ON π -MORPHIC MODULES

A. Harmanci, * H. Kose † and Y. Kurtulmaz ‡

Received 02:07:2012: Accepted 27:03:2013

Abstract

Let R be an arbitrary ring with identity and M be a right R-module with $S = \operatorname{End}(M_R)$. Let $f \in S$. f is called π -morphic if $M/f^n(M) \cong r_M(f^n)$ for some positive integer n. A module M is called π -morphic if every $f \in S$ is π -morphic. It is proved that M is π -morphic and image-projective if and only if S is right π -morphic and M generates its kernel. S is unit- π -regular if and only if M is π -morphic and π -Rickart if and only if M is π -morphic and dual π -Rickart. M is π -morphic and image-injective if and only if S is left S-morphic and S-morphic and S-morphic and image-injective if and only if S is left S-morphic and image-injective if and only if S-morphic and S-morphic and S-morphic and S-morphic and image-injective if and only if S-morphic and S-morphic and S-morphic and S-morphic and image-injective if and only if S-morphic and S-morphic and S-morphic and S-morphic and image-injective if and only if S-morphic and S-morphic and S-morphic and image-injective if and only if S-morphic and S-morphic and image-injective if and only if S-morphic and S-morphic and S-morphic and image-injective if and only if S-morphic and S-morphic and

Keywords: Endomorphism rings; π -morphic rings; π -morphic modules; unit π -regular rings.

2000 AMS Classification: 16D99, 16S50, 16U99.

1. Introduction

Throughout this paper all rings have an identity, all modules considered are unital right modules and all ring homomorphisms are unital (unless explicitly stated otherwise).

A ring R is said to be strongly π -regular (π -regular, right weakly π -regular) if for every element $x \in R$ there exists an integer n > 0 such that $x^n \in x^{n+1}R$ (respectively $x^n \in x^n R x^n$, $x^n \in x^n R x^n R$). It is called unit- π -regular if for every $a \in R$, there exist a unit element $x \in R$ and a positive integer n such that $a^n = a^n x a^n$. In the case of n = 1 there exists a unit x such that a = axa for all $a \in R$, then R is unit regular. Clearly, a strongly π -regular ring is a π -regular ring.

We say also that the ring R is (von Neumann) regular if for each $a \in R$ there exists $x \in R$ such that a = axa for some element x in R, that is, a is regular.

A module M is said to satisfy Fitting's lemma if, for all $f \in S$, there exists an integer $n \geq 1$, depending on f, such that $M = f^n M \oplus \operatorname{Ker}(f^n)$. Hence a module satisfies

^{*}Department of Mathematics, Hacettepe University, Ankara, Turkey. E-mail: (A. Harmanci) harmanci@hacettepe.edu.tr

 $^{^\}dagger Department$ of Mathematics, Ahi Evran University, Kirsehir, Turkey. Email: (H. Kose) <code>hkose@ahievran.edu.tr</code>

[‡]Bilkent University, Department of Mathematics, Ankara, Turkey. Email: (Y. Kurtulmaz) yosum@fen.bilkent.edu.tr

Fitting's lemma if and only if its endomorphism ring is strongly π -regular (see for detail [4]).

Let M be a module. It is a well-known theorem of Erlich [2] that a map $\alpha \in S$ is unit regular if and only if it is regular and $M/\alpha(M) \cong ker(\alpha)$. We say that the ring R is *left morphic* if every element a satisfies $R/Ra \cong l(a)$.

In what follows, by \mathbb{Z} , \mathbb{Q} , \mathbb{Z}_n and $\mathbb{Z}/n\mathbb{Z}$ we denote, respectively, integers, rational numbers, the ring of integers modulo n and the \mathbb{Z} -module of integers modulo n.

We also denote $r_M(I) = \{m \in M \mid Im = 0\}$ where I is any subset of S; $r_R(N) = \{r \in R \mid Nr = 0\}$ and $l_S(N) = \{f \in S \mid fN = 0\}$ where N is any subset of M. The maps between modules are assumed to be homomorphisms unless otherwise stated in the context.

2. Morphic Modules and π -Morphic Modules

Let M be a module with $S = \operatorname{End}(M_R)$, the ring of endomorphisms of the right R-module M and $\mathbf 1$ be the identity endomorphism of M. Let $f \in S$. f is called morphic if $M/f(M) \cong r_M(f)$. The module M is called morphic if every $f \in S$ is morphic. Morphic modules are studied in [5]. An endomorphism $f \in S$ is called π -morphic if $M/f^n(M) \cong r_M(f^n)$ for some positive integer n. The module M is called π -morphic if every $f \in S$ is π -morphic. In the sequel S will stand for $\operatorname{End}(M_R)$ for the right R-module M is considered.

It is clear that every morphic module is π -morphic.

2.1. Example. There exists a π -morphic module which is not morphic.

Let e_{ij} denote 3×3 matrix units. Consider the ring

 $R = \{(e_{11} + e_{22} + e_{33})a + e_{12}b + e_{13}c + e_{23}d \mid a, b, c, d \in \mathbb{Z}_2\}$ and the right R-module $M = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ where right R-module operation is given by

```
(x, y, z)((e_{11} + e_{22} + e_{33})a + e_{12}b + e_{13}c + e_{23}d) = (xa, xb + ya, xc + yd + za)
```

where $(x, y, z) \in M$, $(e_{11} + e_{22} + e_{33})a + e_{12}b + e_{13}c + e_{23}d \in R$. Let $f \in S = \text{End}(M)$. It is a routine check that there exist $x, z \in \mathbb{Z}_2$ such that

f(1,0,0) = (x,0,z), f(0,1,0) = (0,x,0), f(0,0,1) = (0,0,x). For any $(a,b,c) \in M$, f(a,b,c) = (xa,ya+xb,za+xc).

- (i) Let x = 0, y = 0, z = 1. Then $f_1(a, b, c) = (0, 0, a)$ implies $f_1^2 = 0$ which gives $r_M(f_1^2) = M$. Hence $M/f_1^2(M) \cong r_M(f_1^2)$.
- (ii) Let x=1, y=0, z=1. Then $f_2(a,b,c)=(a,b,a+c)$ implies $r_M(f_2)=0$ and $f_2(M)=M$. Hence $M/f_2(M)\cong r_M(f_2)$.
- (iii) Let x = 1, y = 0, z = 0. Then $f_3(a, b, c) = (a, b, c)$ and f_3 is the identity endomorphism of M.
- (iv) Let x = 0, y = 1, z = 0. Then $f_4(a, b, c) = (0, a, 0)$ and $f_4^2 = 0$.
- (v) Let x = 0, y = 1, z = 1. Then $f_5(a, b, c) = (0, a, a)$ and so $f_5^2 = 0$.
- (vi) Let x = 1, y = 1, z = 0. Then $f_6(a, b, c) = (a, a + b, c)$. Hence f_6 is an isomorphism.
- (vii) Let x = 1, y = 1, z = 1. Then $f_7(a, b, c) = (a, a + b, a + c)$. Hence f_7 is an isomorphism.
- (viii) The last one f_8 is the zero endomorphism.

It follows that M is π -morphic. However $r_M(f_1) = (0) \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and $f_1(M) = (0) \times (0) \times \mathbb{Z}_2$ shows that M is not morphic since, otherwise, $M/f_1(M) \cong r_M(f_1)$, contrary to the fact that $e_{12}1+e_{13}1 \in R$ would annihilate $r_M(f_1)$ from the right but not $M/((0) \times (0) \times \mathbb{Z}_2) = M/f_1(M) = r_M(f_1) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times (0)$.

2.2. Lemma. Let $f \in S$. If $M/f^n(M) \cong r_M(f^n)$, there exists $g \in S$ such that $f^nM = r_M(g)$ and $g(M) = r_M(f^n)$.

Proof. Assume that $M/f^nM \cong r_M(f^n)$. Let $M \stackrel{\pi}{\to} M/f^nM \stackrel{h}{\to} r_M(f^n)$ where π is the coset map and h is the isomorphism. Set $g = h\pi$. Then $g(M) = r_M(f^n)$ and $r_M(g) = f^n(M)$.

- **2.3. Proposition.** Let M be a module, and let $f \in S$ be π -morphic. Then the following conditions are equivalent:
 - (1) $r_M(f) = 0$.
 - (2) f is an automorphism.

Proof. Assume that f in S is π -morphic. Then there exists a positive integer n such that $M/f^n(M) \cong r_M(f^n)$. By Lemma 2.2 there exists $g \in S$ such that $f^nM = r_M(g)$ and $g(M) = r_M(f^n)$. Assume (1) holds. Then $r_M(f) = 0$ and so $r_M(f^n) = 0$. This shows that $f^n(M) = M$. Hence f(M) = M and f is an automorphism and (2) holds. (2) \Rightarrow (1) always holds.

- **2.4. Theorem.** Let M be a π -morphic module. Then the following holds.
- (1) For any $f \in S$, if $r_M(f) = 0$ then f^n is an automorphism of M for some positive integer n.
- (2) For any $f \in S$, if f(M) = M then f^n is an automorphism of M for some positive integer n.
- *Proof.* (1) Let $f \in S$ with $r_M(f) = 0$. By hypothesis there exists a positive integer n such that $M/f^nM \cong r_M(f^n)$ and $r_M(f) = 0$ implies $r_M(f^n) = 0$. So $M = f^nM$. Hence f^n is an automorphism.
- (2) Assume that f(M) = M. Then $f^i(M) = M$ for all $i \ge 1$. By hypothesis there exists a positive integer n such that $M/f^nM \cong r_M(f^n)$. Then $r_M(f^n) = 0$. Hence f^n is an automorphism.

Recall that the ring R is called directly finite if ab=1 implies ba=1 for any a, $b\in R$. A module M is called directly finite if its endomorphism ring is directly finite, equivalently for any endomorphisms f and g of M, fg=1 implies gf=1 where 1 is the identity endomorphism of M.

2.5. Corollary. Let M be a π -morphic module. Then it is directly finite.

Proof. Let $f, g \in S$ with fg = 1. By Proposition 2.3, g is an automorphism. Hence gf = 1.

2.6. Lemma. Let f be a π -morphic element. If $h: M \to M$ is an automorphism, then there exists a positive integer n such that $f^n h$ and $h f^n$ are both morphic. In particular, every π -unit regular endomorphism is morphic.

Proof. By Lemma 2.2, there exist $g \in S$ and a positive integer n such that $g(M) = r_M(f^n)$ and $r_M(g) = f^n(M)$. Then $(f^nh)(M) = f^n(h(M)) = f^n(M) = r_M(g) = r_M(h^{-1}g)$. Next we show $r_M(f^nh) = (h^{-1}g)(M)$. For if $m \in r_M(f^nh)$, then $(f^nh)(m) = 0$ or $h(m) \in r_M(f^n)$. Hence $m \in (h^{-1}g)(M)$ since $r_M(f^n) = g(M)$. So $r_M(f^nh) \leq (h^{-1}g)(M)$. For the converse inclusion, let $m \in (h^{-1}g)(M)$. Then $h(m) \in g(M)$. So $h(m) \in r_M(f^n)$ since $r_M(f^n) = g(M)$. Hence $(f^nh)(m) = 0$ or $m \in r_M(f^nh)$. Thus $(h^{-1}g)(M) \leq r_M(f^nh)$. It follows that $r_M(f^nh) = (h^{-1}g)(M)$, and so f^nh is morphic. Similarly hf^n is morphic.

- **2.7. Examples.** (1) Every strongly π -regular ring is π -morphic as a right module over itself.
- (2) Every module satisfying Fitting's lemma is π -morphic.
- (3) Let R be an Artinian ring. Then every finitely generated R module is π -morphic.

Proof. (1) and (2) are clear. (3) Let R be an Artinian ring and M be a finitely generated module. Then M is both Artinian and Noetherian. By Proposition 11.7 in [1], M satisfies Fitting's lemma. Therefore M is π -morphic.

2.8. Theorem. Every direct summand of a π -morphic module is π -morphic.

Proof. Let $M = N \oplus K$ and $S_N = \operatorname{End}_R(N)$ and $f \in S_N$. Define $M \xrightarrow{g} M$ by g(m) = f(n) + k where m = n + k and $n \in N$, $k \in K$. Clearly $g \in S$ and $g(M) = f(N) \oplus K$ and $r_M(g) = r_N(f)$. By hypothesis there exists a positive integer n such that $M/g^n(M) \cong r_M(g^n)$. It is apparent that $g^n(M) = f^n(N) \oplus K$. Hence $N/f^n(N) \cong (N \oplus K)/(f^n(N) \oplus K) = M/g^n(M) \cong r_M(g^n) = r_N(f^n)$.

2.9. Remark. One may suspect that for π -morphic modules M_1 and M_2 , $M = M_1 \oplus M_2$ is π -morphic module provided $\operatorname{Hom}(M_i, M_j) = 0$ for $1 \le i \ne j \le 2$. But we cannot prove it.

Example 2.10 reveals that direct sum of π -morphic modules need not depend on the condition $\operatorname{Hom}(M_i,M_j)=0$.

2.10. Example. Consider the ring $R = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}_2 \right\}$ and the right

R-module $M = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \mid a, b, c \in \mathbb{Z}_2 \right\}$, and the submodules

$$N = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid a, b \in \mathbb{Z}_2 \right\} \text{ and } K = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \mid c \in \mathbb{Z}_2 \right\}.$$

Then $M=N\oplus K$. Clearly N and K are π -morphic right R-modules. Let e_{ij} denote the 3×3 matrix units in M and for $e_{23}c\in K$ define $K\stackrel{h}{\to} N$ by $h(e_{23}c)=e_{13}c\in N$. Then $0\neq h\in \operatorname{Hom}(K,N)$. For any $f\in S$, there exist $a,b,c,u,v\in\mathbb{Z}_2$ such that

 $f \text{ is given by } f \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & ax & bx + ay + cz \\ 0 & 0 & ux + vz \\ 0 & 0 & 0 \end{pmatrix}. \text{ It is easily checked that all } f \text{'s are morphic endomorphisms.}$

2.11. Proposition. Let $M = K \oplus N$ be a π -morphic module and $K \xrightarrow{f} N$ be a homomorphism. Then K is isomorphic to a direct summand of N.

Proof. For $k+n \in M$ where $k \in K$, $n \in N$, define g(k+n) = f(k)+n. Then g is a right R-module homomorphism of M and $g^2 = g$. So $M = g(M) \oplus (1-g)(M) = (f(K)+N) \oplus \{k-f(k) \mid k \in K\}$. Clearly $r_M(g) = (1-g)(M) = \{k-f(k) \mid k \in K\}$ is a direct summand of N. By hypothesis there exists a positive integer n such that $M/g^n(M) \cong r_M(g^n)$. Since $g^2 = g$, so $K \cong K \oplus (N/f(K) + N) \cong (K \oplus N)/(f(K) + N) \cong M/g(M) = r_M(g)$ is a direct summand of N.

A right R-module M is called generalized right principally injective (briefly right GPinjective) if, for any nonzero $a \in R$, there exists a positive integer n depending on a such
that $a^n \neq 0$ and any right homomorphism from a^nR to M extends to one of R_R into M, equivalently, $lr(a^n) = Ra^n$ (see, [6, Lemma 5.1]). Similarly, M is left GP-injective S-module means that for any $f \in S$ there exists a positive integer n such that $f^n \neq 0$ and any map α from Sf^n to M extends to one of S^n into S^n 0, equivalently, if for any S^n 1 for any S^n 2 into S^n 3 into S^n 3 into S^n 4 exists a positive integer S^n 5 into S^n 6 such that S^n 6 into S^n 8 into S^n 9 such that S^n 9 such that S^n 9 into S^n 9.

A module M is called *image-projective* if, whenever $gM \leq fM$ where $f, g \in S$, then $g \in fS$, that is g = fh for some $h \in S$.

- **2.12. Lemma.** Let M be a module with $S = End_R(M)$.
- (1) If M is π -morphic, then M is left GP-injective S-module.
- (2) If M is π -morphic and image-projective, then S is right π -morphic.
- (3) If S is right π -morphic and M generates its kernel, then M is π -morphic.
- Proof. (1) Let $f \in S$. By hypothesis there exist a positive integer n and $g \in S$ such that $f^n M = r_M(g)$ and $r_M(f^n) = gM$. Since $l_S(f^n) = l_S(f^n M)$, $r_M l_S(f^n) = r_M l_S(f^n M) = r_M l_S(r_M(g)) = r_M(g) = f^n M$.
- (2) Let $f \in S$. By hypothesis there exist $g \in S$ and a positive integer n such that $f^n(M) = r_M(g)$ and $r_M(f^n) = g(M)$. Then $gf^n = 0$. Hence $f^n \in r_S(g)$ and so $f^nS \leq r_S(g)$. Let $h \in r_S(g)$. Then gh(M) = 0 and $h(M) \leq r_M(g) = f^n(M)$. By image-projectivity of M there exists $h' \in S$ such that $f^nh' = h \in f^nS$ or $r_S(g) \leq f^nS$. Thus $r_S(g) = f^nS$. Next we prove $r_S(f^n) = gS$. If $h \in r_S(f^n)$, then $f^nh = 0$ and $f^nh(M) = 0$ and $h(M) \leq r_M(f^n) = g(M)$. By image-projectivity of M there exists an $h' \in S$ such that $h = gh' \in gS$. So $r_S(f^n) \leq gS$. Let $h \in gS$. There exists an $h' \in S$ such that h = gh'. $r_M(f^n) = g(M)$ implies $f^ng = 0$. Hence $g \in r_S(f^n)$. Thus $gS \leq r_S(f^n)$ and so $gS = r_S(f^n)$.
- (3) Let $f \in S$. There exist $g \in S$ and a positive integer n such that $f^nS = r_S(g)$ and $r_S(f^n) = gS$. We prove $f^n(M) = r_M(g)$ and $r_M(f^n) = g(M)$. $f^nS = r_S(g)$ implies $gf^n = 0$ and so $f^n(M) \le r_M(g)$. Let $h \in S$ such that $h(M) \le r_M(g)$. So gh = 0 and $h \in f^nS$. There exists $h' \in S$ such that $h = f^nh'$. Hence $h(M) \le f^nh'(M) \le f^n(M)$. Since M generates $r_M(g)$, $r_M(g) \le f^n(M)$, $r_M(g) = f^n(M)$. Next we prove $r_M(f^n) = g(M)$. $r_S(f^n) = gS$ implies $f^ng = 0$. Then $g(M) \le r_M(f^n)$. Let $h(M) \le r_M(f^n)$. Then $f^nh(M) = 0$ and so $f^nh = 0$ and $h \in r_S(f^n) = gS$. There exists $h' \in S$ such that h = gh'. Hence $h(M) \le gh'(M) \le g(M)$ and $r_M(f^n) \le g(M)$ since M generates $r_M(f^n)$. Thus $r_M(f^n) = g(M)$.

The following theorem generalizes Theorem 32 in [5] to π -morphic modules.

- **2.13. Theorem.** Let M be a module. Then the following are equivalent:
 - (1) M is π -morphic and image-projective.
 - (2) S is right π -morphic and M generates its kernel.

Proof. Clear by Lemma 2.12.

Let M be a module. In [7], the module M is called π -Rickart if for any $f \in S$, there exist $e^2 = e \in S$ and a positive integer n such that $r_M(f^n) = eM$, while in [3], M is said to be Rickart if for any $f \in S$, there exists $e^2 = e \in S$ such that $r_M(f) = eM$. Rickart module is named as kernel-direct in [5]. In [8], M is called dual π -Rickart if for any $f \in S$, there exist $e^2 = e \in S$ and a positive integer n such that $f^n(M) = eM$, while in [3], M is said to be dual Rickart if for any $f \in S$, there exists $e^2 = e \in S$ such that f(M) = eM. Dual-Rickart module is named as image-direct in [5]. Erlich [2] proved that a map $f \in S$ is unit-regular if and only if f is regular and morphic. We state and prove this theorem for π -regular rings.

- **2.14. Theorem.** Let $f \in S$. Then the following are equivalent:
- (1) f is unit- π -regular.
- (2) f is π -regular and morphic.

Proof. (1) \Rightarrow (2) Every unit- π -regular ring is π -regular. There exist a unit g and a positive integer n such that $f^n = f^n g f^n$. Then $g f^n$ is an idempotent, $r_M(f^n) = (1 - g f^n) M$ and

 $M\cong f^n(M)\oplus (1-gf^n)M$. Hence $M/f^n(M)\cong r_M(f^n)$. $(2)\Rightarrow (1)$ Let $f^n=f^ngf^n$ where $g\in S$. Then $M=f^nM\oplus (1-f^ng)M=r_M(f^n)\oplus (gf^n)M$. Let $h:f^nM\to gf^n(M)$ be defined by $hf^n(m)=gf^n(m)$ where $f^n(m)\in f^n(M)$. Then h and f^n are isomorphisms and inverse each other. Now $M=f^n(M)\oplus (1-f^ng)(M)$ and $M/r_M(f^n)\cong f^n(M)$. By morphic condition we have $M/f^n(M)\cong r_M(f^n)$. Then $M/f^n(M)\cong (1-(f^ng))(M)$ gives rise to an isomorphism $(1-(f^ng))(M)\stackrel{h'}{\to} r_M(f^n)$. Set $\alpha=h\oplus h'$. Let m=x+y with $x\in f^n(M)$ and $y\in (1-f^ng)(M)$. Then $(f^n\alpha f^n)(x+y)=(f^nhf^n)(x)+(f^nh'f^n)(y)=(f^ngf^n)(y)+0=f^n(y)+f^n(x)=f^n(x+y)$. Hence $f^n\alpha f^n=f^n$.

- **2.15. Theorem.** Let M be a module with $S = End_R(M)$. The following are equivalent:
- (1) S is unit- π -regular.
- (2) M is π -morphic and π -Rickart.
- (3) M is π -morphic and dual π -Rickart.

Proof. (1) \Rightarrow (2) Let S be unit- π -regular and $f \in S$. There exist a unit $g \in S$ and a positive integer n such that $f^n = f^n g f^n$. By virtue of Theorem 2.14, M is π -morphic. M is π -Rickart since $1 - g f^n$ is an idempotent and $r_M(f^n) = (1 - g f^n)M$.

(2) \Rightarrow (3) Let $f \in S$. There exists a positive integer n such that $M/(f^nM) \cong r_M(f^n)$. By Lemma 2.2 there exists a $g \in S$ such that $g(M) = r_M(f^n)$ and $r_M(g) = f^n(M)$. By (2), $r_M(g)$ is π -Rickart, therefore $f^n(M)$ is direct summand.

(3) \Rightarrow (1) Let $f \in S$. By (3), there exist a positive integer n and $g \in S$ such that $f^nM = r_M(g)$ and $r_M(f^n) = g(M)$. By (3), f^nM and g(M) are direct summand and so is $r_M(f^n)$. Hence S is π -regular ring by [9, Corollary 3.2]. By Theorem 2.14, S is unit- π -regular.

Example 2.16 shows that there exists a π -Rickart module which is not π -morphic.

2.16. Example. Consider $M=\mathbb{Z}\oplus (\mathbb{Z}/2\mathbb{Z})$ as a \mathbb{Z} -module. It can be easily determined that $S=\operatorname{End}_{\mathbb{Z}}(M)$ is $\left[\begin{array}{cc} \mathbb{Z} & 0 \\ \mathbb{Z}_2 & \mathbb{Z}_2 \end{array}\right]$. For any $f=\left[\begin{array}{cc} a & 0 \\ \overline{b} & \overline{c} \end{array}\right]\in S$, we have the following cases.

Case 1. Assume that $a=0, \ \overline{b}=\overline{0}, \ \overline{c}=\overline{1} \text{ or } a=0, \ \overline{b}=\overline{c}=\overline{1}$. In both cases f is an idempotent, and so $r_M(f)=(1-f)M$.

Case 2. If $a \neq 0$, $\overline{b} = \overline{0}$, $\overline{c} = \overline{1}$ or $a \neq 0$, $\overline{b} = \overline{c} = \overline{1}$, then $r_M(f) = 0$.

Case 3. If $a \neq 0$, $\overline{b} = \overline{c} = \overline{0}$ or $a \neq 0$, $\overline{b} = \overline{1}$, $\overline{c} = \overline{0}$, then $r_M(f) = 0 \oplus \mathbb{Z}/2\mathbb{Z}$.

Case 4. If $a=0, \ \overline{b}=\overline{1}, \overline{c}=\overline{0}$, then $f^2=0$. Hence $r_M(f^2)=M$.

Therefore M is a π -Rickart module. Now we prove it is not π -morphic. Let

$$f = \begin{bmatrix} 2 & 0 \\ \overline{0} & \overline{1} \end{bmatrix} \in S$$
. For each positive integer $n, r_M(f^n) = 0$ and

 $f^n(M) = 2^n \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})$. Then $M/f^n(M) \cong (\mathbb{Z}/2\mathbb{Z})^n$. But $(\mathbb{Z}/2\mathbb{Z})^n$ can not be isomorphic to $r_M(f^n) = 0$.

In [5], M is called an image-injective module if for each $f \in S$, every R-module homomorphisms from f(M) to M extends to M. By this definition we state and prove dual versions of Lemma 2.12.

- **2.17. Lemma.** Let M be a module with $S = End_R(M)$.
- (1) If S is left π -morphic, then M is image-injective.
- (2) If M is π -morphic and image-injective, then S is left π -morphic.
- (3) If S is left π -morphic and M cogenerates its cokernel, then M is π -morphic.

- Proof. (1) By Lemma 2.12, S is right GP-injective. Let $f, g \in S$. There exists a positive integer n depending on f such that $f^n \neq 0$ and any map $f^n S \stackrel{g'}{\to} S$ extends to an endomorphism of S. Let $f^n(M) \stackrel{g}{\to} M$ be a right R-module homomorphism and set $h = gf^n$. Then $r_S(f^n) \leq r_S(h)$. The map $f^n S \stackrel{t}{\to} hS$ defined by $t(f^n s) = hs$ where $s \in S$ is well defined right S-module homomorphism. By the GP-injectivity of S, t extends to an endomorphism g' of S so that $g'f^n = h$. Let $m \in M$. $g'f^n(m) = h(m) = gf^n(m)$. Hence g extends to $g' \in S$. Thus M is image-injective.
- (2) Let $f \in S$. There exist $g \in S$ and a positive integer n such that $f^n(M) = r_M(g)$ and $r_M(f^n) = g(M)$. We prove $Sf^n = l_S(g)$ and $l_S(f^n) = Sg$. $r_M(f^n) = g(M)$ implies $f^ng = 0$. Then $f^n \in l_S(g)$ and so $Sf^n \leq l_S(g)$. Let $h \in l_S(g)$. Then hg = 0 or $f^n(M) = g(M) \leq r_M(h)$. Since $f^n(M) = g(M)$, the map defined t by $f^n(M) \stackrel{t}{\to} h(M)$ extends to an endomorphism α of M. Then $\alpha f^n = h \in Sf^n$. Hence $l_S(g) \leq Sf^n$ and so $l_S(g) = Sf^n$.
- $f^n(M) = r_M(g)$ implies $gf^n = 0$. So $g \in l_S(f^n)$ and $Sg \leq l_S(f^n)$. Let $h \in l_S(f^n)$. Then $hf^n = 0$. Hence $r_M(g) = f^n(M) \leq r_M(h)$. So the map defined by $g(M) \stackrel{t}{\to} h(M)$ is a module homomorphism and, by image-injectivity of M it extends to an endomorphism α of M. Hence $h = \alpha g \in Sg$. Thus $l_S(f^n) \leq Sg$ and so $l_S(f^n) = Sg$ and S is left π -morphic.
- (3) Let $f \in S$. We prove that there exist $g \in S$ and a positive integer n such that $f^n(M) = r_M(g)$ and $r_M(f^n) = g(M)$. By hypothesis S is left π -morphic, there exist $g \in S$ and a positive integer n such that $Sf^n = l_S(g)$ and $l_S(f^n) = Sg$. $Sf^n = l_S(g)$ implies $f^ng = 0$ and $g(M) \le r_M(f^n)$. Let $m \in r_M(f^n) g(M)$. Then $\overline{0} \ne \overline{m} \in M/g(M)$. By hypothesis, M cogenerates M/g(M). There exists a map $M/g(M) \xrightarrow{t} M$ such that $t(\overline{m}) \ne 0$. Now define $M \xrightarrow{\alpha} M$ by $\alpha(x) = t(\overline{x})$. Then tg(x) = 0 for all $x \in M$. Hence $\alpha g = 0$. So $\alpha \in l_S(g) = Sf^n$. There exists $s \in S$ such that $\alpha = sf^n$. This leads us a contradiction since $0 \ne \alpha(m) = sf^n(m) = 0$. Thus $r_M(f^n) = g(M)$.
- On the other hand $l_S(f^n) = Sg$ implies $gf^n = 0$ and $f^n(M) \leq r_M(g)$. Let $m \in r_M(g) f^n(M)$. As in the preceding paragraph there exist $s, \alpha \in S$ such that $\alpha = sg$ and $\alpha(m) \neq 0$. Since g(m) = 0, this would lead us to a contradiction again. Thus $f^n(M) = r_M(g)$.
- **2.18. Theorem.** Let M be a module. Then the following are equivalent:
- (1) M is π -morphic and image injective.
- (2) S is left π morphic and M cogenerates its cokernel.

Proof. Clear from Lemma 2.17.

A ring R is said to be right Kasch if every simple right R-module embeds in R, equivalently, if $l(I) \neq 0$ for every proper (maximal) right ideal I of R (see also [6, page 51]). Let M be a module. M is called Kasch module if any simple module in $\sigma[M]$ embeds in M, where $\sigma[M]$ is the category consisting of all M-subgenerated right R-modules, while M is strongly Kasch if any simple right R-module embeds in M. It is easy to see that a ring R is right Kasch if and only if the right R-module R is Kasch if and only if the right R-modules for details see [10].

2.19. Proposition. Let M be a π -morphic module. If every maximal right ideal of S is principal, then S is a right Kasch ring.

Proof. Let I be maximal right ideal of S. Then I = fS for some $f \in S$. There exists a positive integer n such that $M/f^nM \cong r_M(f^n)$. Assume that $r_M(f^n) = 0$. Then $f^nM = M = fM$. Hence f^n is an isomorphism. Thus I = S. It is a contradiction.

It follows that for any nonzero $0 \neq f \in I$ there exists a positive integer n such that $M/f^nM \cong r_M(f^n) \neq 0$. Consider the diagram $M \stackrel{\pi}{\to} M/f^nM \stackrel{\varphi}{\to} r_M(f^n)$ where π is coset map and φ is the isomorphism. Then $\varphi \pi f^n = 0$. Hence $0 \neq \varphi \pi f^{n-1} \in l_S(f)$. \square

2.20. Corollary. Let R be a right π -morphic ring and every maximal right ideal be principal. Then R is right Kasch.

Proof. Clear from Lemma 2.19 by considering $M = R_R$ and $S = \operatorname{End}_R(R) \cong R$.

- **2.21. Proposition.** Let S be a right π -morphic ring. Then the following conditions are equivalent:
 - (1) S is a right Kasch ring.
 - (2) Every maximal right ideal of S is an annihilator.
 - (3) Every maximal right ideal of S is principal.

Proof. Note that every π -morphic ring is directly finite by Corollary 2.5. In [6] it is noted that $(1) \Rightarrow (2)$ always holds.

(2) \Rightarrow (3) Let I be a maximal right ideal of S. Then there exists a nonzero right ideal A of S such that I=l(A). Let $0\neq a\in A$, there exist $b\in S$ and a positive integer n such that such that $a^nS=r(b)$ and $r(a^n)=bS$. Hence $I\subseteq l(a^n)\neq S$. Therefore, $I=r(a^n)$. (3) \Rightarrow (1) To complete the proof we show that $l(I)\neq 0$ for every maximal right ideal I of S. Let I be a maximal right ideal. By (3), I=aS for some $a\in S$. We invoke hypothesis here to find $b\in S$ and a positive integer n such that $a^nS=r(b)$ and $r(a^n)=bS$. Then $a^nb=0$ and $ba^n=0$. If b=0, then $a^nS=S$. By Corollary 2.5, a is invertible and so I=S. This contradicts being I maximal. It follows that $b\neq 0$. Let t be a nonzero positive integer such that $ba^t=0$ and $ba^{t-1}\neq 0$. Hence $ba^t=0$ implies $0\neq ba^{t-1}\in l(I)$. So S is right Kasch.

References

- Anderson, F.W. and Fuller, K.R. Rings and Categories of Modules, Springer-Verlag, New York, 1992.
- [2] Erlich, G. Units and one sided units in regular rings, Trans. A.M.S. 216, 203-211, 1976.
- [3] Lee, G., Rizvi, S.T. and Roman, C.S. Rickart Modules, Comm. Algebra 38(11), 4005–4027, 2010.
- [4] Nicholson, W.K. Strongly clean rings and Fitting's lemma, Comm. Alg. 27(8), 3583–3592, 1999.
- [5] Nicholson, W.K. and Campos, E.S. Morphic Modules, Comm. Alg. 33, 2629–2647, 2005.
- [6] Nicholson, W.K. and Yousif, M.F. Quasi-Frobenius Rings, Cambridge Univ. Press, 158, 2003.
- [7] Ungor, B., Halıcıoğlu, S. and Harmancı, A. A Generalization of Rickart Modules, see arXiv: 1204.2343.
- [8] Ungor, B., Kurtulmaz, Y., Halıcıoğlu, S. and Harmancı, A. $Dual \pi$ Rickart Modules, Revista Colombiana de Matematicas **46**, 167–180, 2012.
- [9] Ware, R. Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155, 233– 256, 1971.
- [10] Zhu, Z. A Note on Principally-Injective Modules, Soochow Journal of Mathematics 33(4), 885–889, 2007.