A NOTE ON MULTIPLIERS OF SUBTRACTION ALGEBRAS

Sang Deok Lee * and Kyung Ho Kim ${ }^{\dagger} \ddagger$

Received $30: 01: 2012$: Accepted $20: 03: 2012$

Abstract

In this paper, we introduce the concept of normal ideal of a subtraction algebra and study properties in connection with multiplies of subtraction algebras. The image and inverse image of a normal ideal of a subtraction algebra are proved to be again normal ideals. Also, we characterize the normal ideals of direct products of subtraction algebras. Finally, the concept of a weak congruence is introduced in subtraction algebras and obtain an interconnection between multipliers and weak congruences.

Keywords: Subtraction algebra, multiplier, normal ideal, non-expansive, Kerf.
2000 AMS Classification: 08A05, 08A30, 20L05.

1. Introduction

In [4] a partial multiplier on a commutative semigroup (A, \cdot) has been introduced as a function F from a nonvoid subset D_{F} of A into A such that $F(x) \cdot y=x \cdot F(y)$ for all $x, y \in D_{F}$. In this paper, we introduce the concept of normal ideal of a subtraction algebra and study properties in connection with multiplies of subtraction algebras. The image and inverse image of a normal ideal of a subtraction algebra are proved to be again normal ideals. Also, we characterize the normal ideals of direct products of subtraction algebras. Finally, the concept of a weak congruence is introduced in subtraction algebras and obtain an interconnection between multipliers and weak congruences.

[^0]
2. Preliminaries

By a subtraction algebra we mean an algebra ($X ;-$) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,
(S1) $x-(y-x)=x$;
(S2) $x-(x-y)=y-(y-x)$;
(S3) $(x-y)-z=(x-z)-y$.
The last identity permits us to omit parentheses in expressions of the form $(x-y)-z$. The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b)$; the relative complement b^{\prime} of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c))) .
\end{aligned}
$$

In a subtraction algebra, the following properties are true: for all $x, y, z \in X$,
(p1) $(x-y)-y=x-y$.
(p2) $x-0=x$ and $0-x=0$.
(p3) $(x-y)-x=0$.
(p4) $x-(x-y) \leq y$.
(p5) $(x-y)-(y-x)=x-y$
(p6) $x-(x-(x-y))=x-y$.
(p7) $(x-y)-(z-y) \leq x-z$.
(p8) $x \leq y$ if and only if $x=y-w$ for some $w \in X$.
(p9) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$.
(p10) $x, y \leq z$ implies $x-y=x \wedge(z-y)$.
(p11) $(x \wedge y)-(x \wedge z) \leq x \wedge(y-z)$.
(p12) $(x-y)-z=(x-z)-(y-z)$.
A non-empty subset I of a subtraction algebra X is called a subalgebra if $x-y \in I$ for all $x, y \in I$. A mapping d from a subtraction algebra X to a subtraction algebra Y is called a morphism if $d(x-y)=d(x)-d(y)$ for all $x, y \in X$. A self map d of a subtraction algebra X which is a morphism is called an endomorphism.

A nonempty subset I of a subtraction algebra X is called an ideal of X if it satisfies
(I1) $0 \in I$,
(I2) for any $x, y \in X, y \in I$ and $x-y \in I$ implies $x \in I$.
For an ideal I of a subtraction algebra X, it is clear that $x \leq y$ and $y \in I$ imply $x \in I$ for any $x, y \in X$. If $x \leq y$ implies $d(x) \leq d(y), d$ is called an isotone mapping.

3. Multipliers in subtraction algebras

In what follows, let X denote a subtraction algebra unless otherwise specified.
3.1. Definition. [7] Let $(X,-, 0)$ be a subtraction algebra. A self-map f is called a multiplier if

$$
f(x-y)=f(x)-y
$$

for all $x, y \in X$.
3.2. Example. [7] Let $X=\{0, a, b\}$ be a subtraction algebra with the following Cayley table

-	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

Define a map $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0, a \\ b & \text { if } x=b\end{cases}
$$

Then it is easily checked that f is a multiplier of subtraction algebra X.
3.3. Lemma. [7] Let f be a multiplier in subtraction algebra X. Then we have $f(0)=0$.
3.4. Proposition. Let X be a subtraction algebra. A multiplier $f: X \rightarrow X$ is an identity map if it satisfies $f(x)-y=x-f(y)$ for all $x, y \in X$.
Proof. Suppose that f satisfy the identity $f(x)-y=x-f(y)$ for all $x, y \in X$. Then $f(x)=f(x-0)=f(x)-0=x-f(0)=x-0=x$. Thus f is an identity map.
3.5. Proposition. [7] Let f be a multiplier of a subtraction algebra X. Then f is idempotent, that is, $f^{2}=f \circ f=f$.

In general, every multiplier of X need not be identity. However, in the following theorem, we give a set of conditions which are equivalent to be an identity multiplier.
3.6. Theorem. Let X be a subtraction algebra. A multiplier f of X is an identity map if and only if the following conditions are satisfied for all $x, y \in X$,
(i) $f(x-y)=f(x)-f(y)$,
(ii) $x-f^{2}(y)=f(x)-f(y)$.

Proof. The condition for necessary is trivial. For sufficiency, assume that (i) and (ii) hold. Then for $x, y \in X$, we get $x-f(y)=x-f^{2}(y)=f(x)-f(y)=f(x-y)$. Also, by the definition of the multiplier, we have $f(x-y)=f(x)-y$. Hence

$$
f(x-y)=f(x)-y=x-f(y)
$$

By Proposition 3.4, f is an identity multiplier of X.
3.7. Definition. Let X be a subtraction algebra. A non-empty set F of X is called a normal ideal if it satisfies the following conditions:
(i) $0 \in F$,
(ii) $x \in F$ and $y \in X$ imply $x-y \in F$.
3.8. Example. Let $X=\{0, a, b, 1\}$ in which "-" is defined by

-	0	a	b	1
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
1	1	b	a	0

It is easy to check that $(X ;-0)$ is a subtraction algebra. Now consider $F=\{0, a\}$. Then it is easy to check that F is a normal ideal of X.
3.9. Proposition. Let X be a subtraction algebra. For any $a \in X, S_{a}=\{x-a \mid x \in X\}$ is a subalgebra of X.

Proof. Let $x-a, y-a \in S_{a}$. Then $(x-a)-(y-a)=(x-(y-a))-a \in S_{a}$. Therefore S_{a} is a subalgebra of X.
3.10. Proposition. Let X be a subtraction algebra. For any $a \in X, S_{a}$ is a normal ideal of X.

Proof. Clearly, $0-a=0 \in S_{a}$. Let $r \in X$ and $b \in S_{a}$. Then $b=x-a$ for some $x \in X$. Hence $b-r=(x-a)-r=(x-r)-a \in S_{a}$. Therefore S_{a} is a normal ideal of X.
3.11. Proposition. Let X be a subtraction algebra. For $u, v \in X$, the set

$$
X(u, v)=\{x \mid(x-u)-v=0\}
$$

is a subalgebra of X.
Proof. Let $x, y \in X(u, v)$. Then we have $(x-u)-v=0$ and $(y-u)-v=0$. Hence $((x-y)-u)-v=((x-u)-y)-v=((x-u)-v)-y=0-y=0$, which implies $x-y \in X(u, v)$. This completes the proof.
3.12. Proposition. Let X be a subtraction algebra. For $u, v \in X$, the set

$$
X(u, v)=\{x \mid(x-u)-v=0\}
$$

is a normal ideal of X, and $u, v \in X(u, v)$.
Proof. Obviously, $0, u, v \in X(u, v)$. Let $x, r \in X$ be such that $x \in X(u, v)$. Then $(x-$ $u)-v=0$, and so $((x-r)-u)-v=((x-u)-r)-v=((x-u)-v)-r=0-r=0$. This implies $x-r \in X(u, v)$. This completes the proof.
3.13. Proposition. Let F is a normal ideal of X. For any $w \in X$, the set

$$
F_{w}=\{x \mid x-w \in F\}
$$

is a subalgebra of X.
Proof. Let $x, y \in F_{w}$. Then $x-w, y-w \in F$. Therefore, $(x-y)-w=(x-w)-(y-w) \in F$, which implies $x-y \in F_{w}$. This completes the proof.
3.14. Proposition. If F is a normal ideal of X, the set F_{w} is a normal ideal containing F and w.

Proof. Let $w \in X$. Since $0-w=0 \in F$, we have $0 \in F_{w}$. Let $x, r \in X$ be such that $x \in F_{w}$. Then $x-w \in F$. Therefore, $(x-r)-w=(x-w)-r \in F$, which implies $x-r \in F_{w}$. Obviously, F_{w} contains F and w. This completes the proof.

Let X_{1} and X_{2} be two subtraction algebras. Then $X_{1} \times X_{2}$ is also a subtraction algebra with respect to the point-wise operation given by

$$
(a, b)-(c, d)=(a-c, b-d)
$$

for all $a, c \in X_{1}$ and $b, d \in X_{2}$.
3.15. Proposition. Let X_{1} and X_{2} be two subtraction algebras. Define a map f : $X_{1} \times X_{2} \rightarrow X_{1} \times X_{2}$ by $f(x, y)=(x, 0)$ for all $(x, y) \in X_{1} \times X_{2}$. Then f is a multiplier of $X_{1} \times X_{2}$ with respect to the point-wise operation.

Proof. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X_{1} \times X_{2}$. The we have

$$
\begin{aligned}
f\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right) & =f\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \\
& =\left(x_{1}-x_{2}, 0\right) \\
& =\left(x_{1}-x_{2}, 0-y_{2}\right) \\
& =\left(x_{1}, 0\right)-\left(x_{2}, y_{2}\right) \\
& =f\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

Therefore f is a multiplier of the direct product $X_{1} \times X_{2}$.
3.16. Theorem. If F_{1} and F_{2} are normal ideals of X_{1} and X_{2} respectively, then $F_{1} \times F_{2}$ is a normal ideal of the product algebra $X_{1} \times X_{2}$.

Proof. Let F_{1} and F_{2} be normal ideals of X_{1} and X_{2} respectively. Since $0 \in F_{1}$ and $0 \in F_{2}$, we have $(0,0) \in F_{1} \times F_{2}$. Let $(x, y) \in X_{1} \times X_{2}$ and $\left(x_{1}, y_{1}\right) \in F_{1} \times F_{2}$. Also, since F_{1} and F_{2} are normal ideals of X_{1} and X_{2} respectively, we get $x_{1}-x \in F_{1}$ and $y_{1}-y \in F_{2}$. Hence $\left(x_{1}, y_{1}\right)-(x, y)=\left(x_{1}-x, y_{1}-y\right) \in F_{1} \times F_{2}$. Therefore, $F_{1} \times F_{2}$ is a normal ideal of $X_{1} \times X_{2}$.
3.17. Theorem. Let f be a multiplier of subtraction X. For any normal ideal F of X, both $f(F)$ and $f^{-1}(F)$ are normal ideals of X.

Proof. Clearly, $0=f(0)$. Let $x \in X$ and $a \in f(F)$. Then $a=f(s)$ for some $s \in F$. Now $a-x=f(s)-x=f(s-x) \in f(F)$ because $s-x \in F$. Therefore $f(F)$ is a normal ideal of X. Since F is a normal ideal of X, we obtain $f(0)=0 \in F$. Hence $0=f^{-1}(F)$. Let $x \in X$ and $a \in f^{-1}(F)$. Then $f(a) \in F$. Since F is a normal ideal, we get $f(a-x)=f(a)-x \in F$. Hence $a-x \in f^{-1}(F)$. Therefore $f^{-1}(F)$ is a normal ideal of X.
3.18. Definition. [4] Let f be a multiplier of a subtraction algebra X. Define the kernel of the multiplier f by

$$
\operatorname{Ker} f=\{x \in X \mid f(x)=0\} .
$$

3.19. Proposition. For any multiplier f of a subtraction algebra X, Kerf is a normal ideal of X.

Proof. Clearly, $0 \in \operatorname{Ker} f$. Let $a \in \operatorname{Kerf}$ and $x \in X$. Then $f(a-x)=f(a)-x=0-x=0$. Hence $a-x \in \operatorname{Kerf}$, which implies that Kerf is a normal ideal of X.
3.20. Definition. Let f be a multiplier of a subtraction algebra. An element $a \in X$ is called a fixed element if $f(a)=a$.

Let us denote the set of all fixed elements of X by $\operatorname{Fix}_{f}(X)=\{x \in X \mid f(x)=x\}$ and the image of X under the multiplier f by $\operatorname{Im}(f)$.
3.21. Lemma. Let f be a multiplier of subtraction algebra X. Then $\operatorname{Im}(f)=\operatorname{Fix}_{f}(X)$.

Proof. Let $x \in \operatorname{Fix}_{f}(X)$. Then $x=f(x) \in \operatorname{Im}(f)$. Hence $\operatorname{Fix} f(X) \subseteq \operatorname{Im}(f)$. Now let $a \in \operatorname{Im}(f)$. Then we get $a=f(b)$ for some $b \in X$. Thus $f(a)=f(f(b))=f(b)=a$, which implies $\operatorname{Im}(f) \subseteq \operatorname{Fix}_{f}(X)$. Therefore, $\operatorname{Im}(f)=\operatorname{Fix}_{f}(X)$. This completes the proof.
3.22. Theorem. Let f be a multiplier of a subtraction algebra X. then we have
(i) $\operatorname{Fix}_{f}(X)$ is a normal ideal of X.
(ii) $\operatorname{Im}(f)$ is a normal ideal of X.

Proof. (i) Since $f(0)=0$, we have $0 \in \operatorname{Fix}_{f}(X)$. Let $x \in X$ and $a \in \operatorname{Fix}_{f}(X)$. Then $f(a)=a$ Now $f(a-x)=f(a)-x=a-x$. Hence $a-x \in \operatorname{Fix}_{f}(X)$. Therefore, Fix $_{f}(X)$ is a normal ideal of X.
(ii) Obviously, $0=f(0)$. Let $x \in X$ and $a \in \operatorname{Im}(f)$. Then $a=f(b)$ for some $b \in X$. Now $a-x=f(b)-x=f(b-x) \in f(X)$. Therefore, $\operatorname{Im}(f)$ is a normal ideal of X.

Let us recall from [4] that the composition of two multipliers f and g of a subtraction algebra X is a multiplier of X where $(f \circ g)(x)=f(g(x))$ for all $x \in X$.
3.23. Theorem. Let f and g be two multipliers of X such that $f \circ g=g \circ f$. Then the following conditions are equivalent.
(i) $f=g$.
(ii) $f(X)=g(X)$.
(iii) $\operatorname{Fix}_{f}(X)=\operatorname{Fix} g(X)$.

Proof. (i) \Rightarrow (ii): It is obvious.
(ii) \Rightarrow (iii): Assume that $f(X)=g(X)$. Let $x \in \operatorname{Fix}_{f}(X)$. Then $x=f(x) \in f(X)=$ $g(X)$. Hence $x=g(y)$ for some $y \in X$. Now $g(x)=g(g(y))=g^{2}(y)=g(y)=x$. Thus $x \in$ Fix $g(X)$. Therefore, Fix $_{f} \subseteq \operatorname{Fix}_{g}(X)$. Similarly, we can obtain Fix $_{g}(X) \subseteq \operatorname{Fix}_{f}(X)$. Thus $\operatorname{Fix}_{f}(X)=\operatorname{Fix}_{g}(X)$.
(iii) \Rightarrow (i): Assume that $\operatorname{Fix}_{f}(X)=\operatorname{Fix}_{g}(X)$. Let $x \in X$. Since $f(x) \in \operatorname{Fix}_{f}(X)=$ Fix $g_{g}(X)$, we have $g(f(x))=f(x)$. Also, we obtain $g(x) \in \operatorname{Fix}_{g}(X)=\operatorname{Fix}_{f}(X)$. Hence we get $f(g(x))=g(x)$. Thus we have

$$
f(x)=g(f(x))=(g \circ f)(x)=(f \circ g)(x)=f(g(x))=g(x) .
$$

Therefore, f and g are equal in the sense of mappings.
3.24. Definition. Let X be a subtraction algebra. An equivalence relation θ on X is called a weak congruence if $(x, y) \in \theta$ implies $(x-a, y-a)$ for any $a \in X$.

Clearly, every congruence on X is a weak congruence on X. In the following theorem, we have an example for a weak congruence in terms of multipliers.
3.25. Theorem. Let f be a multiplier of a subtraction algebra X. Define a binary operation θ_{f} on X as follows:

$$
(x, y) \in \theta_{f} \text { if and only if } f(x)=f(y) \text { for all } x, y \in X
$$

Then θ_{f} is a weak congruence on X.
Proof. Clearly, θ_{f} is an equivalence relation on X. Let $(x, y) \in \theta_{f}$. Then we have $f(x)=$ $f(y)$. Now for any $a \in X$, we have

$$
f(x-a)=f(x)-a=f(y)-a=f(y-a) .
$$

Hence $(x-a, y-a) \in \theta_{f}$.
3.26. Lemma. Let f be a multiplier of a subtraction algebra X. Then
(i) $f(x)=x$ for all $x \in f(X)$.
(ii) If $(x, y) \in \theta_{f}$ and $x, y \in f(X), x=y$.

Proof. (i) Let $x \in f(X)$. Then $x=f(a)$ for some $a \in X$. Now $f(x)=f^{2}(x)=f(f(x))=$ $f(a)=x$.
(ii) Let $(x, y) \in \theta_{f}$ and $x, y \in f(X)$. Then by (i), $x=f(x)=f(y)=y$.
3.27. Theorem. Let X be a subtraction algebra and let F be a normal ideal of X. Then there exists multiplier f of X such that $f(X)=F$ if and only if $F \cap \theta_{f}(x)$ is a single-ton set for all $x \in X$, where θ_{f} is the congruence class of x with respect to θ_{f}.

Proof. Let f be a multiplier of X such that $f(X)=F$. Then clearly θ_{f} is a weak congruence on X. Let $x \in X$ be an arbitrary element. Since $f(x)=f^{2}(x)$, we get $(x, f(x))=\theta_{f}$. Hence $f(x) \in \theta_{f}(x)$. Also, $f(x) \in f(X)=F$, which implies $f(x) \in F \cap \theta_{f}(x)$. Therefore $F \cap \theta_{f}(x)$ is non-empty. Let a, b be two element of $F \cap \theta_{f}(x)$. Then by Lemma 3.26, we get $a=b$. Hence $F \cap \theta_{f}(x)$ is a single-ton set. Conversely, assume that $F \cap \theta_{f}(x)$ is a single-ton set for all $x \in X$. Let x_{0} be the single element of $F \cap \theta_{f}(x)$. Now define a self map as follows,

$$
f: X \rightarrow X \text { by } f(x)=x_{0}
$$

for all $x \in X$. By the definition of the map f, we get $f(a) \in F$ and $f(f(a))=f(a)$. Since F is normal, we get $f(a)-b \in F$, and so

$$
\begin{aligned}
f(f(a))=f(a) & \Rightarrow(f(a), a) \in \theta_{f} \\
& \Rightarrow(f(a-b), a-b) \in \theta_{f} \\
& \Rightarrow f(a)-b \in \theta_{f}(a-b) \\
& \Rightarrow f(a)-b \in F \cap \theta_{f}(a-b) \quad(f(a)-b \in F)
\end{aligned}
$$

Since $f(a-b) \in F \cap \theta_{f}(a-b)$ and $F \cap \theta_{f}(a-b)$ is a single-ton set, we get $f(a-b)=f(a)-b$. Therefore f is a multiplier of X.

References

[1] Abbott, J. C. Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
[2] Firat,A. On f-derivations of BCC-algebras, Ars Combinatoria, XCVIIA, 377-382, 2010.
[3] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S. A Compendium of Continuous Lattices, Springer-Verlag, NewYork, 2003.
[4] Larsen, R. An Introduction to the Theory of Multipliers, Berlin: Springer-Verlag, 1971.
[5] Prabpayak C., and Leerawat, U. On derivations of BCC-algebras, Kasetsart J. 43, 398-401, 2009.
[6] Schein, B. M. Difference Semigroups, Comm. in Algebra 20, 2153-2169, 1992.
[7] Yon, Y. H., and Kim, K. H.Multipliers in subtraction algebras, Scientiae Mathematicae Japonicae, 73 (2-3), 117-123, 2011.
[8] Zelinka, B. Subtraction Semigroups, Math. Bohemica, 120, 445-447, 1995.

[^0]: *Department of Mathematics, Dankook University, Cheonan, 330-714, Korea. E-mail: (S. D. Lee) sdlee@dankook.ac.kr
 ${ }^{\dagger}$ Corresponding author.
 ${ }^{\ddagger}$ Department of Mathematics, Korea National University of transportation, Chungju, 380702, Korea. E-mail: (K. H. Kim) ghkim@ut.ac.kr

