A NOTE ON MULTIPLIERS OF SUBTRACTION ALGEBRAS

Sang Deok Lee * and Kyung Ho Kim † ‡

Received 30:01:2012: Accepted 20:03:2012

Abstract

In this paper, we introduce the concept of normal ideal of a subtraction algebra and study properties in connection with multiplies of subtraction algebras. The image and inverse image of a normal ideal of a subtraction algebra are proved to be again normal ideals. Also, we characterize the normal ideals of direct products of subtraction algebras. Finally, the concept of a weak congruence is introduced in subtraction algebras and obtain an interconnection between multipliers and weak congruences.

Keywords: Subtraction algebra, multiplier, normal ideal, non-expansive, *Kerf.* 2000 AMS Classification: 08A05, 08A30, 20L05.

1. Introduction

In [4] a partial multiplier on a commutative semigroup (A, \cdot) has been introduced as a function F from a nonvoid subset D_F of A into A such that $F(x) \cdot y = x \cdot F(y)$ for all $x, y \in D_F$. In this paper, we introduce the concept of normal ideal of a subtraction algebra and study properties in connection with multiplies of subtraction algebras. The image and inverse image of a normal ideal of a subtraction algebra are proved to be again normal ideals. Also, we characterize the normal ideals of direct products of subtraction algebras. Finally, the concept of a weak congruence is introduced in subtraction algebras and obtain an interconnection between multipliers and weak congruences.

^{*}Department of Mathematics, Dankook University, Cheonan, 330-714, Korea. E-mail: (S. D. Lee) sdlee@dankook.ac.kr

[†]Corresponding author.

[‡]Department of Mathematics, Korea National University of transportation, Chungju, 380-702, Korea. E-mail: (K. H. Kim) ghkim@ut.ac.kr

2. Preliminaries

By a subtraction algebra we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

- (S1) x (y x) = x;
- (S2) x (x y) = y (y x);
- (S3) (x-y)-z=(x-z)-y.

The last identity permits us to omit parentheses in expressions of the form (x-y)-z. The subtraction determines an order relation on X: $a \le b \Leftrightarrow a-b=0$, where 0=a-a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \le)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0,a] is a Boolean algebra with respect to the induced order. Here $a \land b = a - (a-b)$; the relative complement b' of an element $b \in [0,a]$ is a-b; and if $b,c \in [0,a]$, then

$$\begin{array}{rcl} b \vee c & = & (b' \wedge c')' = a - ((a-b) \wedge (a-c)) \\ & = & a - ((a-b) - ((a-b) - (a-c))). \end{array}$$

In a subtraction algebra, the following properties are true: for all $x, y, z \in X$,

- (p1) (x-y) y = x y.
- (p2) x 0 = x and 0 x = 0.
- (p3) (x-y) x = 0.
- (p4) $x (x y) \le y$.
- (p5) (x-y) (y-x) = x y
- (p6) x (x (x y)) = x y.
- (p7) $(x-y) (z-y) \le x-z$.
- (p8) $x \le y$ if and only if x = y w for some $w \in X$.
- (p9) $x \le y$ implies $x z \le y z$ and $z y \le z x$.
- (p10) $x, y \le z$ implies $x y = x \land (z y)$.
- (p11) $(x \wedge y) (x \wedge z) \leq x \wedge (y z)$.
- (p12) (x-y)-z=(x-z)-(y-z).

A non-empty subset I of a subtraction algebra X is called a subalgebra if $x-y\in I$ for all $x,y\in I$. A mapping d from a subtraction algebra X to a subtraction algebra Y is called a morphism if d(x-y)=d(x)-d(y) for all $x,y\in X$. A self map d of a subtraction algebra X which is a morphism is called an endomorphism.

A nonempty subset I of a subtraction algebra X is called an *ideal* of X if it satisfies

- (I1) $0 \in I$,
- (I2) for any $x, y \in X$, $y \in I$ and $x y \in I$ implies $x \in I$.

For an ideal I of a subtraction algebra X, it is clear that $x \leq y$ and $y \in I$ imply $x \in I$ for any $x, y \in X$. If $x \leq y$ implies $d(x) \leq d(y)$, d is called an *isotone mapping*.

3. Multipliers in subtraction algebras

In what follows, let X denote a subtraction algebra unless otherwise specified.

3.1. Definition. [7] Let (X, -, 0) be a subtraction algebra. A self-map f is called a *multiplier* if

$$f(x-y) = f(x) - y$$

for all $x, y \in X$.

3.2. Example. [7] Let $X = \{0, a, b\}$ be a subtraction algebra with the following Cayley table

Define a map $f: X \to X$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, a \\ b & \text{if } x = b \end{cases}$$

Then it is easily checked that f is a multiplier of subtraction algebra X.

- **3.3. Lemma.** [7] Let f be a multiplier in subtraction algebra X. Then we have f(0) = 0.
- **3.4. Proposition.** Let X be a subtraction algebra. A multiplier $f: X \to X$ is an identity map if it satisfies f(x) y = x f(y) for all $x, y \in X$.

Proof. Suppose that f satisfy the identity f(x) - y = x - f(y) for all $x, y \in X$. Then f(x) = f(x - 0) = f(x) - 0 = x - f(0) = x - 0 = x. Thus f is an identity map. \Box

3.5. Proposition. [7] Let f be a multiplier of a subtraction algebra X. Then f is idempotent, that is, $f^2 = f \circ f = f$.

In general, every multiplier of X need not be identity. However, in the following theorem, we give a set of conditions which are equivalent to be an identity multiplier.

3.6. Theorem. Let X be a subtraction algebra. A multiplier f of X is an identity map if and only if the following conditions are satisfied for all $x, y \in X$,

(i)
$$f(x - y) = f(x) - f(y)$$
,
(ii) $x - f^2(y) = f(x) - f(y)$.

Proof. The condition for necessary is trivial. For sufficiency, assume that (i) and (ii) hold. Then for $x, y \in X$, we get $x - f(y) = x - f^2(y) = f(x) - f(y) = f(x - y)$. Also, by the definition of the multiplier, we have f(x - y) = f(x) - y. Hence

$$f(x-y) = f(x) - y = x - f(y).$$

By Proposition 3.4, f is an identity multiplier of X.

- **3.7. Definition.** Let X be a subtraction algebra. A non-empty set F of X is called a *normal ideal* if it satisfies the following conditions:
 - (i) $0 \in F$.
 - (ii) $x \in F$ and $y \in X$ imply $x y \in F$.
- **3.8. Example.** Let $X = \{0, a, b, 1\}$ in which "-" is defined by

It is easy to check that (X; -, 0) is a subtraction algebra. Now consider $F = \{0, a\}$. Then it is easy to check that F is a normal ideal of X.

3.9. Proposition. Let X be a subtraction algebra. For any $a \in X$, $S_a = \{x - a \mid x \in X\}$ is a subalgebra of X.

Proof. Let $x-a, y-a \in S_a$. Then $(x-a)-(y-a)=(x-(y-a))-a \in S_a$. Therefore S_a is a subalgebra of X.

3.10. Proposition. Let X be a subtraction algebra. For any $a \in X$, S_a is a normal ideal of X.

Proof. Clearly, $0 - a = 0 \in S_a$. Let $r \in X$ and $b \in S_a$. Then b = x - a for some $x \in X$. Hence $b - r = (x - a) - r = (x - r) - a \in S_a$. Therefore S_a is a normal ideal of X. \square

3.11. Proposition. Let X be a subtraction algebra. For $u, v \in X$, the set

$$X(u, v) = \{x \mid (x - u) - v = 0\}$$

is a subalgebra of X.

Proof. Let $x, y \in X(u, v)$. Then we have (x - u) - v = 0 and (y - u) - v = 0. Hence ((x - y) - u) - v = ((x - u) - y) - v = ((x - u) - v) - y = 0 - y = 0, which implies $x - y \in X(u, v)$. This completes the proof.

3.12. Proposition. Let X be a subtraction algebra. For $u, v \in X$, the set

$$X(u, v) = \{x \mid (x - u) - v = 0\}$$

is a normal ideal of X, and $u, v \in X(u, v)$.

Proof. Obviously, $0, u, v \in X(u, v)$. Let $x, r \in X$ be such that $x \in X(u, v)$. Then (x - u) - v = 0, and so ((x - r) - u) - v = ((x - u) - r) - v = ((x - u) - v) - r = 0 - r = 0. This implies $x - r \in X(u, v)$. This completes the proof.

3.13. Proposition. Let F is a normal ideal of X. For any $w \in X$, the set

$$F_w = \{x \mid x - w \in F\}$$

is a subalgebra of X.

Proof. Let $x, y \in F_w$. Then $x-w, y-w \in F$. Therefore, $(x-y)-w = (x-w)-(y-w) \in F$, which implies $x-y \in F_w$. This completes the proof.

3.14. Proposition. If F is a normal ideal of X, the set F_w is a normal ideal containing F and w.

Proof. Let $w \in X$. Since $0 - w = 0 \in F$, we have $0 \in F_w$. Let $x, r \in X$ be such that $x \in F_w$. Then $x - w \in F$. Therefore, $(x - r) - w = (x - w) - r \in F$, which implies $x - r \in F_w$. Obviously, F_w contains F and w. This completes the proof.

Let X_1 and X_2 be two subtraction algebras. Then $X_1 \times X_2$ is also a subtraction algebra with respect to the point-wise operation given by

$$(a,b) - (c,d) = (a-c,b-d)$$

for all $a, c \in X_1$ and $b, d \in X_2$.

3.15. Proposition. Let X_1 and X_2 be two subtraction algebras. Define a map $f: X_1 \times X_2 \to X_1 \times X_2$ by f(x,y) = (x,0) for all $(x,y) \in X_1 \times X_2$. Then f is a multiplier of $X_1 \times X_2$ with respect to the point-wise operation.

Proof. Let $(x_1, y_1), (x_2, y_2) \in X_1 \times X_2$. The we have

$$f((x_1, y_1) - (x_2, y_2)) = f(x_1 - x_2, y_1 - y_2)$$

$$= (x_1 - x_2, 0)$$

$$= (x_1 - x_2, 0 - y_2)$$

$$= (x_1, 0) - (x_2, y_2)$$

$$= f(x_1, y_1) - (x_2, y_2).$$

Therefore f is a multiplier of the direct product $X_1 \times X_2$.

3.16. Theorem. If F_1 and F_2 are normal ideals of X_1 and X_2 respectively, then $F_1 \times F_2$ is a normal ideal of the product algebra $X_1 \times X_2$.

Proof. Let F_1 and F_2 be normal ideals of X_1 and X_2 respectively. Since $0 \in F_1$ and $0 \in F_2$, we have $(0,0) \in F_1 \times F_2$. Let $(x,y) \in X_1 \times X_2$ and $(x_1,y_1) \in F_1 \times F_2$. Also, since F_1 and F_2 are normal ideals of X_1 and X_2 respectively, we get $x_1 - x \in F_1$ and $y_1 - y \in F_2$. Hence $(x_1,y_1) - (x,y) = (x_1 - x,y_1 - y) \in F_1 \times F_2$. Therefore, $F_1 \times F_2$ is a normal ideal of $X_1 \times X_2$.

3.17. Theorem. Let f be a multiplier of subtraction X. For any normal ideal F of X, both f(F) and $f^{-1}(F)$ are normal ideals of X.

Proof. Clearly, 0 = f(0). Let $x \in X$ and $a \in f(F)$. Then a = f(s) for some $s \in F$. Now $a - x = f(s) - x = f(s - x) \in f(F)$ because $s - x \in F$. Therefore f(F) is a normal ideal of X. Since F is a normal ideal of X, we obtain $f(0) = 0 \in F$. Hence $0 = f^{-1}(F)$. Let $x \in X$ and $a \in f^{-1}(F)$. Then $f(a) \in F$. Since F is a normal ideal, we get $f(a - x) = f(a) - x \in F$. Hence $a - x \in f^{-1}(F)$. Therefore $f^{-1}(F)$ is a normal ideal of X.

3.18. Definition. [4] Let f be a multiplier of a subtraction algebra X. Define the kernel of the multiplier f by

$$Kerf = \{x \in X \mid f(x) = 0\}.$$

3.19. Proposition. For any multiplier f of a subtraction algebra X, Kerf is a normal ideal of X.

Proof. Clearly, $0 \in Kerf$. Let $a \in Kerf$ and $x \in X$. Then f(a-x) = f(a) - x = 0 - x = 0. Hence $a - x \in Kerf$, which implies that Kerf is a normal ideal of X.

3.20. Definition. Let f be a multiplier of a subtraction algebra. An element $a \in X$ is called a *fixed element* if f(a) = a.

Let us denote the set of all fixed elements of X by $Fix_f(X) = \{x \in X \mid f(x) = x\}$ and the image of X under the multiplier f by Im(f).

3.21. Lemma. Let f be a multiplier of subtraction algebra X. Then $Im(f) = Fix_f(X)$.

Proof. Let $x \in Fix_f(X)$. Then $x = f(x) \in Im(f)$. Hence $Fix_f(X) \subseteq Im(f)$. Now let $a \in Im(f)$. Then we get a = f(b) for some $b \in X$. Thus f(a) = f(f(b)) = f(b) = a, which implies $Im(f) \subseteq Fix_f(X)$. Therefore, $Im(f) = Fix_f(X)$. This completes the proof. \square

- **3.22.** Theorem. Let f be a multiplier of a subtraction algebra X. then we have
 - (i) $Fix_f(X)$ is a normal ideal of X.
 - (ii) Im(f) is a normal ideal of X.

Proof. (i) Since f(0) = 0, we have $0 \in Fix_f(X)$. Let $x \in X$ and $a \in Fix_f(X)$. Then f(a) = a Now f(a - x) = f(a) - x = a - x. Hence $a - x \in Fix_f(X)$. Therefore, $Fix_f(X)$ is a normal ideal of X.

(ii) Obviously, 0 = f(0). Let $x \in X$ and $a \in Im(f)$. Then a = f(b) for some $b \in X$. Now $a - x = f(b) - x = f(b - x) \in f(X)$. Therefore, Im(f) is a normal ideal of X. \square

Let us recall from [4] that the composition of two multipliers f and g of a subtraction algebra X is a multiplier of X where $(f \circ g)(x) = f(g(x))$ for all $x \in X$.

3.23. Theorem. Let f and g be two multipliers of X such that $f \circ g = g \circ f$. Then the following conditions are equivalent.

- (i) f = g.
- (ii) f(X) = g(X).
- (iii) $Fix_f(X) = Fix_g(X)$.

Proof. (i) \Rightarrow (ii): It is obvious.

- (ii) \Rightarrow (iii): Assume that f(X) = g(X). Let $x \in Fix_f(X)$. Then $x = f(x) \in f(X) = g(X)$. Hence x = g(y) for some $y \in X$. Now $g(x) = g(g(y)) = g^2(y) = g(y) = x$. Thus $x \in Fix_g(X)$. Therefore, $Fix_f \subseteq Fix_g(X)$. Similarly, we can obtain $Fix_g(X) \subseteq Fix_f(X)$. Thus $Fix_f(X) = Fix_g(X)$.
- (iii) \Rightarrow (i): Assume that $Fix_f(X) = Fix_g(X)$. Let $x \in X$. Since $f(x) \in Fix_f(X) = Fix_g(X)$, we have g(f(x)) = f(x). Also, we obtain $g(x) \in Fix_g(X) = Fix_f(X)$. Hence we get f(g(x)) = g(x). Thus we have

$$f(x) = g(f(x)) = (g \circ f)(x) = (f \circ g)(x) = f(g(x)) = g(x).$$

Therefore, f and g are equal in the sense of mappings.

3.24. Definition. Let X be a subtraction algebra. An equivalence relation θ on X is called a *weak congruence* if $(x,y) \in \theta$ implies (x-a,y-a) for any $a \in X$.

Clearly, every congruence on X is a weak congruence on X. In the following theorem, we have an example for a weak congruence in terms of multipliers.

3.25. Theorem. Let f be a multiplier of a subtraction algebra X. Define a binary operation θ_f on X as follows:

$$(x,y) \in \theta_f$$
 if and only if $f(x) = f(y)$ for all $x, y \in X$.

Then θ_f is a weak congruence on X.

Proof. Clearly, θ_f is an equivalence relation on X. Let $(x,y) \in \theta_f$. Then we have f(x) = f(y). Now for any $a \in X$, we have

$$f(x-a) = f(x) - a = f(y) - a = f(y-a).$$

Hence
$$(x-a,y-a) \in \theta_f$$
.

3.26. Lemma. Let f be a multiplier of a subtraction algebra X. Then

- (i) f(x) = x for all $x \in f(X)$.
- (ii) If $(x, y) \in \theta_f$ and $x, y \in f(X)$, x = y.

Proof. (i) Let $x \in f(X)$. Then x = f(a) for some $a \in X$. Now $f(x) = f^2(x) = f(f(x)) = f(a) = x$.

(ii) Let
$$(x,y) \in \theta_f$$
 and $x,y \in f(X)$. Then by (i), $x = f(x) = f(y) = y$.

3.27. Theorem. Let X be a subtraction algebra and let F be a normal ideal of X. Then there exists multiplier f of X such that f(X) = F if and only if $F \cap \theta_f(x)$ is a single-ton set for all $x \in X$, where θ_f is the congruence class of x with respect to θ_f .

Proof. Let f be a multiplier of X such that f(X) = F. Then clearly θ_f is a weak congruence on X. Let $x \in X$ be an arbitrary element. Since $f(x) = f^2(x)$, we get $(x, f(x)) = \theta_f$. Hence $f(x) \in \theta_f(x)$. Also, $f(x) \in f(X) = F$, which implies $f(x) \in F \cap \theta_f(x)$. Therefore $F \cap \theta_f(x)$ is non-empty. Let a, b be two element of $F \cap \theta_f(x)$. Then by Lemma 3.26, we get a = b. Hence $F \cap \theta_f(x)$ is a single-ton set. Conversely, assume that $F \cap \theta_f(x)$ is a single-ton set for all $x \in X$. Let x_0 be the single element of $F \cap \theta_f(x)$. Now define a self map as follows,

$$f: X \to X$$
 by $f(x) = x_0$

for all $x \in X$. By the definition of the map f, we get $f(a) \in F$ and f(f(a)) = f(a). Since F is normal, we get $f(a) - b \in F$, and so

$$f(f(a)) = f(a) \Rightarrow (f(a), a) \in \theta_f$$

$$\Rightarrow (f(a - b), a - b) \in \theta_f$$

$$\Rightarrow f(a) - b \in \theta_f(a - b)$$

$$\Rightarrow f(a) - b \in F \cap \theta_f(a - b) \quad (f(a) - b \in F)$$

Since $f(a-b) \in F \cap \theta_f(a-b)$ and $F \cap \theta_f(a-b)$ is a single-ton set, we get f(a-b) = f(a) - b. Therefore f is a multiplier of X.

References

- [1] Abbott, J. C. Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
- [2] Firat, A. On f-derivations of BCC-algebras, Ars Combinatoria, XCVIIA, 377–382, 2010.
- [3] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S. A Compendium of Continuous Lattices, Springer-Verlag, NewYork, 2003.
- [4] Larsen, R. An Introduction to the Theory of Multipliers, Berlin: Springer-Verlag, 1971.
- [5] Prabpayak C., and Leerawat, U. On derivations of BCC-algebras, Kasetsart J. 43, 398–401, 2009
- [6] Schein, B. M. Difference Semigroups, Comm. in Algebra 20, 2153–2169, 1992.
- [7] Yon, Y. H., and Kim, K. H. Multipliers in subtraction algebras, Scientiae Mathematicae Japonicae, 73 (2-3), 117–123, 2011.
- [8] Zelinka, B. Subtraction Semigroups, Math. Bohemica, 120, 445–447, 1995.