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Abstract

In this paper, we introduce the concept of normal ideal of a subtraction
algebra and study properties in connection with multiplies of subtrac-
tion algebras. The image and inverse image of a normal ideal of a sub-
traction algebra are proved to be again normal ideals. Also, we char-
acterize the normal ideals of direct products of subtraction algebras.
Finally, the concept of a weak congruence is introduced in subtraction
algebras and obtain an interconnection between multipliers and weak
congruences.
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1. Introduction

In [4] a partial multiplier on a commutative semigroup (A, ·) has been introduced as
a function F from a nonvoid subset DF of A into A such that F (x) · y = x · F (y) for
all x, y ∈ DF . In this paper, we introduce the concept of normal ideal of a subtraction
algebra and study properties in connection with multiplies of subtraction algebras. The
image and inverse image of a normal ideal of a subtraction algebra are proved to be again
normal ideals. Also, we characterize the normal ideals of direct products of subtraction
algebras. Finally, the concept of a weak congruence is introduced in subtraction algebras
and obtain an interconnection between multipliers and weak congruences.
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2. Preliminaries

By a subtraction algebra we mean an algebra (X;−) with a single binary operation
“−” that satisfies the following identities: for any x, y, z ∈ X,

(S1) x− (y − x) = x;
(S2) x− (x− y) = y − (y − x);
(S3) (x− y)− z = (x− z)− y.

The last identity permits us to omit parentheses in expressions of the form (x− y)− z.
The subtraction determines an order relation on X: a ≤ b ⇔ a− b = 0, where 0 = a− a
is an element that does not depend on the choice of a ∈ X. The ordered set (X;≤) is a
semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in
which every interval [0, a] is a Boolean algebra with respect to the induced order. Here
a ∧ b = a − (a − b); the relative complement b′ of an element b ∈ [0, a] is a − b; and if
b, c ∈ [0, a], then

b ∨ c = (b′ ∧ c′)′ = a− ((a− b) ∧ (a− c))
= a− ((a− b)− ((a− b)− (a− c))).

In a subtraction algebra, the following properties are true: for all x, y, z ∈ X,
(p1) (x− y)− y = x− y.
(p2) x− 0 = x and 0− x = 0.
(p3) (x− y)− x = 0.
(p4) x− (x− y) ≤ y.
(p5) (x− y)− (y − x) = x− y
(p6) x− (x− (x− y)) = x− y.
(p7) (x− y)− (z − y) ≤ x− z.
(p8) x ≤ y if and only if x = y − w for some w ∈ X.
(p9) x ≤ y implies x− z ≤ y − z and z − y ≤ z − x.

(p10) x, y ≤ z implies x− y = x ∧ (z − y).
(p11) (x ∧ y)− (x ∧ z) ≤ x ∧ (y − z).
(p12) (x− y)− z = (x− z)− (y − z).
A non-empty subset I of a subtraction algebra X is called a subalgebra if x − y ∈ I

for all x, y ∈ I. A mapping d from a subtraction algebra X to a subtraction algebra Y is
called a morphism if d(x−y) = d(x)−d(y) for all x, y ∈ X. A self map d of a subtraction
algebra X which is a morphism is called an endomorphism.

A nonempty subset I of a subtraction algebra X is called an ideal of X if it satisfies

(I1) 0 ∈ I,
(I2) for any x, y ∈ X, y ∈ I and x− y ∈ I implies x ∈ I.

For an ideal I of a subtraction algebra X, it is clear that x ≤ y and y ∈ I imply x ∈ I
for any x, y ∈ X. If x ≤ y implies d(x) ≤ d(y), d is called an isotone mapping.

3. Multipliers in subtraction algebras

In what follows, let X denote a subtraction algebra unless otherwise specified.

3.1. Definition. [7] Let (X,−, 0) be a subtraction algebra. A self-map f is called a
multiplier if

f(x− y) = f(x)− y

for all x, y ∈ X.

3.2. Example. [7] Let X = {0, a, b} be a subtraction algebra with the following Cayley
table
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− 0 a b

0 0 0 0
a a 0 a
b b b 0

Define a map f : X → X by

f(x) =

{
0 if x = 0, a

b if x = b

Then it is easily checked that f is a multiplier of subtraction algebra X.

3.3. Lemma. [7] Let f be a multiplier in subtraction algebra X. Then we have f(0) = 0.

3.4. Proposition. Let X be a subtraction algebra. A multiplier f : X → X is an identity
map if it satisfies f(x)− y = x− f(y) for all x, y ∈ X.

Proof. Suppose that f satisfy the identity f(x) − y = x − f(y) for all x, y ∈ X. Then
f(x) = f(x− 0) = f(x)− 0 = x− f(0) = x− 0 = x. Thus f is an identity map. �

3.5. Proposition. [7] Let f be a multiplier of a subtraction algebra X. Then f is idem-
potent, that is, f2 = f ◦ f = f.

In general, every multiplier of X need not be identity. However, in the following
theorem, we give a set of conditions which are equivalent to be an identity multiplier.

3.6. Theorem. Let X be a subtraction algebra. A multiplier f of X is an identity map
if and only if the following conditions are satisfied for all x, y ∈ X,

(i) f(x− y) = f(x)− f(y),
(ii) x− f2(y) = f(x)− f(y).

Proof. The condition for necessary is trivial. For sufficiency, assume that (i) and (ii)
hold. Then for x, y ∈ X, we get x− f(y) = x− f2(y) = f(x)− f(y) = f(x− y). Also, by
the definition of the multiplier, we have f(x− y) = f(x)− y. Hence

f(x− y) = f(x)− y = x− f(y).

By Proposition 3.4, f is an identity multiplier of X. �

3.7. Definition. Let X be a subtraction algebra. A non-empty set F of X is called a
normal ideal if it satisfies the following conditions:

(i) 0 ∈ F,
(ii) x ∈ F and y ∈ X imply x− y ∈ F.

3.8. Example. Let X = {0, a, b, 1} in which “−” is defined by

− 0 a b 1

0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 b a 0

It is easy to check that (X;−, 0) is a subtraction algebra. Now consider F = {0, a}.
Then it is easy to check that F is a normal ideal of X.

3.9. Proposition. Let X be a subtraction algebra. For any a ∈ X, Sa = {x−a | x ∈ X}
is a subalgebra of X.

Proof. Let x− a, y − a ∈ Sa. Then (x− a)− (y − a) = (x− (y − a))− a ∈ Sa. Therefore
Sa is a subalgebra of X. �
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3.10. Proposition. Let X be a subtraction algebra. For any a ∈ X, Sa is a normal
ideal of X.

Proof. Clearly, 0 − a = 0 ∈ Sa. Let r ∈ X and b ∈ Sa. Then b = x − a for some x ∈ X.
Hence b− r = (x− a)− r = (x− r)− a ∈ Sa. Therefore Sa is a normal ideal of X. �

3.11. Proposition. Let X be a subtraction algebra. For u, v ∈ X, the set

X(u, v) = {x | (x− u)− v = 0}
is a subalgebra of X.

Proof. Let x, y ∈ X(u, v). Then we have (x − u) − v = 0 and (y − u) − v = 0. Hence
((x − y) − u) − v = ((x − u) − y) − v = ((x − u) − v) − y = 0 − y = 0, which implies
x− y ∈ X(u, v). This completes the proof. �

3.12. Proposition. Let X be a subtraction algebra. For u, v ∈ X, the set

X(u, v) = {x | (x− u)− v = 0}
is a normal ideal of X, and u, v ∈ X(u, v).

Proof. Obviously, 0, u, v ∈ X(u, v). Let x, r ∈ X be such that x ∈ X(u, v). Then (x −
u)− v = 0, and so ((x− r)− u)− v = ((x− u)− r)− v = ((x− u)− v)− r = 0− r = 0.
This implies x− r ∈ X(u, v). This completes the proof. �

3.13. Proposition. Let F is a normal ideal of X. For any w ∈ X, the set

Fw = {x | x− w ∈ F}
is a subalgebra of X.

Proof. Let x, y ∈ Fw. Then x−w, y−w ∈ F. Therefore, (x−y)−w = (x−w)−(y−w) ∈ F,
which implies x− y ∈ Fw. This completes the proof. �

3.14. Proposition. If F is a normal ideal of X, the set Fw is a normal ideal containing
F and w.

Proof. Let w ∈ X. Since 0 − w = 0 ∈ F, we have 0 ∈ Fw. Let x, r ∈ X be such that
x ∈ Fw. Then x − w ∈ F. Therefore, (x − r) − w = (x − w) − r ∈ F, which implies
x− r ∈ Fw. Obviously, Fw contains F and w. This completes the proof. �

Let X1 and X2 be two subtraction algebras. Then X1 × X2 is also a subtraction
algebra with respect to the point-wise operation given by

(a, b)− (c, d) = (a− c, b− d)

for all a, c ∈ X1 and b, d ∈ X2.

3.15. Proposition. Let X1 and X2 be two subtraction algebras. Define a map f :
X1 ×X2 → X1 ×X2 by f(x, y) = (x, 0) for all (x, y) ∈ X1 ×X2. Then f is a multiplier
of X1 ×X2 with respect to the point-wise operation.

Proof. Let (x1, y1), (x2, y2) ∈ X1 ×X2. The we have

f((x1, y1)− (x2, y2)) = f(x1 − x2, y1 − y2)

= (x1 − x2, 0)

= (x1 − x2, 0− y2)

= (x1, 0)− (x2, y2)

= f(x1, y1)− (x2, y2).

Therefore f is a multiplier of the direct product X1 ×X2. �
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3.16. Theorem. If F1 and F2 are normal ideals of X1 and X2 respectively, then F1×F2

is a normal ideal of the product algebra X1 ×X2.

Proof. Let F1 and F2 be normal ideals of X1 and X2 respectively. Since 0 ∈ F1 and
0 ∈ F2, we have (0, 0) ∈ F1 × F2. Let (x, y) ∈ X1 × X2 and (x1, y1) ∈ F1 × F2. Also,
since F1 and F2 are normal ideals of X1 and X2 respectively, we get x1 − x ∈ F1 and
y1 − y ∈ F2. Hence (x1, y1)− (x, y) = (x1 − x, y1 − y) ∈ F1 × F2. Therefore, F1 × F2 is a
normal ideal of X1 ×X2. �

3.17. Theorem. Let f be a multiplier of subtraction X. For any normal ideal F of X,
both f(F ) and f−1(F ) are normal ideals of X.

Proof. Clearly, 0 = f(0). Let x ∈ X and a ∈ f(F ). Then a = f(s) for some s ∈ F.
Now a − x = f(s) − x = f(s − x) ∈ f(F ) because s − x ∈ F. Therefore f(F ) is a
normal ideal of X. Since F is a normal ideal of X, we obtain f(0) = 0 ∈ F. Hence
0 = f−1(F ). Let x ∈ X and a ∈ f−1(F ). Then f(a) ∈ F . Since F is a normal ideal, we
get f(a− x) = f(a)− x ∈ F. Hence a− x ∈ f−1(F ). Therefore f−1(F ) is a normal ideal
of X. �

3.18. Definition. [4] Let f be a multiplier of a subtraction algebra X. Define the kernel
of the multiplier f by

Kerf = {x ∈ X | f(x) = 0}.

3.19. Proposition. For any multiplier f of a subtraction algebra X, Kerf is a normal
ideal of X.

Proof. Clearly, 0 ∈ Kerf. Let a ∈ Kerf and x ∈ X. Then f(a−x) = f(a)−x = 0−x = 0.
Hence a− x ∈ Kerf, which implies that Kerf is a normal ideal of X. �

3.20. Definition. Let f be a multiplier of a subtraction algebra. An element a ∈ X is
called a fixed element if f(a) = a.

Let us denote the set of all fixed elements of X by Fixf (X) = {x ∈ X | f(x) = x}
and the image of X under the multiplier f by Im(f).

3.21. Lemma. Let f be a multiplier of subtraction algebra X. Then Im(f) = Fixf (X).

Proof. Let x ∈ Fixf (X). Then x = f(x) ∈ Im(f). Hence Fixf (X) ⊆ Im(f). Now let
a ∈ Im(f). Then we get a = f(b) for some b ∈ X. Thus f(a) = f(f(b)) = f(b) = a, which
implies Im(f) ⊆ Fixf (X). Therefore, Im(f) = Fixf (X). This completes the proof. �

3.22. Theorem. Let f be a multiplier of a subtraction algebra X. then we have
(i) Fixf (X) is a normal ideal of X.
(ii) Im(f) is a normal ideal of X.

Proof. (i) Since f(0) = 0, we have 0 ∈ Fixf (X). Let x ∈ X and a ∈ Fixf (X). Then
f(a) = a Now f(a−x) = f(a)−x = a−x. Hence a−x ∈ Fixf (X). Therefore, Fixf (X)
is a normal ideal of X.

(ii) Obviously, 0 = f(0). Let x ∈ X and a ∈ Im(f). Then a = f(b) for some b ∈ X.
Now a− x = f(b)− x = f(b− x) ∈ f(X). Therefore, Im(f) is a normal ideal of X. �

Let us recall from [4] that the composition of two multipliers f and g of a subtraction
algebra X is a multiplier of X where (f ◦ g)(x) = f(g(x)) for all x ∈ X.
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3.23. Theorem. Let f and g be two multipliers of X such that f ◦ g = g ◦ f. Then the
following conditions are equivalent.

(i) f = g.
(ii) f(X) = g(X).
(iii) Fixf (X) = Fixg(X).

Proof. (i)⇒ (ii): It is obvious.
(ii) ⇒ (iii): Assume that f(X) = g(X). Let x ∈ Fixf (X). Then x = f(x) ∈ f(X) =

g(X). Hence x = g(y) for some y ∈ X. Now g(x) = g(g(y)) = g2(y) = g(y) = x. Thus x ∈
Fixg(X). Therefore, Fixf ⊆ Fixg(X). Similarly, we can obtain Fixg(X) ⊆ Fixf (X).
Thus Fixf (X) = Fixg(X).

(iii) ⇒ (i): Assume that Fixf (X) = Fixg(X). Let x ∈ X. Since f(x) ∈ Fixf (X) =
Fixg(X), we have g(f(x)) = f(x). Also, we obtain g(x) ∈ Fixg(X) = Fixf (X). Hence
we get f(g(x)) = g(x). Thus we have

f(x) = g(f(x)) = (g ◦ f)(x) = (f ◦ g)(x) = f(g(x)) = g(x).

Therefore, f and g are equal in the sense of mappings. �

3.24. Definition. Let X be a subtraction algebra. An equivalence relation θ on X is
called a weak congruence if (x, y) ∈ θ implies (x− a, y − a) for any a ∈ X.

Clearly, every congruence on X is a weak congruence on X. In the following theorem,
we have an example for a weak congruence in terms of multipliers.

3.25. Theorem. Let f be a multiplier of a subtraction algebra X. Define a binary oper-
ation θf on X as follows:

(x, y) ∈ θf if and only if f(x) = f(y) for all x, y ∈ X.
Then θf is a weak congruence on X.

Proof. Clearly, θf is an equivalence relation on X. Let (x, y) ∈ θf . Then we have f(x) =
f(y). Now for any a ∈ X, we have

f(x− a) = f(x)− a = f(y)− a = f(y − a).

Hence (x− a, y − a) ∈ θf . �

3.26. Lemma. Let f be a multiplier of a subtraction algebra X. Then
(i) f(x) = x for all x ∈ f(X).
(ii) If (x, y) ∈ θf and x, y ∈ f(X), x = y.

Proof. (i) Let x ∈ f(X). Then x = f(a) for some a ∈ X. Now f(x) = f2(x) = f(f(x)) =
f(a) = x.

(ii) Let (x, y) ∈ θf and x, y ∈ f(X). Then by (i), x = f(x) = f(y) = y. �

3.27. Theorem. Let X be a subtraction algebra and let F be a normal ideal of X. Then
there exists multiplier f of X such that f(X) = F if and only if F ∩ θf (x) is a single-ton
set for all x ∈ X, where θf is the congruence class of x with respect to θf .

Proof. Let f be a multiplier of X such that f(X) = F. Then clearly θf is a weak congru-
ence on X. Let x ∈ X be an arbitrary element. Since f(x) = f2(x), we get (x, f(x)) = θf .
Hence f(x) ∈ θf (x). Also, f(x) ∈ f(X) = F, which implies f(x) ∈ F ∩ θf (x). Therefore
F ∩ θf (x) is non-empty. Let a, b be two element of F ∩ θf (x). Then by Lemma 3.26, we
get a = b. Hence F ∩ θf (x) is a single-ton set. Conversely, assume that F ∩ θf (x) is a
single-ton set for all x ∈ X. Let x0 be the single element of F ∩ θf (x). Now define a self
map as follows,

f : X → X by f(x) = x0
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for all x ∈ X. By the definition of the map f , we get f(a) ∈ F and f(f(a)) = f(a). Since
F is normal, we get f(a)− b ∈ F, and so

f(f(a)) = f(a)⇒ (f(a), a) ∈ θf
⇒ (f(a− b), a− b) ∈ θf
⇒ f(a)− b ∈ θf (a− b)
⇒ f(a)− b ∈ F ∩ θf (a− b) (f(a)− b ∈ F )

Since f(a−b) ∈ F∩θf (a−b) and F∩θf (a−b) is a single-ton set, we get f(a−b) = f(a)−b.
Therefore f is a multiplier of X. �
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