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Abstract

In this study we define the generalized Lucas V (p, ¢)-matrix similar to
the generalized Fibonacci U(1, —1)-matrix. The V(p, ¢)-matrix is dif-
ferent from the Fibonacci U (p, g)-matrix, but is related to it. Using this
matrix representation, we have found some well-known equalities and
a Binet-like formula for the generalized Fibonacci and Lucas numbers.
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1. Introduction

Consider a sequence {W,} = {Whx(a,b,p,q)} defined by the recurrence relation
(1.1) Win =pWn-1 —gWn_2,n > 2,

with Wy = a, W1 = b, where a,b,p and ¢ are integers with p > 0, ¢ # 0.

We are interested in the following two special cases of {Wy}: {Un} is defined by
Uo =0, Uy =1, and {V,,} is defined by Vo = 2, Vi = p. It is well known that {U, } and
{Va} can be expressed in the form

a” — /Bn n n
1.2 Un = Vn = )
(1.2) P a” + B

where o = %, B = # and the discriminant is A = p? — 4q.

Especially, if p = —¢ = 1 and 2p = —q = 2, {U,} is the usual Fibonacci and Jacobsthal
sequence, respectively.
We define U(p, q) be the 2 x 2 matrix

(13)  Ulp,g) = { T }
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then for an integer n with n > 1, U™(p, ¢) has the form

U, 1 —qUn
1.4 n _ n+
4 Uea)=| "
This property provides an alternate proof of Cassini Fibonacci formula:
Uns1Un-1 —Up = —¢" .

Also, let n and m be two integers such that m,n > 1. The following results are obtained
from the identity U™ (p, q) = U™ (p, ¢)U™ (p, q) for the matrix (1.4):

(1.5) Unt+m+1 = Un41Unm+1 — qUpUny,
(1.6)  Unt+m = UnUm+1 — qUn—-1Un,.
In this study, we define the Lucas V (p, ¢)-matrix by
2
p°—2¢ —pgq
17 Vip,q) = .
(1.7) (P,q) [ » _9g ]

It is easy to see that

i evea g maa G | =vea | ]

where U, and V,, are as above. Our aim, is not to compute powers of matrices. Our aim
is to find different relations between matrices containing generalized Fibonacci and Lucas
numbers. That is, we obtain relations between the generalized Fibonacci U(p, ¢)-matrix
and the Lucas V(p, q) in Theorem 2.1.

2. V(p,q)-matrix representation of the generalized Lucas numbers

In this section, we will present a new matrix representation of the generalized Fi-
bonacci and Lucas numbers. We obtain Cassini’s formula and properties of these numbers
by a similar matrix method to the Fibonacci U(1, —1)-matrix.

2.1. Theorem. Let V(p,q) be a matriz as in (1.7). Then, for all integers n > 1, the
following matriz power is held below

AZ Unt1 —qUn if n even
. U —qUn
21 V'pq) = o [ Vayr =gV |
A"z { Ve —qVa ] o odd,

with A = p2 — 4q and where U,, and V,, are the nth generalized Fibonacci and Lucas
numbers, respectively.

Proof. We use mathematical induction on n. First, we consider odd n. For n =1,

Vo —gW1
vl =
(p7 q) |: Vl _q‘/o ] b

since Va = p®> —2¢, Vi = p and Vo = 2. So, (2.1) is indeed true for n = 1. Now we
suppose it is true for n = k, that is
k=1 Vi —qVi
VEp,q) = A2 .
(p,q) [ Vi —qVia

Using the induction hypothesis and V?(p, q) by a direct computation. we can write

kx1 |V —qVj
VER2(p q) = VE(p, ) V2(p, :Ak;fl k+3 qVi+2 ,
(P,q) (P, 9)V"(p,q) Vies —qViis
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as desired. Secondly, let us consider even n. For n = 2 we can write

2 Us —qU;
=A :
Vi =a| gt 0

So, (2.1) is true for n = 2. Now, we suppose it is true for n = k, using properties of the
generalized Fibonacci numbers and the induction hypothesis, we can write

k2 [ [ —qU,
yht2 q) = VvF , V2 q) = A’“;rz k+3 qQUk+2
(p;q) (P, 9)V=(p,q) Uers  —qUpsr

as desired. Hence, (2.1) holds for all n. O

2.2. Theorem. Let V(p,q) be a matriz as in (1.7). Then the following equalities are
valid for all integers n > 1:
(i) det(V"(p,q)) = (—qA)",
(il) Unt1Un—1 = Uy = —¢" %,
(iii) Vag1Vao1 — V2 = Ag™1.

Proof. To establish (i) we use induction on n. Clearly det(V(p,q)) = —gA. If we make
the induction hypothesis det(V*(p, q)) = (—gA)*, then from the multiplicative property
of the determinant we have

det(V*™ (p,q)) = det(V"(p, q)) det(V'(p, q)) = (—gA)* ",

which shows (i) for all n > 1. The identities (ii) and (iii) easily seen by using (2.1) and
(i) for even and odd values of n, respectively. O

2.3. Theorem. Letn be any integer. The well-known Binet formulas for the generalized
Fibonacci and Lucas numbers are

U, = an:gn and V, = o™ + 8",

[e3

_ ptvVA _ p—VA
where a = 2222 and B = ==

Proof. Let the matrix V(p, q) be as in (1.7). We can write the characteristic equation of
V(p, q) as 2*> — Az —qA = 0. If we calculate the eigenvalues and eigenvectors of the matrix
V(p, q) we obtain A1 = —A%ﬂ, Ao = A%a, vy = (B,1), v2 = (a, 1), where a = # and

8= #. Then we can diagonalize of the matrix V(p, q) by D = P~V (p, q) P, where

ey p=elabh =[] T,

and

1

(23) p=| A 01
0 Azq

From properties of similar matrices, we can write D™ = P~ V" (p, q) P, where n is any

integer. Furthermore, we can obtain V" (p,q) = PD"P~'. By (2.1) and taking the nth

power of the diagonal matrix, we get

n—1 an+1 __p\n+l —g(a™ — (—B)"
(24) Vn(pyq) =A7z |: an_é_(ﬁ)g) _q(angl_i_ _(5)7121;

Thus, the proof follows from theorem (2.1). O
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3. Generalized Fibonacci Numbers and main results

3.1. Theorem. For all integers m and n, the following equalities are valid:
(l) AUm+n = m+1Vn - quVn—17

(11) Um+n - Um+1 Un - quU’rL717

(iii) Vm+n = Um+1Vn — quVn_l,

(iv) AUm—n = —q¢ " (VinVas1 — Vint1Va).

Proof. Vim+n(p,q) can be written, using (2.1), as

AT [ g’"*"“ _q_[]qu+" ] if m + n even,

31 V™ M(p,q) = s [ Vi . j;/n_l
AT 2 [ Vm+"+ av. mn } if m +n odd.

m+n - m+4n—1

For the case of odd m and n, V" (p,q)V"(p, q) is:

Vm+1vn+1 - quVn _q(vm+lvn - quVn—l) :|

mtn _ g
3.2 A2
( ) [ VmVn+1 - qu—lvn 7q(VmVn - qu—IVn—l)

Comparing the entries in the first row and second column of the matrices (3.1) and (3.2),
we obtain

AUpsn = Vg1V — ¢V Vi1,

while comparing the entries in the second row and first column gives
AUmsn = Vi Vg1 — ¢Vin—1Va.

For the case of even m and n, V"™ (p,q)V"(p, q) is:

% Um+1Un+1 - quUn 7q(Um+lUn - quUn—l)

3.3 A
( ) UmUn+l - quflUn _q(UmUn - quflUnfl)

Comparing the entries in the first row and second column for the matrices (3.1) and
(3.3), we find that

Unm+n = Um+1Un — qUn Up—1
and the entries in the second row and first column
Umin = UnUng1 — qUpm—1Un.
For cases of odd m and even n, or odd n and even m, V™ (p,q)V"(p, q) is:

m+2"_1 Um+1Vn+1 - quVn _q(Um+an - quanl)
Umvn+1 - qu—IVn _q(UmVn - qu—lvn—l) ’

(34) A
Comparing the entries in the first row and second column for the matrices (3.1) and
(3.4), we obtain the equations

Vintn = Um+1Vn — qUn Vi1,
and the entries in the second row and first column

Vinsn = Un Vi1 — qUm—1Vi.
The inverse of the matrix V" (p, q) in (2.1) is given by

,lAg { —qUUn—l UqU" } if n even ,
3.5 V7 "'(pq) = " g P
(3.5) (p,q) 1 mdVeer @V | g
N ) Vit |
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Similarly, by computing the equality V™" ~"(p,q) = V" (p,q)V " (p, q) the desired results
are obtained. Indeed, for the case of odd m and n,

AUp—n = —q¢ " (Ve Vat1 — Ving1 Vi),
for the case of even m and n,
Un-n=q "(UnUnt1 — Un41Uy).
Finally, for the cases of odd n and even m, odd m and even n,
Vinen = =q "(UnVar1 — UntaVa).
O

3.2. Theorem. If A is a square matriz with A> = pA — qI and I matriz identity of
order 2. Then, A" = U, A — qUp_11, for all n € Z.

Proof. If n = 0, the proof is obvious because U-1 = —¢~! by (1.2). It can be shown
by induction that A" = U, A — qU,,—11, for every positive integer n. We now show that
A" =U_,A—qU_,_1I. Let B=pl — A=qA™!, then

B* = (pI — A)? = p’I — 2pA+ A® = p(pI — A) —ql =pB —ql,

this shows that B" = U, B—qU,—-11. That is, (qA_l)” = Un(pl—A)—qU,—11. Therefore
q"AT" = —UpA+ (pUpn — qUp—1)I = —UpnA + Un411. Thus,

A" = —q "Un A+ ¢ "Upp1 I =U_pA—qU_,_11.
Thus, the proof is completed. O
The well-known identity
(3.6)  Upy1 —qUs = Usnia
has as its Lucas counterpart
(3.7) V72— qV7P = AUsnyi.
Indeed, since Vy41 = Upy2 — qU,, = pUp41 — 2qU,, and V,, = 2U,, 41 — pU,,, the equation
( 3.7) follows from ( 3.6). We define R(p, ¢) be the 2 X 2 matrix

(3.8) R(p,Q):1 []f A }

2 p
then for an integer n, R"(p,q) has the form
n 1| Va AU,
so wea-z| 0

3.3. Theorem. V,2 — AU2 = 4¢™, for alln € Z.

Proof. Since det(R(p,q)) = g, det(R"(p,q)) = (det(R(p,q)))" = ¢". Moreover, since
(3.9), we get det(R"(p,q)) = (V;? — AU?). The proof is completed. O

Let us give a different proof of one of the fundamental identities of Generalized Fi-
bonacci and Lucas numbers, by using the matrix R(p, q).

3.4. Theorem. For all integers m and n, the following equalities are valid:

(i) 2Vimin = Vi Vi + AU Uy,
(i) 2Unmin = UnVi + VinUn,
(ii)) 2¢"Vin_n = ViVin — AUnUn,
(iV) 2¢"Um—n = Un Vi — VinUpn.
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Proof. Since

R™(p,q)R"(p,q)

1[ Ve AUn [ Va AU,
4| Un Vi U, Va

1[ ViaVo + AUnUn AUV + VinUn)

1| UnVa+ViUn ViV + AURU,

and

(3.10) R™"(p,q) =

1 Vm+n AUm+n
2 Um+n Vm+n ’
(1,

Comparing the entries (1,1) and (2, 1) of the matrix (3.10), we obtain the equations

2Vm+n = VmVn + AUvml—]ny

and
Furthermore,
R™(p,q)R™"(p,q) = R™(p,q)(R"(p,q)) "

- i Vi AU Vo —AU,
_ 1 [ VaVa = AURUn AUV — VinUs)
- 4qn Umvn - VmUn VmVn - AUmUn

and

m—n _ 1 men AUv'mfn
B R G-z | g A,

Comparing the entries (1,1) and (2,1) of the matrix (3.11), we obtain the equations
(312)  2¢"Vim—n = ViVin — AULUm,
and 2anm—n =UnVin — VoUn.

3.5. Theorem. For all integers m and n, the following equalities are valid:
(l) V’mVn = Vm—n+ anmf',“
(11) Umvn - Umf'n + anm*n'

Proof. By the definition of the matrix R"(p, q), it can be seen that

men + anmfn A(Umfn + anmfn) :|

_ 1
m-+n n pm-—n I

On the other hand,

R™"(p,q) +¢"R™ "(p,q) = R™(p,q)(R"(p,q) + ¢" R "(p,q))
1[ Ve AUL ][ Ve O

T 2| Un Vin 0o Vi
1 ViV AUV,

o 2 UnV, ViV |7

Then, the results follow by comparing entries in the two matrices.
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