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Abstract

In this study, firstly we defined an n x k matrix, GE:L, whose entries
consist of hyperharmonic numbers. Then we obtained relation between
Pascal matrices and G, . Finally we calculated the determinant of
G-
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1. Introduction

For n > 0 and 1 < i < k, let define the order-k sequences be as following:
k

W) g=S e,

j=1
with initial values gi,k, gé,k, o ,gé, where ¢; (1 < j < k) are constant coefficients, gfl is
the nth term of ith sequence. Let the k x k matrix be as following:

an 9n . g

(1 ) G grlkl gifl gfL—l

1 2 k
In—k+1 YGn—k+1 " Gn—k+1

There have been many papers related to the sequences as in (1.1) [1, 2, 3, 4, 5]. In [1],
Kalman obtained a number of closed-form formulas for the generalized sequence by matrix
method.
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In [2], Er defined the order-k Fibonacci numbers as a sequence which satisfies the
recurrence (1.1) with the boundary conditions for 1 — &k <n <0

s 1, ifi=1-n
gn = .
0, otherwise

When k£ = 2 and ¢; = 1(1 <j < k), this reduces to the well-known conventional Fi-
bonacci numbers. Also, Er showed that

i i i T i i i T
[ In+1 Gn -+ Gn—k+2 ] = C[ 9n  Gn-1 -+ YGn—k+1 } )
where
c1 Cc2 C3 Cr—1 Ck
1 0 O 0 0
0 1 O 0 0
C = .
o o0 o0 .- 0 0
o 0 0 --- 1 0
Then he obtained
Gn+1 = CG7L7

where G, is k x k matrix as in (1.2).
In [3], Karaduman showed that

Gn=C"

and

{ (=)™, if kiseven
det (Gr) =

1, if kis odd
forc; =11<j<k).

In [4], Tasci and Kilic gave a new generalization of the Lucas numbers in matrices.
Also, they presented a relation between the generalized order-k Lucas numbers and Fi-
bonacci numbers. In [5], Fu and Zhou obtained some new results on matrices related to
Fibonacci and Lucas numbers.

The nth hyperharmonic number of order 7, H,(f), defined as: for n,r > 1

n

T r—1

13)  HO =S "HITY
k=1

where H® = % From the definition of Hff), we have HY') =1, and HY = > % =H,
k=1

where H, is nth ordinary harmonic number. Also, hyperharmonic numbers have the
recurrence relation as follows: HY) = =Y 4 H,(Ql
In [6], Conway and Guy gave an equality as follows:

; -1
HO) = ( ntre >(HW_1 —H,_y)

and in [7], Benjamin and et all. gave

” - n+r—s—1\1
e M (S T

s=1
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Let the n x k matrix be as following:

Hr(LT) ng-&-l) . H'gr-&-k—l)

| e e g
+1 +k—1

H{r) Hl(r ). H{T )

where H{"” is nth hyperharmonic number of order r defined as in (1.3). In Section 2, we
derive the relation between Pascal matrices and GE:),C Also, we calculate the determinant
of G\), .

Now we give some preliminaries related to our study. The n x k Pascal and n x n
lower triangular Pascal matrices are respectively defined as

(16) P =(pyy) = (”j‘z),

j—1

i), if >

(L7 PL=(g;) = { (

0, otherwise

For example, the matrices P and Py, of order 5 are

11 1 1 1 1 0 0 0 O
1 2 3 4 5 11 0 0 O
P=]11 3 6 10 15 |, Po=|1 2 1 0 0
1 4 10 20 35 1 3 3 1 0
1 5 15 35 70 1 4 6 4 1

The matrices P and Py, in (1.6) and (1.7) have the following properties [8,9] :
(1) P = P, P! where P} is transpose of Pr.
(2) Det(P) = 1.
(3) Pyt =diag[-1,1,—1,...,(=1)"] Prdiag [-1,1,—1,...,(=1)"].
(4) P~! =diag[-1,1,-1,...,(=1)"] PPy diag[-1,1,—1,...,(=1)"].

Let the n x n matrices H and A be as

R e
= = 1o
(1.8) H= :
1 1 0 0
L 1 0 0 0 J
and
1 1 1
1 1
(1.9) A=
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Then from the principle of mathematical induction on r , we have

T () i<
(1.10) A" =B, = (b)) =
0, otherwise
Also, the determinants of A and H have the forms:
det (A) =1
and
1, if n=0,1 (mod 4)
det (H) =
-1, if n=2,3 (mod4)

2. The Main Results

2.1. Lemma. Let the nxk, nxn, nxk matrices GS’L, H, Pbe as in (1.5), (1.8) and (1.6),
respectively. Then,

1
G\ = HP.

Proof. From matrix multiplication, we have

n n n — 2 n —s+k—1 q
1 S (m-s+nl Z(" st )é Z(" o1 H
s=1 s=1 s= s=1
n—1 n—1 n—1 n—1

1 1 n75+1)1 <n75+k72)1

1 n—s 1 1
s=1° Q§< ) 571( 2 s s=1 k=1 s

HP = )
2 2 2

1 (-5l (4—3 )1 (k—s+1 );

sZ::S 52 521 2 s sz::1 k-1 s
1 1 1 ]

From (1.4) and since Hl(r) =1,

v og®» . g®
1 2 k
Hr(z—)l H’I(L—>1 H:L—)l 1
HP = =G
H1(1) H{2) ka)
Thus, the proof is completed. O

2.2. Lemma. Let the nxk matrices Gi:)k, P and nxn matrices H, A be as in (1.4), (1.6), (1.8)
and (1.9), respectively. Then,

GUTY = A"HP.
Proof. From matrix multiplication and (1.3), we have
@1 [ EY B HY ]T Al O BY, .. B ]T
Generalizing (2.1), we derive
G2 = AGY),
By using the principle of mathematical induction, we write

r+1 r 1
22) GUiY =476
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From Lemma 2.1, the Eq. (2.2) is rewritten as
r+1 T
G = ATHP.
0

2 3. Corollary. Let the n X k matrices Gn v P and n x n matrices H, B, be as
n (1.5), (1.6), (1.8) and (1.10), respectively. Then,

GUrY =B, HP.

For example, taking n = 4,k = 3 and » = 5 in Corollary 2.3, we have

[ 275 1207 1691
4 12 12
©) 73 191 121
ae _| 3 6 3 _
4,3 13 15 a7
22 2
| 1 1 1
11 1 9
(1 5 15 35 ‘1‘?2 1 1 1
o1 5 15 3 3 1 0 12 3 |
“lo o0 1 5 1100136_B5HP‘
2
00 0 1 1 4 10
1 0 0 0

2.4. Theorem. Let the nth hyperharmonic number of order r, H,(f), be as in (1.3).
Then, we have

n

9 =3 ntr—t-—1 (s)

Hy o = ( r—1 H
t=1

where r > 1 and s > 0.

Proof. Let the matrices Gf:?c and B, be as in (1.5) and (1.10), respectively. Then

r+s J+T72 s
L =HH, by = ( r—1 ) and gp =H;

where GS:ZS> = (gij) , Br = (bi;) and Gifl = (gij) . From Lemma 2.1 and Corollary 2.3,
we have G’Z:S) = BTG;S,L, Then

gnzzblj%l
j+r—2 g
_Z r—1 HyZin
— r—1 t

Since g11 = H( o) , the proof is completed. 0

Taking r = s in Theorem 2.4, we can write

n
(2r) _ n+r—t—1 ()
Hf 72( .1 .

t=1
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Also, taking r + s = 2 in Theorem 2.4, we have
23)  HY =8 =3"HY=>"H,
t=1 t=1

and

24) HP=HY=>"(n-t+1) % =(+1)(Hpp1 —1).

t=1

Therefore, from (2.3) and (2.4), for sum of the first n ordinary harmonic numbers, we
obtain

ZHt = (n + 1) (Hn+1 — 1) .

2.5. Theorem. Let the matriz G;TL be as in (1.5). Then

(r) _ 1, ’Lf n= O, 1 (mod 4)
det (G"’”> a { -1, if n=2,3 (mod4)

Proof. From Lemma 2.2, for k = n, we write

G\ =A"T'HP.

Then
det (Gﬁﬁ) = [det (A)]""* det (H) det (P).
Since
1, if n=0,1 (mod4)
det (H) = ,det (A) =1 and det (P) =1,
-1, if n=2,3 (mod4)
we have
)\ _ 1, if n= 07 1 (mod 4)
det (G"‘”) o { -1, if n=2,3 (mod4)

Taking n = 2 in Theorem 2.5, we have

(r) Hy Hy Y
det (G2,2) = g gty
1 1

and
HYY —H =1
where H"”) = 1. Since H{" = 3, thus we have

1+ 2r

H = 5
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