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Abstract

In this paper, we establish some existence and uniqueness results for
an initial value problem with a Caputo fractional derivative. Also, the
convergence of successive approximations is exhibited. Our methods
are based on the equivalent norm techniques and fixed point theorem.
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1. Introduction

In this paper, we establish the existence and uniqueness results for the initial value
problems with a Caputo fractional derivative

Dqx(t) = f(t, x(t)), x(t0) = x0, t0 ≥ 0, t ∈ [t0, t0 + a] := J,(1.1)

where q ∈ (0, 1), f ∈ C(J ×R,R).
Recently, some Krasnoselskii-Krein-type uniqueness results for the fractional differ-

ential equations were presented by Bhaskar, Lakshmikantham and Leela et al, see for
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examples [5, 6, 7]. These results are established involving the following Krasnoselskii-
Krein-type condition:

(A) |f(t, x)− f(t, y)| ≤ GrΓ(q)
|x− y|

(t− t0)q
, t 6= t0, where Gr ≤ q,G > 1;

(B) |f(t, x)− f(t, y)| ≤ C|x− y|α,
where C is constant , α ∈ (0, 1) and G(1− α) < 1.

Also, some special fractional differential equations are investigated by many authors,
see for examples [1, 2, 3, 4, 8]. Inspired by the above excellent works, in this paper,
we follows from this direction to establish some new uniqueness results for fractional
differential equations. Our methods are based on the equivalent norm techniques and
Banach fixed point theorem.

Let I be a bounded interval and C(I) denote the Banach space consisting of all
bounded continuous mappings from I into R with norm ‖u‖ = max{|u(t)| : t ∈ I} for
u ∈ C(I). Similarly, Cq(I) is a Banach space equipped with norm

‖u‖q = ‖u‖+ sup{|u(t1)− u(t2)

|t2 − t1|q
| : t1, t2 ∈ I, t1 6= t2}.

2. Main results

At this section, we should state main results in this paper as follows.

2.1. Theorem. Assume the function f in IVP (1.1) satisfies the following conditions:

(F1) |f(t, x)− f(t, y)| ≤ K |x− y|
(t− t0)q

, t 6= t0, where K > 0;

(F2) |f(t, x)− f(t, y)| ≤ l|x− y|α, where l is constant and α ∈ (0, 1);

(F3) Kα
Γ( αq

1−α )

Γ( q
1−α )

< 1.

Then there exists a unique solution ϕ(t) of IVP (1.1) on J and the successive approxi-
mations {ϕn(t)} defined by

ϕ0(t) = x0,(2.1)

ϕn+1(t) = x0 +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, ϕn(s))ds, n = 0, 1, · · ·

converge uniformly to the unique solution ϕ(t) on J , that is,

lim
n→∞

‖ϕn − ϕ‖q = 0.(2.2)

2.2. Remark. It follows the Krasnoselskii-Krein-type condition (A) that GrΓ(q) ≤
qΓ(q) = Γ(1 + q) < 1 for q ∈ (0, 1). The assumption (F1) in Theorem 1 removes this
restriction.

2.3. Theorem. If there exist two positive constants α ≥ 1 and l satisfying condition:

|f(t, x)− f(t, y)| ≤ l|x− y|α, (t, x), (t, y) ∈ [t0, t0 + a]×R.
Then there exists a unique solution ϕ(t) of IVP (1.1) on J and (2.2) also holds.

2.4. Theorem. If there exist constants K > 0 and p ∈ (0, q) such that the function f
in (1.1) satisfies following condition:

|f(t, x)− f(t, y)| ≤ K |x− y|
(t− t0)p

, (t, x), (t, y) ∈ (t0, t0 + a]×R.

Then there exists a unique solution ϕ(t) of IVP (1.1) on J and (2.2) also holds.
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3. The proofs of main results

We transform the existence of the IVP (1.1) into a fixed point problem. Consider the
map F : C(J)→ C(J), defined by,

Fu(t) = x0 +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, u(s))ds.

It is known that the fixed points of F are solutions to the problem (1.1) .

Proof. (The proof of Theorem 2.1 ) First, we choose a k0 ∈ N such that l
k0
q <

2

(‖x0‖+
M0

Γ(q+1)
+2)α

where M0 = max{|f(t, 0)|+ 1 : t ∈ J}. Define the norm ‖ · ‖0 in C(J)

by

‖u‖0 = max{e−k0(t−t0)|u(t)| : t ∈ J} for u ∈ C(J).

Then the norms ‖ · ‖ and ‖ · ‖0 are equivalent with ‖u‖0 ≤ ‖u‖ for all u ∈ C(J).

Let Q = ‖x0‖+ M0
Γ(q+1)

+ 2 and BQ = {u ∈ C(J) : ‖u‖0 ≤ Q}. Then, for u ∈ BQ, by

the assumption (F2), we have

|Fu(t)| ≤ ‖x0‖+
l

Γ(q)

∫ t

t0

(t− s)q−1|f(s, u(s))− f(t, 0) + f(t, 0)|ds

≤ ‖x0‖+
M0

Γ(q)

∫ t

t0

(t− s)q−1ds+
l

Γ(q)

∫ t

t0

(t− s)q−1|u(s)|αds

≤ ‖x0‖+
M0

Γ(q + 1)
+

l

Γ(q)

∫ t

t0

(t− s)q−1ek0(s−t0)ds‖u‖α0

≤ ‖x0‖+
M0

Γ(q + 1)
+

l

k0
q e
k0(t−t0)‖u‖α0 .

Thus

‖Fu‖0 ≤ ‖x0‖+
M0

Γ(q + 1)
+

l

k0
q ‖u‖

α
0 < Q.

This implies F (BQ) ⊂ BQ.
On the other hand, for u ∈ BQ and t1, t2 ∈ J(t1 < t2), we deduce that

|Fu(t2)− Fu(t1)|

=
1

Γ(q)
|
∫ t2

t0

(t2 − s)q−1f(s, u(s))ds−
∫ t1

t0

(t1 − s)q−1f(s, u(s))ds|

=
1

Γ(q)
|
∫ t2

t1

(t2 − s)q−1f(s, u(s))ds+

∫ t1

t0

[(t1 − s)q−1 − (t2 − s)q−1]f(s, u(s))ds|

≤ M

Γ(q + 1)
[2(t2 − t1)q + (t1 − t0)q − (t2 − t0)q]

≤ 2M

Γ(q + 1)
(t2 − t1)q,

where M = max{|f(t, x)| : t ∈ J, x ∈ BQ}. This means F (BQ) is an equicontinuous
set. By Ascoli-Arzela theorem, we easily deduce that F (BQ) is relatively compact set.
It follows from the continuousness of f that F is complete continuous. By the Leray-
Schauder theorem, F has a fixed point ϕ ∈ BQ.
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Next, we prove the uniqueness of the solution of IVP (1.1). Let ϕ(t) and ψ(t) be two
solutions of IVP (1.1), then, by the assumption (F1), we obtain

|ϕ(t)− ψ(t)| = |Fϕ(t)− Fψ(t)|

≤ 1

Γ(q)

∫ t

t0

(t− s)q−1|f(s, ϕ(s))− f(s, ψ(s))|ds

≤ K

Γ(q)

∫ t

t0

(t− s)q−1(s− t0)−q|ϕ(s)− ψ(s)|ds.(3.1)

Also, by assumption (F2), we have

|ϕ(t)− ψ(t)| ≤ l

Γ(q)

∫ t

t0

(t− s)q−1|ϕ(s)− ψ(s)|αds.(3.2)

Let M1 = maxt∈J{|f(t, ϕ(t))− f(t, ψ(t))|}, then, for t ∈ J , we obtain

|ϕ(t)− ψ(t)| ≤ 1

Γ(q)

∫ t

t0

(t− s)q−1|f(s, ϕ(s))− f(s, ψ(s))|ds ≤ M1

Γ(q + 1)
(t− t0)q.

Substituting it into (3.2), we have

|ϕ(t)− ψ(t)| ≤ lMα
1

Γ(q + 1)1+α (t− t0)q+qα.

Using (3.2) and charging by induction, for any n ∈ N , we have

|ϕ(t)− ψ(t)| ≤ l
∑n−1
i=0 αiMαn

1

Γ(q + 1)
∑n
i=0 α

i (t− t0)q
∑n
i=0 α

i

.

Thus

|ϕ(t)− ψ(t)| ≤ (
l

Γ(q + 1)
)

1
1−α (t− t0)

q
1−α for t ∈ J.(3.3)

On the other hand, by (3.1), for any n ∈ N , we have

|ϕ(t)− ψ(t)|

≤ (
K

Γ(q)
)n

∫ t

t0

(t− s)q−1(s− t0)−q · · ·
∫ s

t0

(s− r)q−1(r − t0)−q|ϕ(r)− ψ(r)|dr · · · ds.

Substituting (3.3) into the above inequality and using the formulation∫ t

t0

(t− s)q−1(s− t0)−q(s− t0)
q

1−α ds = B(q, 1 +
αq

1− α )(t− t0)
q

1−α ,

( B(·, ·) is Beta function B(x, y) =
∫ 1

0
(1− s)x−1sy−1ds) we have

|ϕ(t)− ψ(t)| ≤ [
K

Γ(q)
B(q, 1 +

αq

1− α )]n[
l

Γ(q + 1)
]

1
1−α (t− t0)

q
1−α

≤ [
K

Γ(q)
B(q, 1 +

αq

1− α )]n[
l

Γ(q + 1)
]

1
1−α a

q
1−α .(3.4)

By assumption (F3), we see that

K

Γ(q)
B(q, 1 +

αq

1− α ) =
K

Γ(q)

Γ(q)Γ(1 + αq
1−α )

Γ(1 + q
1−α )

= Kα
Γ( αq

1−α )

Γ( q
1−α )

< 1.

Letting n go to infinity in (3.4), we conclude that ϕ(t) ≡ ψ(t) for t ∈ J .
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Furthermore, let {ϕn(t)} be a sequence defined by (2.1) and ϕ(t) be a solution of
IVP (1.1). Setting ψn(t) = ϕn+1(t) − ϕ(t), kn(t) = f(t, ϕn(t)) − f(t, ϕ(t)), for any
t1, t2 ∈ (t0, t0 + a] and t1 < t2, we have

|ψn(t2)− ψn(t1)| =
1

Γ(q)
|
∫ t2

t0

(t2 − s)q−1kn(s)ds−
∫ t1

t0

(t1 − s)q−1kn(s)ds|

=
1

Γ(q)
|
∫ t2

t1

(t2 − s)q−1kn(s)ds+

∫ t1

t0

[(t1 − s)q−1 − (t2 − s)q−1]kn(s)ds|

≤ l

Γ(q + 1)
[2(t2 − t1)q + (t1 − t0)q − (t2 − t0)q]‖ϕn − ϕ‖α

≤ 2l

Γ(q + 1)
(t2 − t1)q‖ϕn − ϕ‖α.

This means

sup{|ψn(t1)− ψn(t2)

(t2 − t1)q
| : t1, t2 ∈ J, t1 6= t2} ≤

2l

Γ(q + 1)
‖ϕn − ϕ‖α.

Thus

‖ϕn − ϕ‖q ≤ ‖ϕn − ϕ‖+
2l

Γ(q + 1)
‖ϕn−1 − ϕ‖α.

This implies that

lim
n→∞

‖ϕn − ϕ‖q = 0.

This completes the proof of Theorem 2.1.
�

For u, v ∈ C(J), we have, for t ∈ J ,

|Fu(t)− Fv(t)| ≤ 1

Γ(q)

∫ t

t0

(t− s)q−1|f(s, u(s))− f(s, v(s))|ds

≤ l

Γ(q)

∫ t

t0

(t− s)q−1|u(s))− v(s)|αds.

Define an operator T : C(J,R+)→ C(J,R+) by

Tx(t) =
l

Γ(q)

∫ t

t0

(t− s)q−1xα(s)ds.

In order to prove the Theorem 2.2, we establish two key lemmas.

3.1. Lemma. If the assumptions in Theorem 2.2 hold, then there exists a function
y ∈ C(J,R+) such that

Ty(t) ≤ γy(t) and γ ∈ (0,min{1, (Γ(1 + q)

M0aq
)
α−1
α }),

where M0 = min{|f(t, x0)|+ 1 : t ∈ J}.

Proof. Let η ∈ (t0, t0 + a] be a constant satisfying

l(η − t0)q

Γ(1 + q)
+
la

q
2α (η − t0)q−

q
2α

Γ(1 + q)
+
lB(q, 1− q

2
)a

q
2

+ q
2α (η − t0)

q
2
− q

2α

Γ(q)
< min{1, (Γ(1 + q)

M0aq
)
α−1
α }).
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Take γ = l(η−t0)q

Γ(1+q)
+ la

q
2α (η−t0)

q− q
2α

Γ(1+q)
+
lB(q,1− q

2
)a
q
2

+
q

2α (η−t0)
q
2
− q

2α

Γ(q)
and define the function

y from J into R by

y(t) =

{
1, if t ∈ [t0, η],

( t−t0
η−t0

)−
q

2α , if t ∈ (η, t0 + a].

We prove that Ty(t) ≤ γy(t) for t ∈ [t0, t0 + a].
For t ∈ [t0, η], we have

Ty(t) =
l

Γ(q)

∫ t

t0

(t− s)q−1ds =
l

qΓ(q)
(t− t0)q

≤ l(η − t0)q

Γ(1 + q)
< γy(t).

For t ∈ (η, t0 + a], recalling that B(x, y) =
∫ 1

0
(1− s)x−1sy−1ds, we have

Ty(t) =
l

Γ(q)

∫ t

t0

(t− s)q−1(y(s))αds

=
l

Γ(q)

∫ η

t0

(t− s)q−1ds+
l

Γ(q)

∫ t

η

(t− s)q−1(
s− t0
η − t0

)−
q
2 ds

≤ (
t− t0
η − t0

)
q

2α
l

Γ(q)

∫ t

η

(t− s)q−1(
s− t0
η − t0

)−
q
2 ds(

t− t0
η − t0

)−
q

2α

+
l

Γ(q)

∫ η

t0

(η − s)q−1ds

= (t− t0)
q
2

+ q
2α (η − t0)

q
2
− q

2α
l

Γ(q)

∫ 1

η−t0
t−t0

(1− z)q−1z−
q
2 dz(

t− t0
η − t0

)−
q

2α

+
l

Γ(q)

∫ η

t0

(η − s)q−1ds

≤ l(η − t0)q

Γ(1 + q)
+ a

q
2

+ q
2α (η − t0)

q
2
− q

2α
lB(q, 1− q

2
)

Γ(q)
(
t− t0
η − t0

)−
q

2α

≤ [
la

q
2α (η − t0)q−

q
2α

Γ(1 + q)
+ a

q
2

+ q
2α
lB(q, 1− q

2
)

Γ(q)
(η − t0)

q
2
− q

2α ](
t− t0
η − t0

)−
q

2α

< γy(t).

This completes the proof of Lemma 3.1. �

Define the norm ‖ · ‖y in C(J) by

‖u‖y = max{ 1

y(t)
|u(t)| : t ∈ J} for u ∈ C(J),

where y(t) is given in Lemma 1. Then the norms ‖ · ‖ and ‖ · ‖y are equivalent.

3.2. Lemma. Assume the assumptions of Theorem 2.2 hold, then ‖Fu−Fv‖y ≤ γ‖u−
v‖αy .
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Proof. Noting |u(t)| ≤ y(t)‖u‖y, we have

|Fu(t)− Fv(t)| ≤ l

Γ(q)

∫ t

t0

(t− s)q−1(y(s))αds‖u− v‖αy

= Ty(t)‖u− v‖αy ≤ γy(t)‖u− v‖αy ,
for t ∈ [t0, t0 + a]. By the definition of the norm ‖ · ‖y, we see that

‖Fu− Fv‖y ≤ γ‖u− v‖αy .
This completes the proof of Lemma 3.2. �

Proof. (The proof of Theorem 2.2 )

CASE 1: α = 1.

By Lemma 3.2, we see that F is a contractive mapping for the norm ‖ · ‖y . It is easy
to prove that there exists a unique function ϕ ∈ C(J) satisfying

ϕ(t) = Fϕ(t) = x0 +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, ϕ(s))ds.

Thus the IVP (1.1) has a unique solution ϕ(t).
Furthermore, noting that ϕn+1(t) = Fϕn(t) for n = 1, 2, · · · , we have

‖ϕn+1 − ϕ‖y = ‖Fϕn − Fϕ‖y ≤ γ‖ϕn − ϕ‖y

≤ · · · ≤ γn+1‖ϕ0 − ϕ‖y ≤
M2a

q

Γ(1 + q)
γn+1,

where M2 = supt∈J |f(t, ϕ(t))|. This implies that the successive sequence {ϕn(t)} con-
verge uniformly to the unique solution ϕ(t) on J with limn→∞ ‖ϕn − ϕ‖ = 0.

Similar as the proof of Theorem 2.1, we have

lim
n→∞

‖ϕn − ϕ‖q = 0.

Thus the Theorem 2.2 holds for the case α = 1.

CASE 2: α > 1.

In this case, by Lemma 3.1, we see that γ < ( Γ(1+q)
M0aq

)
α−1
α . This means that

γ
α
α−1

M0a
q

Γ(q + 1)
< 1.

By Lemma 3.2, we have

‖ϕn+1 − ϕn‖y = ‖Fϕn − Fϕn−1‖y ≤ γ‖ϕn − ϕn−1‖αy
≤ · · · ≤ γ

∑n
i=0 α

i

‖ϕ1 − ϕ0‖α
n

y

≤ γ
∑n
i=0 α

i

‖ϕ1 − ϕ0‖α
n

≤ γ−
1

α−1 (γ
α
α−1

M0a
q

Γ(1 + q)
)α
n

.

It follows from γ
α
α−1

k3

M0a
q

Γ(q+1)
< 1 that {ϕn(t)} is a Cauchy sequence for the norm ‖ · ‖y.

Thus {ϕn(t)} also is a Cauchy sequence for the norm ‖ · ‖.
Setting ϕ(t) = limn→∞ ϕn(t), then, by Lebesgue’s dominated convergence theorem,

we obtain

ϕ(t) = x0 +
1

Γ(q)

∫ t

t0

(t− s)q−1f(s, ϕ(s))ds.

Thus the IVP (1.1) has a solution ϕ(t).
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Following the above arguments and Lemma 3.2, the uniqueness and convergence are
obvious. The proofs are omitted.

For all, the results of Theorem 2.2 hold for α ≥ 1. This completes the proof of
Theorem 2.2. �

With the similar arguments in the proof of Theorem 2.2, we should establish the
following two lemmas under the assumptions of Theorem 2.3.

3.3. Lemma. If the assumptions in Theorem 2.3 hold, then there exist an increasing
function b ∈ C(J,R+) and a constant δ ∈ (0, 1) such that

Hb(t) :=
K

Γ(q)

∫ t

t0

(t− s)q−1(s− t0)−pb(s)ds ≤ δb(t).

Proof. Similarly, we choose a positive number η ∈ J such that

K(η − t0)q−pB(q, 1− p)
Γ(q)

+K(η − t0)q−p < 1.

Also, let δ = K(η−t0)q−pB(q,1−p)
Γ(q)

+K(η− t0)q−p and define an increasing function b from

J into R by

b(t) =

{
1, if t ∈ [t0, η],

e
t−η
η−t0 , if t ∈ (η, t0 + a].

We prove that Hb(t) ≤ δb(t) for t ∈ [t0, t0 + a].

For t ∈ [t0, η], recalling B(x, y) =
∫ 1

0
(1− s)x−1sy−1ds, we have

Hb(t) =
K

Γ(q)

∫ t

t0

(t− s)q−1(s− t0)−pds =
K

Γ(q)
(t− t0)q−p

∫ 1

0

(1− z)q−1z1−p−1dz

=
KB(q, 1− p)

Γ(q)
(t− t0)q−p ≤ K(η − t0)q−pB(q, 1− p)

Γ(q)
< δb(t).

For t ∈ (η, t0 + a], we have

Hb(t) =
K

Γ(q)

∫ t

t0

(t− s)q−1(s− t0)−pb(s)ds

=
K

Γ(q)

∫ η

t0

(t− s)q−1(s− t0)−pds+
K

Γ(q)

∫ t

η

(t− s)q−1(s− t0)−pe
s−η
η−t0 ds

≤ K

Γ(q)

∫ η

t0

(η − s)q−1(s− t0)−pds+
K

Γ(q)

∫ t

η

(t− s)q−1(s− t0)−pe
s−η
η−t0 ds

≤ K(η − t0)q−pB(q, 1− p)
Γ(q)

+
K

Γ(q)

∫ t

η

(t− s)q−1(s− t0)−pe
− t−s
η−t0 dse

t−η
η−t0

≤ [
K(η − t0)q−pB(q, 1− p)

Γ(q)
+
K(η − t0)q−p

Γ(q)

∫ t
η−t0

0

zq−1e−zdz]e
t−η
η−t0

≤ [
K(η − t0)q−pB(q, 1− p)

Γ(q)
+K(η − t0)q−p]b(t)

= δb(t).

Thus there exist a positive function b(t) and a constant δ ∈ (0, 1) such that

Hb(t) ≤ δb(t).
�
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3.4. Lemma. Under the assumptions of Theorem 2.3, the operator F is contraction
mapping in the sense of equivalent norm.

Proof. Define norm ‖ · ‖b in C(J) by

‖u‖b = max{ 1

b(t)
|u(t)| : t ∈ J} for u ∈ C(J),

where b(t) is given in Lemma 3.3. Then the two norms ‖ · ‖ and ‖ · ‖b are equivalent.
For u, v ∈ C(J), by Lemma 3.3, we have, for t ∈ J ,

|Fu(t)− Fv(t)| ≤ 1

Γ(q)

∫ t

t0

(t− s)q−1|f(s, u(s))− f(s, v(s))|ds

≤ K

Γ(q)

∫ t

t0

(t− s)q−1(s− t0)−p|u(s))− v(s)|ds

≤ K

Γ(q)

∫ t

t0

(t− s)q−1(s− t0)−pb(s)ds‖u− v‖b

= δb(t)‖u− v‖b.
Thus

‖Fu− Fv‖b ≤ δ‖u− v‖b.
This implies that the operator F is contractive in the sense of equivalent norm ‖ · ‖b. �

Proof. (Proof of Theorem 2.3) By Lemma 3.4 and the similar arguments in the proof
Theorem 2.2, we claim that there exists a unique solution ϕ(t) of IVP (1.1) on J . Also,
It is easy to prove that (ψn(t) = ϕn+1(t)− ϕ(t))

sup{|ψn(t1)− ψn(t2)

(t2 − t1)q
| : t1, t2 ∈ J, t1 6= t2} ≤

2l

Γ(q + 1)
sup
t∈J
|f(t, ϕn(t))− f(t, ϕ(t))|.

Noting that ϕn(t) converge uniformly to ϕ(t) on J , we conclude that

lim
n→∞

‖ϕn − ϕ‖q = 0 uniformly on J.

This completes the proof of Theorem 2.3.
�
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