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Abstract

In this study, firstly we defined an n × k matrix, G
(r)
n,k, whose entries

consist of hyperharmonic numbers. Then we obtained relation between
Pascal matrices and Grn,k. Finally we calculated the determinant of
Grn,n.
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1. Introduction

For n > 0 and 1 ≤ i ≤ k, let define the order-k sequences be as following:

(1.1) gin =

k∑

j=1

cjg
i
n−j

with initial values gi1−k, g
i
2−k, . . . , g

i
0, where cj (1 ≤ j ≤ k) are constant coefficients, gin is

the nth term of ith sequence. Let the k × k matrix be as following:

(1.2) Gn =




g1n g2n . . . gkn
g1n−1 g2n−1 . . . gkn−1

...
...

...

g1n−k+1 g2n−k+1 · · · gkn−k+1




There have been many papers related to the sequences as in (1.1) [1, 2, 3, 4, 5]. In [1],
Kalman obtained a number of closed-form formulas for the generalized sequence by matrix
method.
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In [2], Er defined the order-k Fibonacci numbers as a sequence which satisfies the
recurrence (1.1) with the boundary conditions for 1 − k ≤ n ≤ 0

gin =

{
1, if i = 1 − n

0, otherwise
.

When k = 2 and cj = 1 (1 ≤ j ≤ k) , this reduces to the well-known conventional Fi-
bonacci numbers. Also, Er showed that

[
gin+1 gin . . . gin−k+2

]T
= C

[
gin gin−1 . . . gin−k+1

]T
,

where

C =




c1 c2 c3 · · · ck−1 ck
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
0 0 0 · · · 1 0



.

Then he obtained

Gn+1 = CGn,

where Gn is k × k matrix as in (1.2).
In [3], Karaduman showed that

Gn = Cn

and

det (Gn) =

{
(−1)n , if k is even

1, if k is odd

for cj = 1 (1 ≤ j ≤ k) .
In [4], Tasci and Kilic gave a new generalization of the Lucas numbers in matrices.

Also, they presented a relation between the generalized order-k Lucas numbers and Fi-
bonacci numbers. In [5], Fu and Zhou obtained some new results on matrices related to
Fibonacci and Lucas numbers.

The nth hyperharmonic number of order r, H
(r)
n , defined as: for n, r ≥ 1

(1.3) H(r)
n =

n∑

k=1

H
(r−1)
k

where H
(0)
n = 1

n
. From the definition of H

(r)
n , we have H

(r)
1 = 1, and H

(1)
n =

n∑
k=1

1
k

= Hn

where Hn is nth ordinary harmonic number. Also, hyperharmonic numbers have the

recurrence relation as follows: H
(r)
n = H

(r−1)
n +H

(r)
n−1.

In [6], Conway and Guy gave an equality as follows:

H(r)
n =

(
n+ r − 1
r − 1

)
(Hn+r−1 −Hr−1)

and in [7], Benjamin and et all. gave

(1.4) H(r)
n =

n∑

s=1

(
n+ r − s− 1

r − 1

)
1

s
.
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Let the n× k matrix be as following:

(1.5) G
(r)
n,k =




H
(r)
n H

(r+1)
n · · · H

(r+k−1)
n

H
(r)
n−1 H

(r+1)
n−1 · · · H

(r+k−1)
n−1

...
...

...

H
(r)
1 H

(r+1)
1 · · · H

(r+k−1)
1




where H
(r)
n is nth hyperharmonic number of order r defined as in (1.3). In Section 2, we

derive the relation between Pascal matrices and G
(r)
n,k. Also, we calculate the determinant

of G
(r)
n,n .

Now we give some preliminaries related to our study. The n × k Pascal and n × n
lower triangular Pascal matrices are respectively defined as

(1.6) P = (pij) =

(
i+ j − 2

j − 1

)
,

(1.7) PL = (qij) =

{ (
i−1
j−1

)
, if i ≥ j

0, otherwise
.

For example, the matrices P and PL of order 5 are

P =




1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70



, PL =




1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1




.

The matrices P and PL in (1.6) and (1.7) have the following properties [8, 9] :

(1) P = PLP
T
L ,where PTL is transpose of PL.

(2) Det(P ) = 1.

(3) P−1
L = diag [−1, 1,−1, . . . , (−1)n]PLdiag [−1, 1,−1, . . . , (−1)n].

(4) P−1 = diag [−1, 1,−1, . . . , (−1)n] PTL PL diag [−1, 1,−1, . . . , (−1)n].

Let the n× n matrices H and A be as

(1.8) H =




1
n

1
n−1

1
n−2

· · · 1
2

1

1
n−1

1
n−2

1
n−3

· · · 1 0

...
...

...
...

1
2

1 0 · · · 0

1 0 0 · · · 0




and

(1.9) A =




1 1 · · · 1
0 1 · · · 1
...

...
...

0 0 · · · 1


 .
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Then from the principle of mathematical induction on r , we have

(1.10) Ar = Br = (bij) =

{ (
j−i+r−1
r−1

)
, if i ≤ j

0, otherwise
.

Also, the determinants of A and H have the forms:

det (A) = 1

and

det (H) =

{
1, if n ≡ 0, 1 (mod 4)

−1, if n ≡ 2, 3 (mod 4)
.

2. The Main Results

2.1. Lemma. Let the n×k, n×n, n×k matrices G
(r)
n,k, H, P be as in (1.5), (1.8) and (1.6),

respectively. Then,

G
(1)
n,k = HP.

Proof. From matrix multiplication, we have

HP =




n∑
s=1

1
s

n∑
s=1

(n− s + 1) 1
s

n∑
s=1

(
n− s + 2

2

)
1
s

· · ·
n∑

s=1

(
n− s + k − 1

k − 1

)
1
s

n−1∑
s=1

1
s

n−1∑
s=1

(n− s) 1
s

n−1∑
s=1

(
n− s + 1

2

)
1
s

· · ·
n−1∑
s=1

(
n− s + k − 2

k − 1

)
1
s

.

.

.

.

.

.

.

.

.

.

.

.

2∑
s=1

1
s

2∑
s=1

(3 − s) 1
s

2∑
s=1

(
4 − s

2

)
1
s

· · ·
2∑

s=1

(
k − s + 1
k − 1

)
1
s

1 1 1 · · · 1




From (1.4) and since H
(r)
1 = 1,

HP =




H
(1)
n H

(2)
n · · · H

(k)
n

H
(1)
n−1 H

(2)
n−1 · · · H

(k)
n−1

...
...

...

H
(1)
1 H

(2)
1 · · · H

(k)
1




= G
(1)
n,k

Thus, the proof is completed. �

2.2. Lemma. Let the n×k matrices G
(r)
n,k, P and n×n matrices H, A be as in (1.4), (1.6), (1.8)

and (1.9), respectively. Then,

G
(r+1)
n,k = ArHP.

Proof. From matrix multiplication and (1.3), we have

(2.1)
[
H

(r+1)
n H

(r+1)
n−1 . . . H

(r+1)
1

]T
= A

[
H

(r)
n H

(r)
n−1 . . . H

(r)
1

]T
.

Generalizing (2.1), we derive

G
(r+1)
n,k = AG

(r)
n,k.

By using the principle of mathematical induction, we write

(2.2) G
(r+1)
n,k = ArG

(1)
n,k.
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From Lemma 2.1, the Eq. (2.2) is rewritten as

G
(r+1)
n,k = ArHP.

�

2.3. Corollary. Let the n × k matrices G
(r)
n,k, P and n × n matrices H, Br be as

in (1.5), (1.6), (1.8) and (1.10), respectively. Then,

G
(r+1)
n,k = BrHP.

For example, taking n = 4, k = 3 and r = 5 in Corollary 2.3, we have

G
(6)
4,3 =




275
4

1207
12

1691
12

73
3

191
6

121
3

13
2

15
2

17
2

1 1 1




=

=




1 5 15 35
0 1 5 15
0 0 1 5
0 0 0 1







1
4

1
3

1
2

1

1
3

1
2

1 0

1
2

1 0 0

1 0 0 0







1 1 1
1 2 3
1 3 6
1 4 10


 = B5HP.

2.4. Theorem. Let the nth hyperharmonic number of order r, H
(r)
n , be as in (1.3).

Then, we have

H(r+s)
n =

n∑

t=1

(
n+ r − t− 1

r − 1

)
H

(s)
t

where r ≥ 1 and s ≥ 0.

Proof. Let the matrices G
(r)
n,k and Br be as in (1.5) and (1.10), respectively. Then

g11 = H(r+s)
n , b1j =

(
j + r − 2

r − 1

)
and qj1 = H

(s)
n−j+1

where G
(r+s)
n,k = (gij) , Br = (bij) and G

(s)
n,k = (qij) . From Lemma 2.1 and Corollary 2.3,

we have G
(r+s)
n,k = BrG

(s)
n,k. Then

g11 =

n∑

j=1

b1jqj1

=

n∑

j=1

(
j + r − 2

r − 1

)
H

(s)
n−j+1

=

n∑

t=1

(
n+ r − t− 1

r − 1

)
H

(s)
t .

Since g11 = H
(r+s)
n , the proof is completed. �

Taking r = s in Theorem 2.4, we can write

H(2r)
n =

n∑

t=1

(
n+ r − t− 1

r − 1

)
H

(r)
t .
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Also, taking r + s = 2 in Theorem 2.4, we have

(2.3) H(2)
n = H(1+1)

n =

n∑

t=1

H
(1)
t =

n∑

t=1

Ht

and

(2.4) H(2)
n = H(2+0)

n =

n∑

t=1

(n− t+ 1)
1

t
= (n+ 1) (Hn+1 − 1) .

Therefore, from (2.3) and (2.4), for sum of the first n ordinary harmonic numbers, we
obtain

n∑

t=1

Ht = (n+ 1) (Hn+1 − 1) .

2.5. Theorem. Let the matrix G
(r)
n,k be as in (1.5). Then

det
(
G(r)
n,n

)
=

{
1, if n ≡ 0, 1 (mod 4)

−1, if n ≡ 2, 3 (mod 4)
.

Proof. From Lemma 2.2, for k = n, we write

G(r)
n,n = Ar−1HP.

Then

det
(
G(r)
n,n

)
= [det (A)]r−1 det (H) det (P ) .

Since

det (H) =

{
1, if n ≡ 0, 1 (mod 4)

−1, if n ≡ 2, 3 (mod 4)
, det (A) = 1 and det (P ) = 1,

we have

det
(
G(r)
n,n

)
=

{
1, if n ≡ 0, 1 (mod 4)

−1, if n ≡ 2, 3 (mod 4)
.

�

Taking n = 2 in Theorem 2.5, we have

det
(
G

(r)
2,2

)
=

∣∣∣∣∣
H

(r)
2 H

(r+1)
2

H
(r)
1 H

(r+1)
1

∣∣∣∣∣ = −1

and

H
(r+1)
2 −H

(r)
2 = 1

where H
(r)
1 = 1. Since H

(1)
2 = 3

2
, thus we have

H
(r)
2 =

1 + 2r

2
.
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