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Abstract

In this paper, we introduce the concept of normal ideal of a subtraction
algebra and study properties in connection with multiplies of subtrac-
tion algebras. The image and inverse image of a normal ideal of a sub-
traction algebra are proved to be again normal ideals. Also, we char-
acterize the normal ideals of direct products of subtraction algebras.
Finally, the concept of a weak congruence is introduced in subtraction
algebras and obtain an interconnection between multipliers and weak
congruences.
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1. Introduction

In [4] a partial multiplier on a commutative semigroup (A, -) has been introduced as
a function F' from a nonvoid subset D of A into A such that F(z) -y = x - F(y) for
all z,y € Dp. In this paper, we introduce the concept of normal ideal of a subtraction
algebra and study properties in connection with multiplies of subtraction algebras. The
image and inverse image of a normal ideal of a subtraction algebra are proved to be again
normal ideals. Also, we characterize the normal ideals of direct products of subtraction
algebras. Finally, the concept of a weak congruence is introduced in subtraction algebras
and obtain an interconnection between multipliers and weak congruences.
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2. Preliminaries

By a subtraction algebra we mean an algebra (X;—) with a single binary operation
“—” that satisfies the following identities: for any z,y,z € X,
(51) = —(y —z) = =;
(52) z—(z—y)=y—(y —x);
(83) w—y)—z=(—-2) -y
The last identity permits us to omit parentheses in expressions of the form (z —y) — z.
The subtraction determines an order relation on X: a <b < a—b =0, where 0 =a—a
is an element that does not depend on the choice of @ € X. The ordered set (X;<) is a
semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
which every interval [0, a] is a Boolean algebra with respect to the induced order. Here
aAb = a— (a—b); the relative complement b' of an element b € [0,a] is a — b; and if
b,c € [0, a], then
bve = (WA =a—((a—b)A(a—rc))
= a—((a=b)—((a="b) = (a—0))).
In a subtraction algebra, the following properties are true: for all x,y,z € X,

(rl) (x—y)—y=x—y.

(p2) —0=zand 0 —z =0.

(p3) (z—y)—z=0.

(pd) z—(z—y) <y

(P5) (z—y)—(y—=z)=x—y

(P6) z—(z—(z—y)=z—y.

®7) (z-y) —-(z-y)<z-=z

(p8) = <y if and only if x = y — w for some w € X.
(p9) z<yimpliesz —z2<y—zand z—y <z —ux.
(pl0) z,y < zimpliesz —y =z A (2 — y).

(p11) (zAy)—(zAz) <z A(y—2).

(p12) (z—y)—z=(zx—2)—(y—2)

A non-empty subset I of a subtraction algebra X is called a subalgebra if x —y € I
for all z,y € I. A mapping d from a subtraction algebra X to a subtraction algebra Y is
called a morphism if d(x —y) = d(z) —d(y) for all z,y € X. A self map d of a subtraction
algebra X which is a morphism is called an endomorphism.

A nonempty subset I of a subtraction algebra X is called an ideal of X if it satisfies

(I1) 0 €1,
(I12) for any z,y € X,y € I and z —y € I implies z € I.
For an ideal I of a subtraction algebra X, it is clear that x <y and y € I imply z € I

for any =,y € X. If x < y implies d(z) < d(y), d is called an isotone mapping.
3. Multipliers in subtraction algebras
In what follows, let X denote a subtraction algebra unless otherwise specified.

3.1. Definition. [7] Let (X,—,0) be a subtraction algebra. A self-map f is called a
multiplier if

fle—y)=f(z)—y
for all z,y € X.

3.2. Example. [7] Let X = {0,a,b} be a subtraction algebra with the following Cayley
table



A note on multipliers of subtraction algebras 167

Define a map f: X — X by
0 ifz=0,a
) =
/(@) {b ifx="0
Then it is easily checked that f is a multiplier of subtraction algebra X.
3.3. Lemma. [7] Let f be a multiplier in subtraction algebra X. Then we have f(0) = 0.

3.4. Proposition. Let X be a subtraction algebra. A multiplier f : X — X is an identity
map if it satisfies f(z) —y =x — f(y) for all z,y € X.

Proof. Suppose that f satisfy the identity f(z) —y = = — f(y) for all z,y € X. Then
fl@)=f(z—-0)=f(z) —0=z — f(0) =2 — 0 =z. Thus f is an identity map. O

3.5. Proposition. [7] Let f be a multiplier of a subtraction algebra X. Then f is idem-
potent, that is, f> = fo f = f.

In general, every multiplier of X need not be identity. However, in the following
theorem, we give a set of conditions which are equivalent to be an identity multiplier.

3.6. Theorem. Let X be a subtraction algebra. A multiplier f of X is an identity map
if and only if the following conditions are satisfied for all x,y € X,

() f(o —y) = £@) — 1(0)

(it) x — [~ (y) = f(zx) = f(y)-
Proof. The condition for necessary is trivial. For sufficiency, assume that (i) and (ii)
hold. Then for z,y € X, we get « — f(y) =z — f2(y) = f(z) — f(y) = f(z —y). Also, by
the definition of the multiplier, we have f(z —y) = f(z) — y. Hence

fle—y)=f@) —y=2—f(y)

By Proposition 3.4, f is an identity multiplier of X. |
3.7. Definition. Let X be a subtraction algebra. A non-empty set F' of X is called a
normal ideal if it satisfies the following conditions:

(i) 0 € F,

(i) z € Fandy € X imply z —y € F.

3.8. Example. Let X = {0,a,b,1} in which “—” is defined by

—‘Oabl
0/0 0O 0 O
ala 0 a O
bi{b b 0 0
1|1 b a O

It is easy to check that (X;—,0) is a subtraction algebra. Now consider F' = {0,a}.
Then it is easy to check that F' is a normal ideal of X.

3.9. Proposition. Let X be a subtraction algebra. For anya € X, Sq ={z—a |z € X}
is a subalgebra of X.

Proof. Let v —a,y—a € S,. Then (x —a) — (y—a) = (z — (y — a)) — a € S,. Therefore
Se is a subalgebra of X. O



168 S. D. Lee and K. H. Kim

3.10. Proposition. Let X be a subtraction algebra. For any a € X, S, is a normal
ideal of X.

Proof. Clearly, 0 —a=0¢€ S,. Let r € X and b € S,. Then b = x — a for some x € X.
Hence b—r =(x —a) —r = (x —r) —a € S,. Therefore S, is a normal ideal of X. O

3.11. Proposition. Let X be a subtraction algebra. For u,v € X, the set
X(u,v) ={z| (x —u) —v =0}
is a subalgebra of X.
Proof. Let z,y € X(u,v). Then we have (z — u) —v = 0 and (y — u) — v = 0. Hence
(z—y)—uw)—v=_(z—u)—y)—v=((r—u) —v) —y =0—y = 0, which implies
x —y € X(u,v). This completes the proof. O
3.12. Proposition. Let X be a subtraction algebra. For u,v € X, the set
X(u,v)={z|(z—u) —v=0}
is a normal ideal of X, and u,v € X (u,v).

Proof. Obviously, 0,u,v € X(u,v). Let z,7 € X be such that © € X (u,v). Then (z —
u)—v=0,andso ((z—r)—u)—v=((z—u)—r)—v=_(r—u)—v)—r=0—r=0.
This implies © — r € X (u,v). This completes the proof. O
3.13. Proposition. Let F' is a normal ideal of X. For any w € X, the set
Foy={z|z—weF}

is a subalgebra of X.

Proof. Let z,y € F,,. Then x—w,y—w € F. Therefore, (x—y)—w = (x—w)—(y—w) € F,
which implies x — y € Fy,. This completes the proof. O

3.14. Proposition. If F' is a normal ideal of X, the set F, is a normal ideal containing
F and w.

Proof. Let w € X. Since 0 —w = 0 € F, we have 0 € F,,. Let z,7 € X be such that
x € Fy. Then © — w € F. Therefore, (x — ) —w = (x — w) — r € F, which implies
x —r € Fy. Obviously, F,, contains F' and w. This completes the proof. O

Let X; and X2 be two subtraction algebras. Then X; x X3 is also a subtraction
algebra with respect to the point-wise operation given by

(a7b)7(cad):(afcab7d)
for all a,c € X7 and b,d € Xo.

3.15. Proposition. Let X;1 and X2 be two subtraction algebras. Define a map f :
X1 X Xo = X1 X X2 by f(z,y) = (,0) for all (x,y) € X1 X Xao. Then [ is a multiplier
of X1 x X2 with respect to the point-wise operation.
Proof. Let (z1,y1), (z2,y2) € X1 X X2. The we have
(@1, 91) = (22, 92)) = fz1 — 22,51 — y2)
= (z1 — 22,0)
= (71 — 72,0 — y2)
= (21,0) — (2, 92)
= f(@1,91) — (22, 92).
Therefore f is a multiplier of the direct product X; x Xa. O
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3.16. Theorem. If I and F» are normal ideals of X1 and X2 respectively, then Fy X F»
is a normal ideal of the product algebra X1 X Xa.

Proof. Let Fi and F> be normal ideals of X; and Xs respectively. Since 0 € F; and
0 € F», we have (0,0) € F1 x F>. Let (z,y) € X1 X X2 and (x1,y1) € Fi X F». Also,
since I} and F> are normal ideals of X; and X5 respectively, we get x1 — x € F1 and
y1 —y € F». Hence (z1,y1) — (z,y) = (1 — z,y1 —y) € F1 X F». Therefore, Fy x F» is a
normal ideal of X7 x Xs. O

3.17. Theorem. Let f be a multiplier of subtraction X. For any normal ideal F' of X,
both f(F) and f~Y(F) are normal ideals of X.

Proof. Clearly, 0 = f(0). Let € X and a € f(F). Then a = f(s) for some s € F.
Now a —z = f(s) —x = f(s —z) € f(F) because s — x € F. Therefore f(F) is a
normal ideal of X. Since F' is a normal ideal of X, we obtain f(0) = 0 € F. Hence
0=f"'(F). Let x € X and a € f~*(F). Then f(a) € F. Since F is a normal ideal, we
get f(a—z) = f(a) —x € F. Hence a — x € f~'(F). Therefore f~'(F) is a normal ideal
of X. 0

3.18. Definition. [4] Let f be a multiplier of a subtraction algebra X. Define the kernel
of the multiplier f by

Kerf={z € X | f(x) =0}.

3.19. Proposition. For any multiplier f of a subtraction algebra X, Kerf is a normal
ideal of X.

Proof. Clearly,0 € Kerf.Leta € Kerf and z € X. Then f(a—z) = f(a)—z =0—z = 0.
Hence a — x € Kerf, which implies that Kerf is a normal ideal of X. O

3.20. Definition. Let f be a multiplier of a subtraction algebra. An element a € X is
called a fized element if f(a) = a.

Let us denote the set of all fixed elements of X by Fizs(X) = {z € X | f(z) = =}
and the image of X under the multiplier f by Im(f).

3.21. Lemma. Let f be a multiplier of subtraction algebra X. Then Im(f) = Fizs(X).

Proof. Let x € Fizs(X). Then x = f(z) € Im(f). Hence Fizs(X) C Im(f). Now let
a € Im(f). Then we get a = f(b) for some b € X. Thus f(a) = f(f(b)) = f(b) = a, which
implies Im(f) C Fizs(X). Therefore, Im(f) = Fizs(X). This completes the proof. O

3.22. Theorem. Let f be a multiplier of a subtraction algebra X. then we have
(i) Fizy(X) is a normal ideal of X.
(i) Im(f) is a normal ideal of X.

Proof. (i) Since f(0) = 0, we have 0 € Fizy(X). Let z € X and a € Fizy(X). Then
f(a) =aNow f(a—z) = f(a) —z = a—x. Hence a — x € Fizs(X). Therefore, Fizs(X)
is a normal ideal of X.

(if) Obviously, 0 = f(0). Let x € X and a € Im(f). Then a = f(b) for some b € X.
Now a —z = f(b) —z = f(b—x) € f(X). Therefore, Im(f) is a normal ideal of X. O

Let us recall from [4] that the composition of two multipliers f and g of a subtraction
algebra X is a multiplier of X where (f o g)(z) = f(g(z)) for all z € X.
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3.23. Theorem. Let f and g be two multipliers of X such that fog = go f. Then the
following conditions are equivalent.

(1) f=g

(ii) f(X) = g(X).

(i) Fixy(X) = Fizg(X).

Proof. (i)= (ii): It is obvious.

(ii) = (iii): Assume that f(X) = g(X). Let « € Fizs(X). Then z = f(z) € f(X) =
g(X). Hence = = g(y) for some y € X. Now g(z) = g(g(y)) = ¢°(v) = g(y) = . Thus = €
Fizg(X). Therefore, Fizy C Fixy(X). Similarly, we can obtain Fizy(X) C Fizs(X).
Thus Fizy(X) = Fizg(X).

(iii) = (i): Assume that Fizs(X) = Fizg(X). Let x € X. Since f(x) € Fizs(X) =
Fizg(X), we have g(f(x)) = f(z). Also, we obtain g(z) € Fizy(X) = Fizs(X). Hence
we get f(g(x)) = g(z). Thus we have

f(@) = 9(f(z)) = (g0 f)(x) = (fog)(z) = f(g(x)) = g(x).

Therefore, f and g are equal in the sense of mappings. O

3.24. Definition. Let X be a subtraction algebra. An equivalence relation 6 on X is
called a weak congruence if (x,y) € 0 implies (z — a,y — a) for any a € X.

Clearly, every congruence on X is a weak congruence on X. In the following theorem,
we have an example for a weak congruence in terms of multipliers.

3.25. Theorem. Let f be a multiplier of a subtraction algebra X. Define a binary oper-
ation 05y on X as follows:

(z,y) € 05 if and only if f(x) = f(y) for allz,y € X.

Then 0 is a weak congruence on X.

Proof. Clearly, 6 is an equivalence relation on X. Let (z,y) € 0. Then we have f(z) =
f(y). Now for any a € X, we have

fle—a)=f(z)—a=f(y) —a= f(y—a)
Hence (x —a,y —a) € 0. O

3.26. Lemma. Let f be a multiplier of a subtraction algebra X. Then
(i) f(z) =z for all x € f(X).
(ir) If (x,y) € Oy and x,y € f(X), z =y.

Proof. (i) Let € f(X). Then z = f(a) for some a € X. Now f(z) = f2(z) = f(f(z)) =
f(a) = a.

(i) Let (z,y) € 65 and z,y € f(X). Then by (i), z = f(z) = f(y) = . O
3.27. Theorem. Let X be a subtraction algebra and let F' be a normal ideal of X. Then

there exists multiplier f of X such that f(X) = F if and only if FNOs(x) is a single-ton
set for all x € X, where 05 is the congruence class of x with respect to 0.

Proof. Let f be a multiplier of X such that f(X) = F. Then clearly 0sis a weak congru-
ence on X. Let ¢ € X be an arbitrary element. Since f(z) = f*(z), we get (x, f(x)) = 0.
Hence f(z) € 0¢(x). Also, f(z) € f(X) = F, which implies f(z) € F N6s(x). Therefore
F N0 (x) is non-empty. Let a,b be two element of F N O¢(x). Then by Lemma 3.26, we
get a = b. Hence F' N 6s(x) is a single-ton set. Conversely, assume that F' N 6;(z) is a
single-ton set for all z € X. Let o be the single element of F' N0 (x). Now define a self
map as follows,

f:X—>Xby f(z)=x0
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for all z € X. By the definition of the map f, we get f(a) € F and f(f(a)) = f(a). Since
F is normal, we get f(a) —b € F, and so

f(f(a)) = f(a) = (f(a),a) € b5
= (f(a—b),a—b) € b
= f(a) —b € bBf(a—0b)
= f(a)—=be FNbOsla—>b) (f(a)—beF)

Since f(a—b) € FNOs(a—b) and FNOs(a—b) is a single-ton set, we get f(a—b) = f(a)—b.
Therefore f is a multiplier of X. O
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