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Abstract

Let R be an arbitrary ring with identity and M be a right R-module
with S = End(MR). Let f € S. f is called m-morphic if M/ f™ (M) =
ru(f™) for some positive integer n. A module M is called w-morphic
if every f € S is m-morphic. It is proved that M is w-morphic and
image-projective if and only if S is right m-morphic and M generates its
kernel. S is unit-w-regular if and only if M is w-morphic and 7-Rickart
if and only if M is m-morphic and dual 7-Rickart. M is m-morphic and
image-injective if and only if S is left 7-morphic and M cogenerates its
cokernel.
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1. Introduction

Throughout this paper all rings have an identity, all modules considered are unital
right modules and all ring homomorphisms are unital (unless explicitly stated otherwise).

A ring R is said to be strongly w-regular (w-regular, right weakly m-regular) if for
every element = € R there exists an integer n > 0 such that " € z" "' R (respectively
z" € " Rx", 2" € 2" Rz™R). It is called unit-w-regular if for every a € R, there exist a
unit element € R and a positive integer n such that a" = a"za™. In the case of n =1
there exists a unit x such that a = axa for all a € R, then R is unit regular. Clearly, a
strongly m-regular ring is a w-regular ring.

We say also that the ring R is (von Neumann) regular if for each a € R there exists
x € R such that a = aza for some element x in R, that is, a is regular.

A module M is said to satisfy Fitting’s lemma if, for all f € S, there exists an integer
n > 1, depending on f, such that M = f"M® Ker(f"). Hence a module satisfies
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Fitting’s lemma if and only if its endomorphism ring is strongly 7-regular (see for detail
).

Let M be a module. It is a well-known theorem of Erlich [2] that a map « € S is unit
regular if and only if it is regular and M/a(M) = ker(a)). We say that the ring R is left
morphic if every element a satisfies R/Ra = [(a).

In what follows, by Z, Q, Z, and Z/nZ we denote, respectively, integers, rational

numbers, the ring of integers modulo n and the Z-module of integers modulo n.
We also denote ry(I) = {m € M | Im = 0} where I is any subset of S;
rr(N) = {r € R| Nr = 0} and Ig(N) = {f € S| fN = 0} where N is any subset
of M. The maps between modules are assumed to be homomorphisms unless otherwise
stated in the context.

2. Morphic Modules and m-Morphic Modules

Let M be a module with S = End(MRg), the ring of endomorphisms of the right R-
module M and 1 be the identity endomorphism of M. Let f € S. f is called morphic if
M/f(M) = ra(f). The module M is called morphic if every f € S is morphic. Morphic
modules are studied in [5]. An endomorphism f € S is called w-morphic if M/ f" (M) =
ra(f™) for some positive integer n. The module M is called w-morphic if every f € S
is m-morphic. In the sequel S will stand for End(Mg) for the right R-module M is
considered.

It is clear that every morphic module is w-morphic.

2.1. Example. There exists a m-morphic module which is not morphic.

Let e;; denote 3 x 3 matrix units. Consider the ring
R = {(e11 + e22 + e33)a + e12b + e1zc + ea3d | a, b, ¢,d € Zs} and the right R-module M =
Zo X Lo X Zs2 where right R-module operation is given by

(z,y,2)((e11 + e22 + e33)a + e12b + e1zc + e23d) = (za, xb + ya, zc + yd + za)

where (z,y,2) € M, (e11 + ea2 + e33)a + e12b + e13c + e23d € R. Let f € S = End(M).
It is a routine check that there exist x, z € Zs such that

f(1,0,0) = (z,0,2), f(0,1,0) = (0,z,0), f(0,0,1) = (0,0,z). For any (a,b,c) € M,
f(a,b,c) = (za,ya + xb, za + xc).
()

f2(M) = M. Hence M/ fo(M) = rar(f2).

(iii) Let z = 1, y = 0, z = 0. Then f3(a,b,c) = (a,b,c) and f3 is the identity endomor-
phism of M.

(iv) Let £ =0, y = 1, z = 0. Then fi(a,b,c) = (0,a,0) and f7 = 0.

(v) Let =0,y =1, 2= 1. Then f5(a,b,c) = (0,a,a) and so fZ = 0.

(vi) Let x =1,y =1, z=0. Then fs(a,b,c) = (a,a+ b,c). Hence fs is an isomorphism.
(vil) Let z =1,y =1, z = 1. Then f7(a,b,¢) = (a,a+ b,a + ¢). Hence f7 is an isomor-
phism.

(viii) The last one fs is the zero endomorphism.

It follows that M is m-morphic. However ras(f1) = (0)XZ2XZ3 and f1(M) = (0)x(0) XZ2
shows that M is not morphic since, otherwise, M/ fi(M) = rar(f1), contrary to the fact
that e121+ €131 € R would annihilate ras(f1) from the right but not M/((0) x (0) x Z3) =
M/ f1(M) =rn(fr) = Za x Zz x (0).

2.2. Lemma. Let f € S. If M/f™(M) = ry(f7), there exists g € S such that f*M =
ru(g) and g(M) =ru(f").
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Proof. Assume that M/f"M = ra(f"). Let M = M/f*M LN ra(f™) where 7 is
the coset map and h is the isomorphism. Set g = hm. Then g(M) = ry(f™) and

ru(g) = [ (M). O
2.3. Proposition. Let M be a module, and let f € S be m-morphic. Then the following
conditions are equivalent:

(1) rm(f) =0.

(2) f is an automorphism.

Proof. Assume that f in S is m-morphic. Then there exists a positive integer n such that
M/f™(M) = ra(f™). By Lemma 2.2 there exists g € S such that f"M = ra(g) and
g(M) = ram(f™). Assume (1) holds. Then ra(f) = 0 and so rar(f™) = 0. This shows
that f*(M) = M. Hence f(M) = M and f is an automorphism and (2) holds. (2) =
(1) always holds. O

2.4. Theorem. Let M be a m-morphic module. Then the following holds.

(1) For any f € S, if ra(f) = 0 then f™ is an automorphism of M for some positive
integer n.

(2) For any f € S, if f(M) = M then f" is an automorphism of M for some positive
integer n.

Proof. (1) Let f € S with ra(f) = 0. By hypothesis there exists a positive integer n
such that M/f"M = ra(f™) and ra(f) = 0 implies ras(f™) = 0. So M = f"M. Hence
f" is an automorphism.

(2) Assume that f(M) = M. Then f*(M) = M for all i > 1. By hypothesis there exists
a positive integer n such that M/f"M = rp(f™). Then ra(f*) = 0. Hence f™ is an
automorphism. O

Recall that the ring R is called directly finite if ab = 1 implies ba = 1 for any a,
b€ R. A module M is called directly finite if its endomorphism ring is directly finite,
equivalently for any endomorphisms f and g of M, fg = 1 implies gf = 1 where 1 is the
identity endomorphism of M.

2.5. Corollary. Let M be a w-morphic module. Then it is directly finite.

Proof. Let f, g € S with fg = 1. By Proposition 2.3, g is an automorphism. Hence
gf =1 O

2.6. Lemma. Let f be a w-morphic element. If h : M — M is an automorphism, then
there exists a positive integer n such that f"h and hf™ are both morphic. In particular,
every w-unit reqular endomorphism is morphic.

Proof. By Lemma 2.2, there exist ¢ € S and a positive integer n such that
g(M) = rar(f") and rarlg) = f"(M). Then (f*R)(M) = f"(h(M)) = f*(M) =
rar(g) = ra(htg). Next we show ra(f"h) = (h™'g)(M). For if m € ra(f™h),
then (f"h)(m) = 0 or h(m) € ra(f™). Hence m € (h™'g)(M) since ra (f™) = g(M).
So rau(f™h) < (h™'g)(M). TFor the converse inclusion, let m € (h™'g)(M). Then
h(m) € g(M). So h(m) € ru(f™) since ram(f") = g(M). Hence (f"h)(m) = 0 or
m € rar(f7h). Thus (b~ g)(M) < rar(f™h). Tt follows that ras(f™h) = (R~ g)(M), and
so f™h is morphic. Similarly hf" is morphic. 0

2.7. Examples. (1) Every strongly m-regular ring is w-morphic as a right module over
itself.

(2) Every module satisfying Fitting’s lemma is m-morphic.

(3) Let R be an Artinian ring. Then every finitely generated R module is m-morphic.
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Proof. (1) and (2) are clear. (3) Let R be an Artinian ring and M be a finitely generated
module. Then M is both Artinian and Noetherian. By Proposition 11.7 in [1], M satisfies
Fitting’s lemma. Therefore M is m-morphic. O

2.8. Theorem. FEvery direct summand of a w-morphic module is w-morphic.

Proof. Let M = N @ K and Sy = Endg(N) and f € Sy. Define M % M by g(m) =
f(n)+k wherem=n+kandn € N, k€ K. Clearly g € S and g(M) = f(N) ® K and
rm(g) = rn(f). By hypothesis there exists a positive integer n such that M /g™ (M) =
ra(g™). It is apparent that ¢" (M) = f*(N)@ K. Hence N/f"(N) =2 (N®K)/(f™(N)
K) = M/g"(M) = ra(g") = (™).

Oo

2.9. Remark. One may suspect that for m-morphic modules M; and Mo,
M = M; & My is m-morphic module provided Hom(M;, M;) =0 for 1 <i # j < 2. But
we cannot prove it.

Example 2.10 reveals that direct sum of w-morphic modules need not depend on the
condition Hom(M;, M;) = 0.

a b c
2.10. Example. Consider the ring R = 0 a d | a,b,c,d € Za p and the right
0 0 a
0 a b
R-module M = 0 0 ¢ | a,b,c € Zs p, and the submodules
0 0 O
0 a b 0 0 O
N = 0 0 O | a,b € Zy ) and K = 0 0 ¢ | c € Z2
0 0 O 0 0 0

Then M = N@® K. Clearly N and K are m-morphic right R-modules. Let e;; denote the

3 x 3 matrix units in M and for eszc € K define K N by h(e2sc) = eisc € N. Then
0 # h € Hom(K, N). For any f € S, there exist a, b, ¢, u, v € Z2 such that

0 =z vy 0 ax br+ay+cz
fisgivenby f| 0 0 =z = 0 0 ux + vz . It is easily checked that
0 0 0 0 0 0

all f’s are morphic endomorphisms.

2.11. Proposition. Let M = K & N be a w-morphic module and K 2 N be a homo-
morphism. Then K is isomorphic to a direct summand of N.

Proof. For k+n € M where k € K, n € N, define g(k+n) = f(k)+n. Then g is a right R-
module homomorphism of M and ¢*> = g. So M = g(M)®(1—g)(M) = (f(K)+N)®{k—
f(k)| ke K}. Clearly rv(g) = (1—g)(M) ={k— f(k) | k € K} is a direct summand of
N. By hypothesis there exists a positive integer n such that M/g"™ (M) = rar(g™). Since
= g.50 K = K& (N/f(K) + N) = (K ® N)/(F(K) + N) = M/g(M) = ras(g) is
direct summand of N. 0

A right R-module M is called generalized right principally injective (briefly right GP-
injective) if, for any nonzero a € R, there exists a positive integer n depending on a such
that a" # 0 and any right homomorphism from a" R to M extends to one of Rg into
M, equivalently, Ir(a™) = Ra™ (see, [6, Lemma 5.1]). Similarly, M is left GP-injective
S-module means that for any f € S there exists a positive integer n such that f™ # 0
and any map « from Sf" to M extends to one of ¢S into M, equivalently, if for any
f €S, there exists a positive integer n with f™ # 0 such that f*M = rauls(f™).
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A module M is called image-projective if, whenever gM < fM where f, g € S, then
g € fS, that is g = fh for some h € S.

2.12. Lemma. Let M be a module with S = Endgr(M).

(1) If M is w-morphic, then M is left GP-injective S-module.

(2) If M is m-morphic and image-projective, then S is right T-morphic.

(3) If S is right m-morphic and M generates its kernel, then M is w-morphic.

Proof. (1) Let f € S. By hypothesis there exist a positive integer n and g € S such that
"M =rnm(g) and rar(f™) = gM. Since ls(f™) = ls(f"M), rmls(f™) = ruls(f"M) =
ruls(rav(g)) = ru(g) = f"M.

(2) Let f € S. By hypothesis there exist ¢ € S and a positive integer n such that
(M) = ru(g) and rar(f*) = g(M). Then gf™ = 0. Hence f" € rg(g) and so
f*S < rs(g). Let h € rs(g). Then gh(M) = 0 and h(M) < ru(g) = f(M). By
image-projectivity of M there exists A’ € S such that f*h’ = h € f*S or rs(g) < f*S.
Thus rs(g) = f™S. Next we prove rs(f") = ¢gS. If h € rg(f"), then f"h = 0 and
fPh(M) =0 and h(M) < rp(f") = g(M). By image-projectivity of M there exists an
h' € S such that h = gh' € gS. Sors(f™) < ¢gS. Let h € gS. There exists an b’ € S such
that h = gh'. ru(f"*) = g(M) implies f"g = 0. Hence g € rs(f™). Thus gS < rs(f")
and so gS = rs(f™).

(3) Let f € S. There exist g € S and a positive integer n such that f*S = rg(g) and
rs(f*) = gS. We prove f"(M) = ru(g) and ryu(f™) = g(M). f*S = rs(g) implies
gf" =0 and so f*"(M) < rm(g). Let h € S such that h(M) < ra(g). So gh = 0 and
h € f*S. There exists b’ € S such that h = f™h'. Hence h(M) < f"h'(M) < f™(M).
Since M generates rar(g), Tam(g) < fM(M), ra(g) = f*(M). Next we prove ra(f") =
g(M). rs(f™) = ¢S implies f"g = 0. Then g(M) < rym(f™). Let h(M) < ry(f™).
Then f*"h(M) = 0 and so f*h = 0 and h € rg(f™) = gS. There exists k' € S such
that h = gh’. Hence h(M) < gh/(M) < g(M) and ra(f") < g(M) since M generates
ra(f™). Thus ry (f™) = g(M). O

The following theorem generalizes Theorem 32 in [5] to m-morphic modules.

2.13. Theorem. Let M be a module. Then the following are equivalent:

(1) M is w-morphic and image-projective.
(2) S is right m-morphic and M generates its kernel.

Proof. Clear by Lemma 2.12. O

Let M be a module. In [7], the module M is called 7-Rickart if for any f € S, there
exist ¢ = ¢ € S and a positive integer n such that ra(f") = eM, while in [3], M is
said to be Rickart if for any f € S, there exists ¢ = e € S such that ra(f) = eM.
Rickart module is named as kernel-direct in [5]. In [8], M is called dual w-Rickart if for
any f € S, there exist ¢* = e € S and a positive integer n such that f*(M) = eM, while
in [3], M is said to be dual Rickart if for any f € S, there exists ¢ = e € S such that
f(M) = eM. Dual-Rickart module is named as image-direct in [5]. Erlich [2] proved that
a map f € S is unit-regular if and only if f is regular and morphic. We state and prove
this theorem for m-regular rings.

2.14. Theorem. Let f € S. Then the following are equivalent:
(1) f is unit-m-regular.
(2) f is w-regular and morphic.

Proof. (1) = (2) Every unit-w-regular ring is w-regular. There exist a unit g and a positive
integer n such that f® = f"gf™. Then ¢gf™ is an idempotent, ra(f™) = (1—gf")M and
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M= f"(M)® (1—gf")M. Hence M/f™(M) = ra(f™).

(2) = (1) Let f™* = f"gf™ where g € S. Then

M=fMeQ1-f"gM=ru(f")® (9f")M.

Let h: f"M — gf™ (M) be defined by hf™(m) = gf"(m) where f*(m) € f*(M). Then
h and f" are isomorphisms and inverse each other. Now

M=f"(M)® (- f"g) (M) and M/rnm(f™) = f*(M). By morphic condition we have
M/fM(M) = ra(f™). Then M/f*(M) = (1 — (f"g))(M) gives rise to an isomorphism

(1= (f"g)(M) LA rv(f™). Set « = h@® h'. Let m = z+y with z € f"(M) and
y € (1= f"g)(M). Then (f"af")(z+y) = (f*hf")(@)+ ("N ")) = (f"9f")(y)+0 =
() + £*(x) = £" (2 + ). Hence fraf" = f". O

2.15. Theorem. Let M be a module with S = Endr(M). The following are equivalent:
(1) S is unit-w-regular.

(2) M is w-morphic and m-Rickart.

(3) M is w-morphic and dual 7-Rickart.

Proof. (1) = (2) Let S be unit-w-regular and f € S. There exist a unit g € S and a
positive integer n such that f* = f"gf™. By virtue of Theorem 2.14, M is m-morphic.
M is m-Rickart since 1 — gf™ is an idempotent and rar(f") = (1 — gf™)M.

(2) = (3) Let f € S. There exists a positive integer n such that M/(f"M) = ry(f™).
By Lemma 2.2 there exists a g € S such that g(M) = ry(f™) and ra(g) = fM(M). By
(2), ra(g) is m-Rickart, therefore f™(M) is direct summand.

(3) = (1) Let f € S. By (3), there exist a positive integer n and g € S such that
"M = ry(g) and ra(f™) = g(M). By (3), f"M and g(M) are direct summand and
so is rar(f™). Hence S is m-regular ring by [9, Corollary 3.2]. By Theorem 2.14, S is
unit-r-regular. O

Example 2.16 shows that there exists a m-Rickart module which is not m-morphic.

2.16. Example. Consider M = Z & (Z/2Z) as a Z-module. It can be easily determined

that S = Endz(M) is { Z 0 } For any f = [ 4 9 } € S, we have the following
Zg ZQ b C
cases.
Case 1. Assume that a =0, b=0, c=1ora=0, b==¢= 1. In both cases f is an
idempotent, and so ry(f) = (1 —
Case2. Ifa#0, b=0,c=1ora#0, b=c¢=1, then ry(f) = 0.
Case 3. Ifa#0, b=¢c¢=0o0ra#0, b=1, ¢=0, then ry(f) =0® Z/2Z.
Case 4. If a =0, b=1,2=0, then f*> = 0. Hence mp(f?) = M.
Therefore M is a m-Rickart module. Now we prove it is not m-morphic. Let
f= { % g } € S. For each positive integer n, ra(f") = 0 and
(M) =2"Z®(Z/2Z). Then M/ f"(M) = (Z/2Z)"™. But (Z/2Z)" can not be isomorphic
to ram(f™) =0.

In [5], M is called an image-injective module if for each f € S, every R-module
homomorphisms from f(M) to M extends to M. By this definition we state and prove
dual versions of Lemma 2.12.

2.17. Lemma. Let M be a module with S = Endr(M).

(1) If S is left m-morphic, then M is image-injective.

(2) If M is m-morphic and image-injective, then S is left m-morphic.

(3) If S is left m-morphic and M cogenerates its cokernel, then M is w-morphic.
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Proof. (1) By Lemma 2.12, S is right GP-injective. Let f, g € S. There exists a

positive integer n depending on f such that f™ # 0 and any map f*S % S extends to
an endomorphism of S. Let f*(M) % M be a right R-module homomorphism and set
h=gf". Thenrs(f™) <rg(h). The map f*S 2 hS defined by t(f"s) = hs where s € S
is well defined right S-module homomorphism. By the GP-injectivity of S, ¢ extends to
an endomorphism g’ of S so that ¢'f* = h. Let m € M. ¢’ f*(m) = h(m) = gf"(m).
Hence g extends to ¢’ € S. Thus M is image-injective.

(2) Let f € S. There exist g € S and a positive integer n such that f"(M) = ra(g)
and ry (f*) = g(M). We prove Sf™ =ls(g) and Is(f™) = Sg. rm(f™) = g(M) implies
f"g = 0. Then f™ € ls(g) and so Sf™ < ls(g). Let h € ls(g). Then hg = 0 or
(M) = g(M) < rar(h). Since f*(M) = g(M), the map defined ¢t by f*(M) - h(M)
extends to an endomorphism « of M. Then af™ = h € Sf™. Hence ls(g) < Sf™ and so
ls(g) =Sf".

(M) = ram(g) implies gf™ = 0. So g € Is(f™) and Sg < Is(f™). Let h € ls(f™).
Then hf™ = 0. Hence rar(g) = f™(M) < rar(h). So the map defined by g(M) - h(M) is
a module homomorphism and, by image-injectivity of M it extends to an endomorphism
a of M. Hence h = ag € Sg. Thus ls(f") < Sg and so lg(f") = Sg and S is left
m-morphic.

(3) Let f € S. We prove that there exist g € S and a positive integer n such that
(M) = ru(g) and rar(f™) = g(M). By hypothesis S is left m-morphic, there exist
g € S and a positive integer n such that Sf™ = ls(g) and Is(f™) = Sg. Sf™ = ls(g)
implies f"g = 0 and g(M) < rp(f"). Let m € ra (") —g(M). Then 0 #m € M/g(M).
By hypothesis, M cogenerates M/g(M). There exists a map M/g(M) % M such that
t(m) # 0. Now define M = M by a(z) = t(Z). Then tg(z) = 0 for all z € M. Hence
ag =0. So a € lg(g) = Sf™. There exists s € S such that « = sf™. This leads us a
contradiction since 0 # a(m) = sf"(m) = 0. Thus ras(f™) = g(M).

On the other hand ls(f") = Sg implies gf" = 0 and f*(M) < rm(g). Let
m € ru(g) — f*(M). As in the preceding paragraph there exist s, @ € S such that
a = sg and a(m) # 0. Since g(m) = 0, this would lead us to a contradiction again. Thus
(M) = 1ae(g). D

2.18. Theorem. Let M be a module. Then the following are equivalent:
(1) M is w-morphic and image injective.
(2) S is left w- morphic and M cogenerates its cokernel.

Proof. Clear from Lemma 2.17. O

A ring R is said to be right Kasch if every simple right R-module embeds in R,
equivalently, if I(I) # 0 for every proper (maximal) right ideal I of R (see also [6, page
51]). Let M be a module. M is called Kasch module if any simple module in o[M]
embeds in M, where o[M] is the category consisting of all M-subgenerated right R-
modules, while M is strongly Kasch if any simple right R-module embeds in M. It is
easy to see that a ring R is right Kasch if and only if the right R-module R is Kasch if
and only if the right R-module R is strongly Kasch since o[R] is just the category of all
right R-modules for details see [10].

2.19. Proposition. Let M be a m-morphic module. If every mazimal right ideal of S is
principal, then S is a right Kasch ring.

Proof. Let I be maximal right ideal of S. Then I = fS for some f € S. There exists
a positive integer n such that M/f"M = rp(f"). Assume that ra(f") = 0. Then
f"M = M = fM. Hence f" is an isomorphism. Thus I = S. It is a contradiction.
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It follows that for any nonzero 0 # f € I there exists a positive integer n such that
M/f"M 2= rp(f™) # 0. Consider the diagram M = M/f*M % ra(f™) where 7 is
coset map and ¢ is the isomorphism. Then prf™ = 0. Hence 0 # prf" ' €ls(f). O

2.20. Corollary. Let R be a right w-morphic ring and every mazimal right ideal be
principal. Then R is right Kasch.

Proof. Clear from Lemma 2.19 by considering M = Rr and S = Endr(R) 2 R. 0

2.21. Proposition. Let S be a right m-morphic ring. Then the following conditions are
equivalent:

(1) S is a right Kasch ring.

(2) Every maximal right ideal of S is an annihilator.

(3) Every mazimal right ideal of S is principal.

Proof. Note that every m-morphic ring is directly finite by Corollary 2.5. In [6] it is noted
that (1) = (2) always holds.

(2) = (3) Let I be a maximal right ideal of S. Then there exists a nonzero right ideal A
of S such that I =1(A). Let 0 # a € A, there exist b € S and a positive integer n such
that such that a™S = r(b) and r(a™) = bS. Hence I C I(a™) # S. Therefore, I = r(a™).

(3) = (1) To complete the proof we show that [(I) # 0 for every maximal right ideal I of
S. Let I be a maximal right ideal. By (3), I = aS for some a € S. We invoke hypothesis
here to find b € S and a positive integer n such that a™S = r(b) and r(a™) = bS. Then
a"b = 0 and ba™ = 0. If b = 0, then a"S = S. By Corollary 2.5, a is invertible and
so I = S. This contradicts being I maximal. It follows that b # 0. Let ¢ be a nonzero
positive integer such that ba® = 0 and ba’~! # 0. Hence ba® = 0 implies 0 # ba'~" € I(I).
So S is right Kasch. O
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