xn+1, xn), p(yn+1, yn)})
which implies

max{p(xn+2, xn+1), p(yn+2, yn+1)} < max{p(xn+1, xn), p(yn+1, yn)}
by the property of ϕ. This means that {pn := max{p(xn+1, xn), p(yn+1, yn)}} is a de-
creasing sequence of positive real numbers. So there is an L ≥ 0 such that

(2.9) lim
n→∞

pn = lim
n→∞

max{p(xn+1, xn), p(yn+1, yn)} = L.

We shall show that L = 0. Assume, to the contrary, that L > 0. Taking n→∞ in (2.8),
we have

L ≤ lim
n→∞

ϕ(pn) = ϕ(L) < L
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which is a contradiction. Thus L = 0. Hence,

(2.10) lim
n→∞

p(xn+1, xn) = 0 and lim
n→∞

p(yn+1, yn) = 0.

Next, we show that {xn} and {yn} are Cauchy sequences. Suppose, to the con-
trary, that at least one of {xn} or {yn} is not a Cauchy sequence. This means that
there exists an ε > 0 for which we can find subsequences

{
xn(k)

}
,
{
xm(k)

}
of {xn} and{

yn(k)
}
,
{
ym(k)

}
of {yn} with n(k) > m(k) ≥ k such that

(2.11) max
{
p
(
xn(k), xm(k)

)
, p
(
yn(k), ym(k)

)}
≥ ε.

Furthermore, corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) ≥ k and satisfies (2.11). Then

(2.12) max
{
p
(
xn(k)−1, xm(k)

)
, p
(
yn(k)−1, ym(k)

)}
< ε.

Using the triangle inequality and (2.12), we have

p
(
xn(k), xm(k)

)
≤ p

(
xn(k), xn(k)−1

)
+ p

(
xn(k)−1, xm(k)

)
− p(xn(k)−1, xn(k)−1)

≤ p
(
xn(k), xn(k)−1

)
+ p

(
xn(k)−1, xm(k)

)

< p
(
xn(k), xn(k)−1

)
+ ε(2.13)

and

p
(
yn(k), ym(k)

)
≤ p

(
yn(k), yn(k)−1

)
+ p

(
yn(k)−1, ym(k)

)
− p(yn(k)−1, yn(k)−1

≤ p
(
yn(k), yn(k)−1

)
+ p

(
yn(k)−1, ym(k)

)
)

< p
(
yn(k), yn(k)−1

)
+ ε.(2.14)

From (2.11), (2.13) and (2.14), we have

ε ≤ max
{
p
(
xn(k), xm(k)

)
, p
(
yn(k), ym(k)

)}

< max
{
p
(
xn(k), xn(k)−1

)
, p
(
yn(k), yn(k)−1

)}
+ ε.

Letting k →∞ in the inequality above and using (2.9) we get

(2.15) lim
k→∞

max
{
p
(
xn(k), xm(k)

)
, p
(
yn(k), ym(k)

)}
= ε.

By the triangle inequality

p
(
xn(k), xm(k)

)
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1) + p

(
xm(k)−1, xm(k)

)

−p(xn(k)−1, xn(k)−1)− p(xm(k)−1, xm(k)−1)
≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1) + p

(
xm(k)−1, xm(k)

)

and

p
(
yn(k), ym(k)

)
≤ p

(
yn(k), yn(k)−1

)
+ p

(
yn(k)−1, ym(k)−1

)
+ p

(
gym(k−1, ym(k)

)

−p(yn(k)−1, yn(k)−1)− p(ym(k)−1, ym(k)−1)
≤ p

(
yn(k), yn(k)−1

)
+ p

(
yn(k)−1, ym(k)−1

)
+ p

(
ym(k−1, ym(k)

)
.

From the last two inequalities and (2.11), we have

ε ≤ max
{
p
(
xn(k), xm(k)

)
, p
(
yn(k), ym(k)

)}

≤ max
{
p
(
xn(k), xn(k)−1

)
, p
(
yn(k), yn(k)−1

)}

+ max
{
p
(
xm(k)−1, xm(k)

)
, p
(
ym(k)−1, ym(k)

)}

+ max
{
p
(
xn(k)−1, xm(k)−1

)
, p
(
yn(k)−1, ym(k)−1

)}
.(2.16)
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Again, by the triangle inequality,

p
(
xn(k)−1, xm(k)−1

)
≤ p

(
xn(k)−1, gxm(k)

)
+ p

(
xm(k), xm(k)−1

)
− p(xm(k), xm(k))

≤ p
(
xn(k)−1, xm(k)

)
+ p

(
xm(k), xm(k)−1

)

< p
(
xm(k), xm(k)−1

)
+ ε

and

p
(
yn(k)−1, ym(k)−1

)
≤ p

(
yn(k)−1, gym(k)

)
+ p

(
ym(k), ym(k)−1

)
− p(ym(k), ym(k))

≤ p
(
yn(k)−1, ym(k)

)
+ p

(
ym(k), ym(k)−1

)

< p
(
ym(k), ym(k)−1

)
+ ε.

Therefore,

max
{
p
(
xn(k)−1, xm(k)−1

)
, p
(
yn(k)−1, ym(k)−1

)}

(2.17) < max
{
p
(
xm(k), xm(k)−1

)
, p
(
ym(k), ym(k)−1

)}
+ ε.

From (2.16) and (2.17), we have

ε − max
{
p
(
xn(k), xn(k)−1

)
, p
(
yn(k), yn(k)−1

)}

−max
{
p
(
xm(k)−1, xm(k)

)
, p
(
ym(k)−1, ym(k)

)}

≤ max
{
p
(
xn(k)−1, xm(k)−1

)
, p
(
yn(k)−1, ym(k)−1

)}

< max
{
p
(
xm(k), xm(k)−1

)
, p
(
ym(k), ym(k)−1

)}
+ ε.

Taking the limit as k →∞ in the inequalities above and using (2.9), we get

(2.18) lim
k→∞

max
{
p
(
xn(k)−1, xm(k)−1

)
, p
(
yn(k)−1, ym(k)−1

)}
= ε.

From (2.15) and (2.18), the sequences {p(xn(k), xm(k))}, {p
(
yn(k), ym(k)

)
},
{
p
(
xn(k)−1, xm(k)−1

)}

and
{
p
(
yn(k)−1, ym(k)−1

)}
have subsequences converging to ε1, ε2, ε3 and ε4, respectively,

and max{ε1, ε2} = max{ε3, ε4} = ε > 0. We may assume that

lim
k→∞

p(xn(k), xm(k)) = ε1, lim
k→∞

p
(
yn(k), ym(k)

)
= ε2,

lim
k→∞

p
(
xn(k)−1, xm(k)−1

)
= ε3 and lim

k→∞
p
(
yn(k)−1, gym(k)−1

)
= ε4.

We first suppose that ε1 = max{ε1, ε2} = ε. Since n(k) > m(k), xn(k)−1 � xm(k)−1

and yn(k)−1 � ym(k)−1. From (2.1), we have

H



p(F (xn(k)−1, yn(k)−1), F (xm(k)−1, ym(k)−1)), p(F (xn(k)−1, yn(k)−1), xn(k)−1)+
p(F (xm(k)−1, ym(k)−1), xm(k)−1), p(xn(k)−1, xm(k)−1), p(yn(k)−1, ym(k)−1),

p(F (xn(k)−1, yn(k)−1), xm(k)−1) + p(F (xm(k)−1, ym(k)−1), xn(k)−1)


 ≤ 0

or

H

(
p(xn(k), xm(k)), p(xn(k), xn(k)−1) + p(xm(k), xm(k)−1),

p(xn(k)−1, xm(k)−1), p(yn(k)−1, ym(k)−1), p(xn(k), xm(k)−1) + p(xm(k), xn(k)−1)

)
≤ 0

or

H




p(xn(k), xm(k)), p(xn(k), xn(k)−1) + p(xm(k), xm(k)−1),
p(xn(k)−1, xm(k)−1), p(yn(k)−1, ym(k)−1), p(xn(k), xm(k))+

p(xm(k), xm(k)−1) + p(xm(k), xm(k)−1) + p(xm(k)−1, xn(k)−1)


 ≤ 0.

Letting k →∞ in the last inequality together with (2.10), we derive

H
(
ε1, 0, ε3, ε4, ε1 + ε3

)
≤ 0.

Hence, we get

H
(
ε1, ε1 + ε3, ε3, ε4, ε1 + ε3

)
≤ 0
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which implies ε = ε1 ≤ ϕ(max{ε3, ε4}) = ϕ(ε) < ε. This is a contradiction.
Using the same argument as above for the case ε2 = max{ε1, ε2} = ε, we also get a

contradiction. Thus {xn} and {yn} are Cauchy sequences. Since X is complete, there
exist x, y ∈ X such that

(2.19)

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x)

and
lim

n,m→∞
p(yn, ym) = lim

n→∞
p(yn, y) = p(y, y).

We want to show that p(x, x) = 0 = p(y, y). Suppose, on the contrary, that

(2.20) p(x, x) = δ > 0 and p(y, y) = γ > 0.

Then we see that

H



p(F (xn−1, yn−1), F (xm−1, ym−1)), p(F (xn−1, yn−1), xn−1)+
p(F (xm−1, ym−1), xm−1), p(xn−1, xm−1), p(yn−1, ym−1),
p(F (xn−1, yn−1), xm−1) + p(F (xm−1, ym−1), xn−1)


 ≤ 0

or

H

(
p(xn, xm), p(xn, xn−1) + p(xm, xm−1),

p(xn−1, xm−1), p(yn−1, ym−1), p(xn, xm−1) + p(xm, xn−1)

)
≤ 0.

By using the triangle inequality (P4), we get

H




p(xn, xm), p(xn, xn−1) + p(xm, xm−1),
p(xn−1, xm−1), p(yn−1, ym−1), p(xn, xm)+

p(xm, xm−1) + p(xm, xm−1) + p(xm−1, xn−1)


 ≤ 0.

Letting k →∞, we derive

H
(
δ, 0, δ, 0, δ

)
≤ 0

by (2.10) and (2.20). Hence, we find

H
(
δ, 0 + δ, δ, 0, δ + 0

)
≤ H(δ, 0, δ, 0, δ) ≤ 0

which implies δ ≤ ϕ(max{δ, 0}) = ϕ(δ) < δ. This is a contradiction. Hence δ = 0.
Analogously we find that γ = 0.

Now, suppose that the assumption (a) holds. We have

(2.21) p (x, F ((xn) , (yn))) ≤ p (x, F (xn, yn)) + p (F (xn, yn) , F (xn, yn)) .

Taking the limit as n → ∞ in (2.21) and by (2.19), and the continuity of F we get
p(x, F (x, y)) = 0.
Similarly, we can show that p(y, F (y, x)) = 0. Therefore, x = F (x, y) and y = F (y, x).

Finally, suppose that the assumption (b) holds. Since {xn} is a non-decreasing se-
quence and xn → x and {yn} is a non-increasing sequence and yn → y , by the assump-
tion, we have xn � x and yn � y for all n. Regarding (2.2) and (2.19), we have

(2.22) lim
n→∞

p(xn, x) = p(x, x) = lim
n→∞

p(F (xn, yn) , x)

and

(2.23) lim
n→∞

p(yn, y) = p(y, y) = lim
n→∞

p(F (yn, xn) , y).

We also have

H

(
p(F (xn, yn), F (x, y)), p(F (xn, yn) + p(F (x, y), x)
p(xn, x), p(yn, y), p(F (xn, yn), x) + p(F (x, y), xn)

)
≤ 0.
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Letting n→∞ and using (2.22) and (2.23), we have

H(p(x, F (x, y)), p(x, F (x, y)), 0, 0, p(x, F (x, y))) ≤ 0

which implies that p(x, F (x, y)) ≤ ϕ(max{0, 0}) = 0. Hence x = F (x, y). Similarly, one
can show that y = F (y, x).

Thus we proved that F has a coupled fixed point in X. �

2.2. Example. (See, e.g., [45]) Let X = [0,∞) with usual order ≤. Then, (X, p,≤) be
a partially ordered partial metric space where p(x, y) = max{x, y}. Suppose F (x, y) ={

x−y
2

if x ≥ y,
0 otherwise.

and H(t1, t2, t3, t4, t5) = t1 − 1
2

max{t3, t4}. It is clear that all

conditions of Theorem 2.1 are satisfied. Notice that (0, 0) is the coupled fixed point of
the operator F .
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[20] Fréchet, M. Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22 , 1—74,

1906.

[21] Harjani, J., Lopez, B. and Sadarangani, K. Fixed point theorems for mixed monotone oper-
ators and applications to integral equations, Nonlinear Anal. 74 , 1749–1760, 2011.

[22] Hung,N.M., Karapinar,E. and Luong, N.V. Coupled coincidence point theorem in partially

ordered metric spaces via implicit relation, Abstract and Applied Analysis 2012, Art. ID
796964, 2012.

[23] Heckmann, R. Approximation of metric spaces by partial metric spaces, Applied Categorical

Structures 7, 71—83, 1999.
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