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Abstract

We offer a new approach to solving the initial value problem for the
wave equation in hyperbolic space in arbitrary dimensions. Our ap-
proach is based on the spectral analysis of the Laplace-Beltrami op-
erator in hyperbolic space and some structural formulae for rapidly
decreasing functions of this operator.
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1. Introduction

The n-dimentional hyperbolic space Hn can be realized as the set

(1.1) Hn = {z = (x1, . . . , xn−1, y) : −∞ < xj <∞ (1 ≤ j ≤ n− 1), 0 < y <∞}.
The Hn is a homogeneous space of the group

(1.2) G = SO+(1, n) =
{
g ∈ GL(n+ 1,R) : gTJg = J, det g = 1, g00 > 0

}
,

where GL(n + 1,R) is the group of all nonsingular real (n + 1) × (n + 1) matrices g =
[gjk]nj,k=0, J is the (n + 1) × (n + 1) diagonal matrix whose the first diagonal element
equals −1 and the remaining diagonal elements are all equal to 1; the symbol T stands
for the matrix transposition.

The group G = SO+(1, n) acts in Hn as follows: If g ∈ G, g = [gjk]nj,k=0 and
z = (x1, . . . , xn−1, y), then the point

gz = z′ = (x′1, . . . , x
′
n−1, y

′)

has the coordinates

(1.3) x′j =
(gj0 + gjn) |z|2 + 2

∑n−1
k=1 gjkxk + gj0 − gjn

cg |z|2 + 2
∑n−1
k=1 (g0k − gnk)xk + dg

(1 ≤ j ≤ n− 1),
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(1.4) y′ =
2y

cg |z|2 + 2
∑n−1
k=1 (g0k − gnk)xk + dg

,

where

|z|2 = x21 + . . .+ x2n−1 + y2,

cg = g00 + g0n − gn0 − gnn, dg = g00 + gnn − g0n − gn0.
The invariant (under the action of G) Riemannian metric ds2 and the invariant volume

element dv(z) associated with it have the form

(1.5) ds2 =
dx21 + . . .+ dx2n−1 + dy2

y2
, dv(z) =

dx1 · · · dxn−1dy

yn
.

Denote by L the invariant differential operator (Laplace-Beltrami operator)

(1.6) L = y2
(
∂2

∂x21
+ . . .+

∂2

∂x2n−1

)
+ yn

∂

∂y

(
1

yn−2

∂

∂y

)
.

An invariant of a pair of points, u(z, z′), we choose in the form

(1.7) u(z, z′) =
|z − z′|2
yy′

=
(x1 − x′1)2 + . . .+ (xn−1 − x′n−1)2 + (y − y′)2

yy′

so that u(gz, gz′) = u(z, z′) for all g ∈ G and z, z′ ∈ Hn. The non-Euclidean (hyperbolic)
distance ρ(z, z′) on Hn, generated by the metric ds2, has the form

(1.8) ρ(z, z′) = ln

∣∣z − z′
∣∣+ |z − z′|∣∣z − z′
∣∣− |z − z′| ,

where we put z = (x1, . . . , xn−1,−y) for z = (x1, . . . , xn−1, y). It follows from (1.7) and
(1.8) that

(1.9) u = 2 cosh ρ− 2 = 4 sinh2 ρ

2
.

The wave equation in the hyperbolic space Hn for a function

w(x1, . . . , xn−1, y, t) = w(z, t)

of n space variables x1, . . . , xn−1, y and the time t is given by

(1.10)
∂2w

∂t2
= L1w,

where

(1.11) L1 = L+

(
n− 1

2

)2

= y2
(
∂2

∂x21
+ . . .+

∂2

∂x2n−1

)
+yn

∂

∂y

(
1

yn−2

∂

∂y

)
+

(n− 1)2

4
.

Note that, as is indicated in [3, 4], the right form of the wave equation in hyperbolic
space should be Eq. (1.10) with the term (n − 1)2/4 because this equation without the
term (n− 1)2/4 does not satisfy Huygens’ principle. However, Eq. (1.10) with the term
(n − 1)2/4 satisfies Huygens’ principle, as the usual wave equation in Euclidean space,
when n is odd. Note also that the spectrum of the operator L defined by (1.6) fills the
interval (−∞,−(n − 1)2/4] whereas the spectrum of the operator L1 defined by (1.11)
fills the interval (−∞, 0].

In the Cauchy problem (initial value problem) one asks for a solution w(z, t) of (1.10)
defined for z ∈ Hn, t ≥ 0 that satisfies equation (1.10) for z ∈ Hn, t > 0 and the initial
conditions

(1.12) w(z, 0) = ϕ(z),
∂w(z, 0)

∂t
= ψ(z) (z ∈ Hn).
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Let us denote by w(z, t) = Nϕ(z, t) the solution of the problem

(1.13)
∂2w

∂t2
= L1w, z ∈ Hn, t > 0,

(1.14) w(z, 0) = ϕ(z),
∂w(z, 0)

∂t
= 0, z ∈ Hn.

It is easy to see that then the function

(1.15) w̃(z, t) =

∫ t

0

w(z, τ)dτ

is the solution of the problem

(1.16)
∂2w̃

∂t2
= L1w̃, z ∈ Hn, t > 0,

(1.17) w̃(z, 0) = 0,
∂w̃(z, 0)

∂t
= ϕ(z), z ∈ Hn.

Indeed, integrating (1.13) we get
∫ t

0

∂2w(z, τ)

∂τ2
dτ =

∫ t

0

L1w(z, τ)dτ = L1

∫ t

0

w(z, τ)dτ = L1w̃(z, t).

Hence

(1.18)
∂w(z, t)

∂t
− ∂w(z, 0)

∂t
= L1w̃(z, t) or

∂w(z, t)

∂t
= L1w̃(z, t),

by the second condition in (1.14). On the other hand, from (1.15),

(1.19)
∂w̃(z, t)

∂t
= w(z, t),

∂2w̃(z, t)

∂t2
=
∂w(z, t)

∂t
.

Comparing (1.18) and (1.19) we get equation (1.16). Besides,

w̃(z, 0) = 0,
∂w̃(z, 0)

∂t
= w(z, 0) = ϕ(z)

so that initial conditions in (1.17) are also satisfied.
Consequently, the solution w(z, t) of problem (1.10), (1.12) is represented in the form

w(z, t) = Nϕ(z, t) +

∫ t

0

Nψ(z, τ)dτ.

It follows that it is enough to know an explicit form of the solution Nϕ(z, t) of problem
(1.13), (1.14). It is known [3, 4] that

(1.20) Nϕ(z, t) =
1

2m+1πm

(
∂

∂t

1

sinh t

)m ∫

ρ(z,z′)=t
ϕ(z′)dSz′ if n = 2m+ 1,

(1.21)

Nϕ(z, t) =
1

2mπm

(
∂

∂t

1

sinh t

)m−1
∂

∂t

∫

ρ(z,z′)<t

ϕ(z′)dv(z′)√
2(cosh t− cosh ρ)

if n = 2m,

where z = (x1, . . . , xn−1, y), z′ = (x′1, . . . , x
′
n−1, y

′), ρ = ρ(z, z′) is the hyperbolic distance
of z from z′ defined by (1.8), dSz′ is the surface element of the sphere {z′ ∈ Hn : ρ(z, z′) =
t}, and dv(z′) is the volume element as defined in (1.5).

In the present paper, we give a new proof of formulae (1.20), (1.21) for the solution of
problem (1.13), (1.14). Our method of the proof is based on the spectral theory of the
Laplace-Beltrami operator. A similar method was recently applied by the author to the
wave equation in Euclidean space in [2].
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Note that in the case n = 1 problem (1.10), (1.12) becomes

(1.22)
∂2w

∂t2
= y

∂

∂y

(
y
∂w

dy

)
,

(1.23) w(y, 0) = ϕ(y),
∂w(y, 0)

∂t
= ψ(y),

where w = w(y, t), t ≥ 0, and y ∈ H1 = (0,∞). Making the change of variables

ξ = yet, η = ye−t, i.e. y =
√
ξη, t = ln

√
ξ

η
,

we transform Eq. (1.22) into

∂2w̃(ξ, η)

∂ξ∂η
= 0, where w̃(ξ, η) = w

(
√
ξη, ln

√
ξ

η

)
.

Hence w̃(ξ, η) = θ1(ξ)+θ2(η), where θ1, θ2 are arbitrary differentiable functions. Return-
ing to the old variables we get that the general solution of Eq. (1.22) has the form

w(y, t) = θ1(yet) + θ2(ye−t).

Using this we find easily that the solution of problem (1.22), (1.23) is

w(y, t) =
ϕ(yet) + ϕ(ye−t)

2
+

1

2

∫ yet

ye−t
ψ(y′)dy′.

The paper is organized as follows. In Section 2, we describe the structure of arbitrary
rapidly decreasing function of the Laplace-Beltrami operator, showing that it is an inte-
gral operator and giving an explicit formula for its kernel. Next we use these results in
Section 3 to derive the explicit representation formulae (1.20) and (1.21) for the classical
solution to the initial value problem (1.13), (1.14). The final section is an appendix and
contains some additional material about the hyperbolic space.

2. Structure of arbitrary function of the Laplace-Beltrami oper-
ator

We denote by L2(Hn, dv) the Hilbert space of all complex-valued measurable functions
f(z) defined on Hn such that

∫

Hn
|f(z)|2 dv(z) <∞,

with the inner product

(f1, f2) =

∫

Hn
f1(z)f2(z)dv(z),

where dv(z) is the invariant volume element defined in (1.5). Let A be the selfadjoint
positive operator obtained as the closure of the symmetric operator A′ determined in the
Hilbert space L2(Hn, dv) by the differential expression

(2.1) −L1 = −y2
(
∂2

∂x21
+ . . .+

∂2

∂x2n−1

)
− yn ∂

∂y

(
1

yn−2

∂

∂y

)
−
(
n− 1

2

)2

on the domain of definition D(A′) = C∞0 (Hn) that is the set of all infinitely differentiable
functions on Hn with compact (with respect to the hyperbolic distance) support. Let
Eµ denote the resolution of the identity (the spectral projection) for A :

Af =

∫ ∞

0

µdEµf, f ∈ D(A).
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Next, let h(t) be any infinitely differentiable even function on the axis −∞ < t <∞ with
compact support and

(2.2) h̃(λ) =

∫ ∞

−∞
h(t)eiλtdt

its Fourier transform. Note that the function h̃(λ) tends to zero as |λ| → ∞ (λ ∈ R)

faster than any negative power of |λ| . Consider the operator h̃(
√
A) defined according to

the general theory of selfadjoint operators (see [1]):

(2.3) h̃(
√
A)f =

∫ ∞

0

h̃(
√
µ)dEµf, f ∈ L2(Hn, dv).

The following theorem describes the structure of the operator h̃(
√
A) showing that it

is an integral operator and giving an explicit fomula for its kernel in terms of the function
h(t).

2.1. Theorem. The operator h̃(
√
A) is an integral operator

(2.4) h̃(
√
A)f(z) =

∫

Hn
K(z, z′)f(z′)dv(z′), f ∈ L2(Hn, dv).

Further, there is a smooth function k(t) defined on the interval 0 ≤ t <∞ such that

(2.5) K(z, z′) = k(u(z, z′)),

where u(z, z′) is the invariant of a pair of points given in (1.7). The function k(t) depends
on the function h(t) as follows. If we set

(2.6) Q(t) = h

(
cosh−1

(
1 +

t

2

))
, i.e. Q(et + e−t − 2) = h(t), 0 ≤ t <∞,

then

(2.7) k(t) =

{
(−1)m

πm
Q(m)(t) if n = 2m+ 1,

(−1)m

πm

∫∞
t

Q(m)(η)√
η−t dη if n = 2m,

where Q(m)(t) denotes the m-th order derivative of Q(t). If supph(t) ⊂ (−a, a), then
suppk(t) ⊂ [0, 4 sinh2 a

2
). For any solution ψ(z, λ) of the equation

(2.8) −L1ψ(z, λ) = λ2ψ(z, λ)

the equality

(2.9)

∫

Hn
k(u(z, z′))ψ(z′, λ)dv(z′) = h̃(λ)ψ(z, λ)

holds, where −L1 has the form (2.1).

Proof. First we consider the case n = 1. In this case, the statements of the theorem take

the following form: the operator h̃(
√
A) is an integral operator of the form

(2.10) h̃(
√
A)f(y) =

∫ ∞

0

h

(
ln
y

y′

)
f(y′)

dy′

y′
,

and for any solution ψ(y, λ) of the equation

(2.11) −y d
dy

(
y
d

dy
ψ(y, λ)

)
= λ2ψ(y, λ)

the equality

(2.12)

∫ ∞

0

h

(
ln
y

y′

)
ψ(y′, λ)

dy′

y′
= h̃(λ)ψ(y, λ)

holds.
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To prove these statements note that, in the case n = 1, the operator A is generated
in the Hilbert space L2[(0,∞), dy/y] by the operation −(yd/dy)2 and the operator A1/2

by the operation iyd/dy. The resolvent Rµ = (A−µI)−1 of the operator A has the form

Rµf(y) =
i

2
√
µ

∫ ∞

0

ei|ln y−ln y′|√µf(y′)
dy′

y′
,

while the spectral projection Eµ of the operator A has the form

Eµf(y) =

∫ ∞

0

sin
√
µ(ln y − ln y′)

π(ln y − ln y′)
f(y′)

dy′

y′
, 0 ≤ µ <∞,

Eµ = 0 for µ < 0.

Therefore,

h̃(
√
A)f(y) =

∫ ∞

0

h̃(
√
µ)dEµf(y)

=

∫ ∞

0

h̃(
√
µ)

{∫ ∞

0

cos
√
µ(ln y − ln y′)

2π
√
µ

f(y′)
dy′

y′

}
dµ

=

∫ ∞

0

{
1

π

∫ ∞

0

h̃(λ) cosλ(ln y − ln y′)dλ

}
f(y′)

dy′

y′
=

∫ ∞

0

h

(
ln
y

y′

)
f(y′)

dy′

y′
,

where we have used the inversion formula for the Fourier cosine transform. Therefore,
(2.10) is proved. To prove (2.12) note that the general solution of Eq. (2.11) is

ψ(y, λ) =

{
c1 cos(λ ln y) + c2 sin(λ ln y) if λ 6= 0,

c1 + c2 ln y if λ = 0,

where c1 and c2 are arbitrary constants. Then, we have, for λ 6= 0,
∫ ∞

0

h

(
ln
y

y′

)
ψ(y′, λ)

dy′

y′

= c1

∫ ∞

0

h

(
ln
y

y′

)
cos(λ ln y′)

dy′

y′
+ c2

∫ ∞

0

h

(
ln
y

y′

)
sin(λ ln y′)

dy′

y′

= c1

∫ ∞

−∞
h(t) cosλ(ln y − t)dt+ c2

∫ ∞

−∞
h(t) sinλ(ln y − t)dt

= c1

∫ ∞

−∞
h(t)[cos(λ ln y) cosλt+ sin(λ ln y) sinλt]dt

+c2

∫ ∞

−∞
h(t)[sin(λ ln y) cosλt− sinλt cos(λ ln y)]dt

= c1 cos(λ ln y)

∫ ∞

−∞
h(t) cosλtdt+ c2 sin(λ ln y)

∫ ∞

−∞
h(t) cosλtdt

= [c1 cos(λ ln y) + c2 sin(λ ln y)]

∫ ∞

−∞
h(t) cosλtdt = ψ(y, λ)h̃(λ),

where we have used the fact that the function h(t) is even and therefore
∫ ∞

−∞
h(t) sinλtdt = 0.

The same reslut can be obtained similarly for λ = 0. Thus, (2.12) is also proved.
Now we consider the case n ≥ 2. We shall use the known [5] integral representation

Rµf(z) =

∫

Hn
r(z, z′;µ)f(z′)dv(z′),
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of the resolvent Rµ = (A− µI)−1 of the operator A, where the kernel r(z, z′;µ) is given
by

(2.13) r(z, z′;µ) =

{
ω
(
u(z, z′); n−1

2
+ i
√
µ
)
, Imµ < 0,

ω
(
u(z, z′); n−1

2
− i√µ

)
, Imµ > 0,

in which u(z, z′) is the invariant of a pair of points defined by (1.7) and the function
ω(u; s) is given by the classical integral

ω(u; s) =
Γ(s)

2nπ
n
2 Γ
(
s− n

2
+ 1
)
∫ 1

0

[t(1− t)]s−n2
(
t+

u

4

)−s
dt,

which converges absolutely for u > 0 and complex s = σ + iτ with σ > n−2
2

; Γ(s) is the
gamma-function. Next, according to the general spectral ıheory of selfadjoint operators
[1, p. 150, Formula (11)], we have

dEµf(z) =
1

2πi
(Rµ+i0 −Rµ−i0)f(z)dµ.

Therefore from (2.3) it follows that the representation (2.4) holds with

(2.14) K(z, z′) =
1

2πi

∫ ∞

0

h̃(
√
µ)[r(z, z′;µ+ i0)− r(z, z′;µ− i0)]dµ.

Now the representation (2.5), which expresses that K(z, z′) is a function of u(z, z′),
follows from (2.14) by (2.13).

To prove (2.9) we use (2.14) by virtue of which we have

(2.15)

∫

Hn
k(u(z, z′))ψ(z′, λ)dv(z′) =

∫

Hn
K(z, z′)ψ(z′, λ)dv(z′)

= lim
ε→+0

∫

Hn

{
1

2πi

∫ ∞

0

h̃(
√
µ)[r(z, z′;µ+ iε)− r(z, z′;µ− iε)]dµ

}
ψ(z′, λ)dv(z′)

= ψ(z, λ) lim
ε→+0

ε

π

∫ ∞

0

h̃(
√
µ)

(µ− λ2)2 + ε2
dµ = ψ(z, λ)h̃(λ).

Here we have used the fact, as it follows from (2.8), that

(−L1 − ζ)ψ(z, λ) = (λ2 − ζ)ψ(z, λ),

that is,

ψ(z, λ) = (λ2 − ζ)(−L1 − ζ)−1ψ(z, λ),

and therefore∫

Hn
r(z, z′; ζ)ψ(z′, λ)dv(z′) =

1

λ2 − ζ ψ(z, λ).

Finally, to deduce the explicit formulae (2.6), (2.7), we take

ψ(z, λ) = y
n−1
2

+iλ

in (2.9):

∫

Hn
k

(
|z − z′|2
yy′

)
y′
n−1
2

+iλ

dv(z′) = h̃(λ)y
n−1
2

+iλ.

Hence, putting x = (x1, . . . , xn−1) and x′ = (x′1, . . . , x
′
n−1), we can write

(2.16)

∫

Hn
k

(
(y − y′)2
yy′

+
|x− x′|2
yy′

)
y′
n−1
2

+iλ dy′

y′n
dx′ = h̃(λ)y

n−1
2

+iλ.
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If we set

(2.17)
y

y′
+
y′

y
− 2 = η,

then the left-hand side of (2.16) equals

∫ ∞

0

{∫

Rn−1

k

(
η +
|x− x′|2
yy′

)
dx′
}
y′
iλ−n+1

2
dy′.

On the other hand,

∫

Rn−1

k

(
η +
|x− x′|2
yy′

)
dx′ =

∫ ∞

0

{∫

|x−x′|=r
k

(
η +
|x− x′|2
yy′

)
dS

}
dr

=

∫ ∞

0

k

(
η +

r2

yy′

){∫

|x−x′|=r
dS

}
dr = σn−1

∫ ∞

0

rn−2k

(
η +

r2

yy′

)
dr

=
1

2
σn−1(yy′)

n−1
2

∫ ∞

η

(t− η)
n−3
2 k(t)dt,

where

σn =
2π

n
2

Γ
(
n
2

)

is the surface area of the (n−1)-dimensional unit sphere in Rn (Γ is the gamma function)
and dS denotes the surface element of the sphere {x′ ∈ Rn−1 : |x− x′| = r}. Therefore
setting

(2.18) Q(η) =
1

2
σn−1

∫ ∞

η

(t− η)
n−3
2 k(t)dt,

we get that (2.16) takes the form
∫ ∞

0

Q(η)y′
iλ−1

dy′ = h̃(λ)yiλ.

Substituting here the expression of η given in (2.17) and making then the change of
variables y′ = yet, we obtain

∫ ∞

−∞
Q(e−t + et − 2)eiλtdt = h̃(λ) =

∫ ∞

−∞
h(t)eiλtdt.

Hence (2.6) follows. Further, it is not diffucult to check that the formula (2.18) for n ≥ 2
is equivalent to (2.7), see [2, Appendix].

Since h(t) is smooth and has a compact support, it follows from (2.6), (2.7) that the
function k(t) also is smooth and has a compact support; more precisely, if suppg(t) ⊂
(−a, a), then suppk(t) ⊂ [0, 4 sinh2 a

2
). This implies, in particular, convergence of the

integral in (2.9) for each fixed z. The theorem is proved. �

3. Derivation of formulae (1.20), (1.21)

Consider the Cauchy problem (1.13), (1.14):

(3.1)
∂2w

∂t2
= L1w, z ∈ Hn, t > 0,

(3.2) w(z, 0) = ϕ(z),
∂w(z, 0)

∂t
= 0, z ∈ Hn,
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where w = w(z, t), t ≥ 0, z = (x1, . . . , xn−1, y) ∈ Hn, ϕ(z) ∈ C∞0 (Hn). The solution of
problem (3.1), (3.2) can be written in the form

w(z, t) = cos
(
t
√
A
)
ϕ(z) =

∫ ∞

0

cos (t
√
µ) dEµϕ(z).

Multiply the last equation by 2h(t) and integrate with respect to t from 0 to ∞ to get

2

∫ ∞

0

h(t)w(z, t)dt =

∫ ∞

0

h̃(
√
µ)dEµϕ(z) = h̃(

√
A)ϕ(z).

Thus, we have obtained the identity

(3.3) h̃(
√
A)ϕ(z) = 2

∫ ∞

0

h(t)w(z, t)dt,

where h(t) is any infinitely differentiable even function on the axis −∞ < t < ∞ with

compact support, h̃(λ) is its Fourier transform (2.2), ϕ(z) ∈ C∞0 (Hn), and w(z, t) is the
solution of the Cauchy problem (3.1), (3.2). Further, by Theorem 2.1 we can rewrite
(3.3) in the form

(3.4)

∫

Hn
k(u(z, z′))ϕ(z′)dv(z′) = 2

∫ ∞

0

h(t)w(z, t)dt,

where the function k(t), 0 ≤ t < ∞, is determined from the function h(t) by means of
formulae (2.6), (2.7).

Next we will transform the left-hand side of (3.4) using formulae (2.6), (2.7).
First we consider the case n = 1. In this case, (3.4) takes the form

(3.5)

∫ ∞

0

k

(
(y − y′)2
yy′

)
ϕ(y′)

dy′

y′
= 2

∫ ∞

0

h(t)w(y, t)dt

and from (2.6), (2.7) we have

k(et + e−t − 2) = Q(et + e−t − 2) = h(t).

Therefore, making the change of variables y′ = yet and taking into account the evenness
of the function h(t), we can write

∫ ∞

0

k

(
(y − y′)2
yy′

)
ϕ(y′)

dy′

y′
=

∫ ∞

−∞
k(et + e−t − 2)ϕ(yet)dt

=

∫ ∞

−∞
h(t)ϕ(yet)dt =

∫ ∞

0

h(t)[ϕ(yet) + ϕ(ye−t)]dt.

Substituting this in the left-hand side of (3.5), we obtain
∫ ∞

0

h(t)[ϕ(yet) + ϕ(ye−t)]dt = 2

∫ ∞

0

h(t)w(y, t)dt.

Hence, by the arbitrariness of the smooth even funciton h(t) with compact support, we
get

w(y, t) =
ϕ(yet) + ϕ(ye−t)

2
.

Further assume that n ≥ 2. Passing to the geodesic polar coordinates with center at
z and setting ρ(z, z′) = t, where ρ(z, z′) is the hyperbolic distance between the points z
and z′ defined by (1.8), and taking into account (1.9), we have

∫

Hn
k(u(z, z′))ϕ(z′)dv(z′) =

∫ ∞

0

k(2 cosh t− 2)

{∫

ρ(z,z′)=t
ϕ(z′)dSz′

}
dt,
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where dSz′ is the surface element of the sphere {z′ ∈ Hn : ρ(z, z′) = t}. Let us set

(3.6) Pϕ(z, t) =

∫

ρ(z,z′)=t
ϕ(z′)dSz′ = (sinhn−1 t)

∫

|ω|=1

ϕ(z, t, ω)dSω,

where to write the second equality we have passed to the spherical (geodesic) coordinates
(t, ω) with origin z, ω ∈ Rn, |ω| = 1; and used dSz′ = sinhn−1 tdSω in which dSω is the
surface element on the unit sphere {ω ∈ Rn : |ω| = 1}. Then we can rewrite the last
formula in the form∫

Hn
k(u(z, z′))ϕ(z′)dv(z′) =

∫ ∞

0

k(2 cosh t− 2)Pϕ(z, t)dt.

Therefore (3.4) becomes

(3.7)

∫ ∞

0

k(2 cosh t− 2)Pϕ(z, t)dt = 2

∫ ∞

0

h(t)w(z, t)dt.

Consider the cases of odd and even n separately.
Let n = 2m+ 1 (m ∈ N). Then, by (2.7) we have

k(2 cosh t− 2) =
(−1)m

πm
Q(m)(2 cosh t− 2)

and it follows from (2.6) (by successive differentiation) that

(3.8) Q(m)(2 cosh t− 2) =

(
1

2 sinh t

∂

∂t

)m
h(t).

Therefore

k(2 cosh t− 2) =
(−1)m

2mπm

(
1

sinh t

∂

∂t

)m
h(t)

and (3.7) takes the form

(3.9)
(−1)m

2mπm

∫ ∞

0

{(
1

sinh t

∂

∂t

)m
h(t)

}
Pϕ(z, t)dt = 2

∫ ∞

0

h(t)w(z, t)dt.

Further, integrating m times by parts, we get
∫ ∞

0

{(
1

sinh t

∂

∂t

)m
h(t)

}
Pϕ(z, t)dt

= R(z, t)
∣∣t=∞
t=0 + (−1)m

∫ ∞

0

h(t)

(
∂

∂t

1

sinh t

)m
Pϕ(z, t)dt,

where

(3.10) R(z, t) =

m∑

k=1

(−1)k−1

sinh t

{(
1

sinh t

∂

∂t

)m−k
h(t)

}(
∂

∂t

1

sinh t

)k−1

Pϕ(z, t)

=

m∑

k=1

(−1)k−1

sinh t

{(
1

sinh t

∂

∂t

)m−k
h(t)

}

×
(
∂

∂t

1

sinh t

)k−1

sinh2m t

∫

|ω|=1

ϕ(z, t, ω)dSω.

Since h(t) is identically zero for large values of t, we have from (3.10) that R(z,∞) = 0.
Also, it follows directly from (3.10) that R(z, 0) = 0. Therefore, (3.9) becomes

(3.11)
1

2mπm

∫ ∞

0

h(t)

(
∂

∂t

1

sinh t

)m
Pϕ(z, t)dt = 2

∫ ∞

0

h(t)w(z, t)dt.
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Since in (3.11) h(t) is an arbitrary smooth even function with compact support, we obtain
that

w(z, t) =
1

2m+1πm

(
∂

∂t

1

sinh t

)m
Pϕ(z, t).

This coincides with (1.20) by (3.6).
Now let us consider the case n = 2m (m ∈ N). In this case, by (2.7) we have

k(2 cosh r − 2) =
(−1)m

πm

∫ ∞

2 cosh r−2

Q(m)(η)√
η − (2 cosh r − 2)

dη

=
(−1)m

πm

∫ ∞

r

Q(m)(2 cosh t− 2)2 sinh t√
2(cosh t− cosh r)

dt

and therefore∫ ∞

0

k(2 cosh r − 2)Pϕ(z, r)dr

=
(−1)m

πm

∫ ∞

0

{∫ ∞

r

Q(m)(2 cosh t− 2)2 sinh t√
2(cosh t− cosh r)

dt

}
Pϕ(z, r)dr

=
(−1)m

πm

∫ ∞

0

{∫ ∞

r

Q(m)(2 cosh t− 2)2 sinh t√
2(cosh t− cosh r)

dt

}{∫

ρ(z,z′)=r
ϕ(z′)dSz′

}
dr.

Next, we have
{∫ ∞

r

Q(m)(2 cosh t− 2)2 sinh t√
2(cosh t− cosh r)

dt

}{∫

ρ(z,z′)=r
ϕ(z′)dSz′

}

=

∫ ∞

r

Q(m)(2 cosh t− 2)2 sinh t

[∫

ρ(z,z′)=r

ϕ(z′)dSz′√
2[cosh t− cosh ρ(z, z′)]

]
dt.

Therefore∫ ∞

0

k(2 cosh r − 2)Pϕ(z, r)dr

=
(−1)m

πm

∫ ∞

0

Q(m)(2 cosh t− 2)2 sinh t

×
{∫ t

0

[∫

ρ(z,z′)=r

ϕ(z′)dSz′√
2[cosh t− cosh ρ(z, z′)]

]
dr

}
dt.

Hence, setting

(3.12) Hϕ(z, t) :=

∫ t

0

[∫

ρ(z,z′)=r

ϕ(z′)dSz′√
2[cosh t− cosh ρ(z, z′)]

]
dr

=

∫

ρ(z,z′)<t

ϕ(z′)dv(z′)√
2[cosh t− cosh ρ(z, z′)]

,

we get
∫ ∞

0

k(2 cosh r−2)Pϕ(z, r)dr =
(−1)m

πm

∫ ∞

0

Q(m)(2 cosh t−2)2(sinh t)Hϕ(z, t)dt.

Substituting this in the left-hand side of (3.7) (beforehand replacing t by r in the left-hand
side of (3.7)), we obtain

(−1)m

πm

∫ ∞

0

Q(m)(2 cosh t− 2)2(sinh t)Hϕ(z, t)dt = 2

∫ ∞

0

h(t)w(z, t)dt
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or, using (3.8),

(3.13)
(−1)m

2m−1πm

∫ ∞

0

{(
1

sinh t

∂

∂t

)m
h(t)

}
(sinh t)Hϕ(z, t)dt = 2

∫ ∞

0

h(t)w(z, t)dt.

Further, integrating m times by parts, we get
∫ ∞

0

{(
1

sinh t

∂

∂t

)m
h(t)

}
(sinh t)Hϕ(z, t)dt

= L(z, t)
∣∣t=∞
t=0 + (−1)m

∫ ∞

0

h(t)

(
∂

∂t

1

sinh t

)m
(sinh t)Hϕ(z, t)dt,

where

(3.14) L(z, t) =

m∑

k=1

(−1)k−1

{(
1

sinh t

∂

∂t

)m−k
h(t)

}(
∂

∂t

1

sinh t

)k−1

(sinh t)Hϕ(z, t).

Since h(t) is identically zero for large values of t, we have from (3.14) that L(z,∞) = 0.
Also, using the expression of Hϕ(z, t),

Hϕ(z, t) =

∫ t

0

[∫

ρ(z,z′)=r

ϕ(z′)dSz′√
2[cosh t− cosh ρ(z, z′)]

]
dr

=

∫ t

0

sinh2m−1 r

[∫

|ω|=1

ϕ(z, r, ω)dSω√
2(cosh t− cosh r)

]
dr

=

∫ t

0

sinh2m−1 r√
2[cosh t− cosh r)]

[∫

|ω|=1

ϕ(z, r, ω)dSω

]
dr

=

∫ t

0

[2(cosh t− cosh ξ)]2m−2

[∫

|ω|=1

ϕ(z,
√

2(cosh t− cosh ξ), ω)dSω

]
dξ,

we can check directly from (3.14) that L(z, 0) = 0. Therefore, (3.13) becomes

(3.15)
1

2m−1πm

∫ ∞

0

h(t)

(
∂

∂t

1

sinh t

)m
(sinh t)Hϕ(z, t)dt = 2

∫ ∞

0

h(t)w(z, t)dt.

Since in (3.15) h(t) is an arbitrary smooth even function with compact support, we obtain
that

w(z, t) =
1

2mπm

(
∂

∂t

1

sinh t

)m
(sinh t)Hϕ(z, t)

=
1

2mπm

(
∂

∂t

1

sinh t

)m−1
∂

∂t
Hϕ(z, t).

This coincides with (1.21) by (3.12).

4. Appendix

Note that the group

O(1, n) =
{
g ∈ GL(n+ 1,R) : gtJg = J

}

consists of four connected components while the group

SO(1, n) =
{
g ∈ GL(n+ 1,R) : gtJg = J, det g = 1

}

consists of two. By the condition g00 > 0 in (1.2) there is selected the connected compo-
nent SO+(1, n) containing the identity matrix.
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With a view to an explanation of the formulae in (1.3), (1.4) note that the set Hn

defined by (1.1) is only one of possible models of the n-dimensional hyberbolic space.
Another its model is the set

Ln = {ξ = (ξ0, ξ1, . . . , ξn) ∈ Rn+1 : (ξ, ξ)1 = −1, ξ0 ≥ 1},
where (ξ, η)1 = −ξ0η0 + ξ1η1 + . . . + ξnηn = (Jξ, η). Thus, Ln is a quadratic surface
(hemisphere of imaginary radius i) in the (n + 1)-dimensional Minkowski space Rn+1

1

with the Riemannian metric

ds2 = −dξ20 + dξ21 + . . .+ dξ2n

(this metric is positive definite on Ln). In other words, Ln presents one of the two sheets
of the hyperboloid ξ20 = 1 + ξ21 + . . .+ ξ2n in Rn+1, namely, the one for which ξ0 ≥ 1. Each
element g ∈ SO+(1, n) acts on Ln in a natural way: If ξ ∈ Ln then the image gξ of the
point ξ under the transformation g is computed as the product of the matrix g with the
column vector ξ (i.e., g acts as a linear transformation).

The models Ln and Hn are isometric to each other. The isometry is realized by the
mapping

χ : Ln → Hn, ξ = (ξ0, ξ1, . . . , ξn) 7−→ z = (x1, . . . , xn−1, y),

where

xj =
ξj

ξ0 − ξn
(1 ≤ j ≤ n− 1), y =

1

ξ0 − ξn
.

The inverse mapping χ−1 is given by the formulae

ξ0 =
|z|2 + 1

2y
, ξj =

xj
y

(1 ≤ j ≤ n− 1), ξn =
|z|2 − 1

2y
.

Now it is natural to define the action of the group SO+(1, n) on Hn by the formula:
If g = [gjk]nj,k=0 ∈ SO+(1, n) and z ∈ Hn, then

z′ = gz = (χgχ−1)(z).

Hence formulae (1.3), (1.4) follow.
Let us bring the well-known specializations of the cases n = 1, n = 2, and n = 3.
(i) For n = 1, the (one-dimensional) hyperbolic space H1 consists of the positive

semi-axis

H1 = {y : 0 < y <∞).

The group of motions SO+(1, 1) consists of the matrices

g =

[
coshψ sinhψ
sinhψ coshψ

]
, −∞ < ψ <∞.

The action formula takes the form

g : y 7−→ y′, y′ = eψy.

The group SO+(1, 1) is isomorphic to the (multiplicative) group of positive real numbers
R+. The isomorphism is given by the mapping

Φ : SO+(1, 1)→ R+, g =

[
coshψ sinhψ
sinhψ coshψ

]
7−→ α = eψ.

An element (number) α ∈ R+ acts on H1 by the formula: α : y 7−→ y′, y′ = αy. The
invariant Riemannian metric, volume element, Laplace-Beltrami operator, invariant of a
pair of points, and hyperbolic distance on H1 are

ds2 =
dy2

y2
, dv(y) =

dy

y
, L = y

d

dy

(
y
d

dy

)
= y2

d2

dy2
+ y

d

dy
,
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u(y, y′) =
|y − y′|2
yy′

, ρ(y, y′) = ln
y + y′ + |y − y′|
y + y′ − |y − y′| =

∣∣ln y − ln y′
∣∣ ,

respectively.
(ii) For n = 2, the hyperbolic plane H2 is realized as the upper half-plane

H2 = {z = x+ iy ∈ C : −∞ < x <∞, 0 < y <∞}

in the complex plane C. The group SO+(1, 2) is isomorphic to the factor group PSL(2,R) =
SL(2,R)/{±I2}, where SL(2,R) is the group of real 2 × 2 matrices with determinat 1.
One does not usually distinguish between an element g ∈ PSL(2,R) and its preimages
±g in the group SL(2,R), since this does not lead to any misunderstanding. The element

g =

[
a b
c d

]
∈ SL(2,R)

acts on H2 by a linear-fractional transformation

g : z 7−→ z′, z′ = gz =
az + b

cz + d
.

The matrices g and −g are identified, since they define the same transformation of H2.
The main invariant objects associated with the space H2 take the form

ds2 =
dx2 + dy2

y2
, dv(z) =

dxdy

y2
, L = y2

(
∂2

∂x2
+

∂2

∂y2

)
,

u(z, z′) =
|z − z′|2
yy′

, ρ(z, z′) = ln

∣∣z − z′
∣∣+ |z − z′|∣∣z − z′
∣∣− |z − z′| ,

where the bar over a complex number denotes the complex conjugate.
(iii) For n = 3, three-dimensional hyperbolic space H3 is realized as the upper half-

space in three-dimensional Euclidean space,

H3 = {z = (w, y) : w = x1 + ix2 ∈ C, 0 < y <∞}.

The group SO+(1, 3) is isomorphic to the factor group PSL(2,C) = SL(2,C)/{±I2},
where SL(2,C) is the group of complex 2× 2 matrices with determinat one. The group
PSL(2,C) acts on H3 as follows: If

g =

[
a b
c d

]
∈ SL(2,C)

and z = (w, y), then the point gz = z′ = (w′, y′) has coordianates

w′ =
(aw + b)(cw + d) + acy2

|cw + d|2 + |c|2 y2
, y′ =

y

|cw + d|2 + |c|2 y2
.

The main invariant objects associated with the space H3 take the form

ds2 =
dx21 + dx22 + dy2

y2
, dv(z) =

dx1dx2dy

y3
, u(z, z′) =

|z − z′|2
yy′

,

L = y2
(
∂2

∂x21
+

∂2

∂x22
+

∂2

∂y2

)
− y ∂

∂y
, ρ(z, z′) = ln

∣∣z − z′
∣∣+ |z − z′|∣∣z − z′
∣∣− |z − z′| ,

where |z − z′|2 = (x1 − x′1)2 + (x2 − x′2)2 + (y − y′)2 and z = (w,−y) for z = (w, y),
z′ = (w′, y′).
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