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Abstract

Suppose that we wish to estimate the mean µ and the covariance C
of a random p-vector X with p > 2, but we can only sample from the
vector X two of its p components at a time. We give both nonpara-
metric estimates and the maximum likelihood estimates (MLEs) under
normality, and their covariances.
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1. Introduction and summary

Suppose X is a p-variate random vector with p > 2. There are many situations in the
sciences and engineering, where one can deal with only two of the components of X at a
time. Some examples are:

(1) In some electrical engineering problems, one has only two ports for communica-
tion at any one time (Davidovitz, 1995; Premoli and Storace, 2004; Zhao et al.,
2008);

(2) Much research in political science involves analyzing just one or two variables at
a time (McNabb, 2004);

(3) Most experimental designs measures only one or two variables at a time;
(4) Health research depends on laboratory tests on animals, in which only one or

two variables at a time are tested;
(5) In Physics, some gas laws relate only two variables at a time.
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In each of these situations, the practitioner wants to know how the population mean
and population covariance of X can be estimated using the limited data. For example,
the practitioner may want to estimate the mean and covariance of signals received at all
ports of a communication network when data are available only from two of the ports at
a time.

The aim of this note is to present estimation procedures for data of the above kind.
We estimate both the population mean and population covariance, that is

µ = EX, C = E (X− µ)(X− µ)′,

assuming that C is positive definite. Two estimation procedures are presented: 1) by
assuming normality (normal maximum likelihood estimation procedure); 2) by assuming
no specific distribution (nonparametric estimation procedure).

We take a sample, of size nij say, from
(
Xi
Xj

)
, say

(
Xi1
Xj1

)
· · ·
(
Xim
Xjm

)
with m = nij , for

all possible pairs of rows 1 ≤ i < j ≤ p. In addition, we may sometimes have a sample
of size nii ≥ 0 from Xi alone, say Xi1, . . . , Xim with m = nii. So, the total number of
observations of row i is

ni =

p∑
j=1

nij ,

where nji = nij , and the total sample size is

n =
∑

1≤i≤j≤p

nij .

Set n0 = min1≤i<j≤p nij .
The results of this note are organized as follows. In Section 2, we give empirical-type

nonparametric estimates µ̃, C̃ and their covariance. In Section 3, we assume normality

and give the MLEs µ̂, Ĉ and their covariances. An example comparing the efficiencies of
the two estimates by simulation and by analytical means is given in Section 4. Finally,
some future work are noted in Section 5.

2. Nonparametric estimates

The natural estimates are

µ̃i = n−1
i

p∑
j=1

nij∑
k=1

Xik,

C̃ii = n−1
i

p∑
j=1

nij∑
k=1

(Xik − µ̃i)
2 ,

C̃ij = n−1
ij

nij∑
k=1

(Xik − µ̃i) (Xjk − µ̃j)

for i 6= j. One would not estimate Cii by n−1
i

∑p
j=1

∑nij

k=1(X2
ik − µ̃2

i ) since this may be

negative with probability O(exp(−n0λ1)) (Anderson, 2003), where λ1 > 0. The estimate
µ̃ is unbiased and

var µ̃i = n−1
i Cii, covar (µ̃i, µ̃j) = n−1

i n−1
j nijCij(2.1)

for i 6= j. So,

corr (µ̃i, µ̃j) = ρijnij/ (ninj)
1/2 ,

where ρij = corr (Xi, Xj). Note that C̃ may have negative eigenvalues with probability

O(exp(−nλ2)), where λ2 > 0. To avoid this one can if desired replace C̃ = HΛH′
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say, where HH′ = Ip and Λ = diag(λi) by C̃+ = HΛ+H′, where Λ+ = diag(λi+)
and λi+ = max(λi, 0). This increases the “energy” of the system on average by only
O(exp(−n0λ2)). Set

µij··· = E (X − µ)i(X − µ)j · · · .

So, µij = Cij . Using the influence functions method one can show that the covariances

of µ̃, C̃ are given by

covar
(
µ̃i, C̃ij

)
≈ n−1

i µiij ,

covar
(
µ̃i, C̃jj

)
≈ n−1

i n−1
j nijµijj ,

covar
(
µ̃i, C̃jk

)
= 0,

var C̃ii ≈ n−1
i

(
µiiii − µ2

ii

)
,(2.2)

covar
(
C̃ii, C̃ij

)
≈ n−1

i (µiiij − µiiµij) ,(2.3)

covar
(
C̃ii, C̃jj

)
≈ n−1

i n−1
j nij (µiijj − µiiµjj) ,(2.4)

0 = covar
(
C̃ii, C̃jk

)
= covar

(
C̃ii, C̃jl

)
= covar

(
C̃ij , C̃kl

)
≈ covar

(
C̃ij , C̃ik

)
.

This is because for Fij = L(Xi, Xj), µ̃ and C̃ have influence functions (partial first
functional derivatives)

µi (x, Fij) = n−1
i nij (xi − µi) ,

Cij (x, Fij) = (xi − µi) (xj − µj)− Cij ,

Cii (x, Fij) = n−1
i nij

{
(xi − µi)

2 − Cii

}
and by equation (3.4) of Withers (1988), for T({Fij}), k × 1,

covar T
({
F̂ij

})
≈
∑
ij

n−1
ij

∫
T (x, Fij) T (x, Fij)

′ dFij(x).

The other combinations are obtained by replacing the indices i, j, k, l by 1, . . . , p.

3. Normal data

Here, we suppose that X is normal. So, µijk = 0 making µ̃, C̃ asymptotically inde-
pendent, and by (2.2)-(2.4),

var C̃ii ≈ 2n−1
i C2

ii,

covar
(
C̃ii, C̃ij

)
≈ 2n−1

i CiiCij ,

covar
(
C̃ii, C̃jj

)
≈ 2n−1

i n−1
j C2

ij .

However, the MLEs µ̂, Ĉ will in general have smaller mean square error than these.
Their disadvantage is that they must be found iteratively as we now express them as
implicit solutions of equations of the form

µ = f(C), C = g(µ,C).(3.1)

For i 6= j,
(
Xi
Xj

)
has covariance

C(ij) =

(
Cii Cij

Cij Cjj

)
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with inverse

C−1
(ij) = d−1

ij

(
Cjj −Cij

−Cij Cii

)
=
(
Cab

ij

)
say, for a, b = i, j, where dij = det C(ij) = CiiCjj − C2

ij . Set Yak = Xak − µa, δab = 1 if
a = b and δab = 0 if a 6= b. The log likelihood of the sample of size nij is

Lij = −nij log 2π − 2−1nij log dij − 2−1

nij∑
k=1

(
Yik

Yjk

)′
C−1

(ij)

(
Yik

Yjk

)
for i 6= j and

Lii = −2−1nii log 2π − 2−1 logCii − 2−1
nii∑
k=1

Y 2
ik/Cii.

The log likelihood of the combined sample is

L =
∑

1≤i≤j≤p

Lij .

This is maximized by µi when

0 = ∂L/∂µi = γi −
p∑

j=1

βijµj ,

where

γi =
∑
j 6=i

d−1
ij

nij∑
k=1

(XikCjj −XjkCij) + C−1
ii

nii∑
k=1

Xik,

βii =
∑
j 6=i

nijd
−1
ij Cjj + niiC

−1
ii ,

βij = −nijd
−1
ij Cij

for i 6= j. So, the MLE of µ given C is

µ̂(C) = β−1γ

for detβ 6= 0. This gives the first of the two equations of (3.1). For given C, µ̂(C) is

unbiased, but µ̂(Ĉ) may be biased since the usual MLE Ĉ of C is biased (Anderson,
2003). Since

∂/∂x log |C| = trace C−1∂C/∂x

and

∂C−1
(ij)/∂Cii = d−2

ij

(
−C2

jj CijCjj

CijCjj −C2
ij

)
for i 6= j, L is maximized by Cii when

0 = ∂L/∂Cii = 2−1C−2
ii

nii∑
k=1

Diik + 2−1
∑
j 6=i

d−2
ij

nij∑
k=1

(
C2

jjDiik − 2CjjCijDijk + C2
ijDjjk

)
,

where Dijk = YikYjk − Cij for sample nii or nij as appropriate. This can be written as

Cii = Ni(µ,C)/Di(µ,C) = gii(µ,C)(3.2)
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say, where

Di(µ,C) =
∑
j 6=i

nijd
−2
ij C

2
jj ,

Ni(µ,C) = niiC
−2
ii {

(
Y 2
i

)
ii
− Cii}

+
∑
j 6=i

nijd
−2
ij

[
C2

jj

(
Y 2
i

)
ij
− 2CjjCij{(YiYj)ij − Cij}+ C2

ij{
(
Y 2
j

)
ij
− Cjj}

]
,

(YaYb)ij = n−1
ij

nij∑
k=1

YakYbk.

Since ∂Cij
(ij)/∂Cij = −d−2

ij (CiiCjj + C2
ij), L is maximized by Cij when

0 = ∂L/∂Cij = −d−2
ij

nij∑
k=1

{CijCjjDiik −
(
CiiCjj + C2

ij

)
Dijk + CiiCijDjjk},

which we can write as

C2
ij +AijCij + CiiCjj = 0,

where Aij = {dij − (Y 2
i )ijCjj − (Y 2

j )ijCii}/(YiYj)ij . Since (YaYb)ij → Cab almost surely
as nij →∞, the consistent root is

Cij = −Aij/2−
(
A2

ij/4− CiiCjj

)1/2
= gij (µ,C)(3.3)

say. We see that (3.2), (3.3) give the second equation in (3.1). These can be solved
by iteration: µ(i+1) = f(C(i)) and C(i+1) = g(µ(i),C(i)), starting from µ(0) = µ̃ and

C(0) = C̃ of Section 2.
It is not clear if the right hand side of (3.3) can be non-real (complex), or if this is

ruled out by |ρij | ≤ 1, |ρ̂ij | ≤ 1, where ρij = corr(Xi, Xj). If it can be complex, then
this will occur with probability O(exp(−λnij)), where λ > 0. If the right hand side of
(3.3) is complex, it should be replaced by −Aij/2.

These “normal MLEs” (µ̂, Ĉ) will still be consistent as n0 →∞ if X is not normal.
As n0 →∞,

θ̂∼̇Nq

(
θ, In(θ)−1) ,

where θ′ = (µ′, vech C′), vech C = (C11, . . . , C1p, C22, . . . , C2p, . . . , Cpp) is r × 1, r =

p(p + 1)/2, q = r + p, θ̂ is the corresponding MLE, and In(θ) is Fisher’s information
matrix given by In(θ) = E ∂L/∂θ∂L/∂θ′. The elements of ∂L/∂θ were given above. So,

In(θ) =

[
〈µµ′〉 〈µ vech C′〉

〈µ′ vech C〉 〈vech C vech C′〉

]
,

where, for example,

〈µµ′〉 = E ∂L/∂µ ∂L/∂µ′ = E (γ − βµ) (γ − βµ)′

with ii element ∑
j 6=i

nijd
−1
ij Cjj + niiC

−1
ii

and ij element −nijd
−1
ij Cij for i 6= j. Also 〈µ vech C′〉 = 0 since it is a sum of third

central moments. So, µ̂, Ĉ are asymptotically independent, and

µ̂∼̇Np

(
µ, 〈µµ′〉−1) , vech Ĉ∼̇Nr

(
vech C, 〈 vech C vech C′〉−1) .(3.4)
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Note that if {nii} are all positive, the diagonal of 〈µµ′〉 is increased, increasing its
eigenvalues; c.f. ridge regression. By construction In(θ) is positive-definite. The elements
of 〈 vech C vech C′〉 needed for (3.4) are

〈C2
ii〉 = 2−1

∑
j 6=i

nijd
−2
ij C

2
jj + 2−1niiC

−2
ii ,

〈CiiCij〉 = −nijd
−2
ij CijCjj ,

〈CiiCjj〉 = 2−1nijd
−4
ij C

2
ij

(
CiiCjjd

2
ij + C4

ij

)
,

〈CiiCjk〉 = 〈CijCik〉 = 〈CijCkl〉 = 0.

3.1. Example. Suppose that p = 3, so vech C = (C11, C12, C13, C22, C23, C33)′. Then

In〈 vech C vech C′〉 =


〈C2

11〉 〈C11C12〉 〈C11C13〉 〈C11C22〉 0 〈C11C33〉
〈C2

12〉 0 〈C12C22〉 0 0
〈C2

13〉 0 0 〈C13C33〉
〈C2

22〉 〈C22C23〉 〈C22C33〉
〈C2

23〉 〈C23C33〉
〈C2

33〉

 .

The “ridge regression” effect if n11n22n33 6= 0 is confined to 〈C2
ii〉, that is only half of the

diagonal elements are increased.

4. Comparison example

Suppose that Cii ≡ 1, Cij ≡ ρ for i 6= j, nii ≡ n11, nij ≡ m for i 6= j. So, ni =
n11+mr, where r = p−1. By (2.1) the ij element of covar(µ̃) is n−1

1 for i = j and n−2
1 mρ

for i 6= j. The asymptotic covariance of µ̂ has diagonal elements (1− c)/(V11 − V12) and
off diagonals −c/(V11−V12), where V = 〈µµ′〉, that is V11−V12 = n11+m(r+ρ)/(1−ρ2)
and c = −mρ(1− ρ)−1{n11(1 + ρ) +mr}−1. So, var µ̂1 ≈ (1− c)/(V11−V12). So, µ̃1 has
asymptotic efficiency about

η = var µ̂1/var µ̃1 = n1(1− c) (V11 − V12)−1

= 1− n−1
11 mρ(2 + rρ)(1− ρ2)−1 +O

(
n−2
11

)
(4.1)

for fixed m. So, for large n11 and moderate m, µ̃1 has high efficiency. For m/n11 = 0.1,
the efficiency in (4.1) is plotted in Figure 4.1. The range of ρ is restricted by

0 <

∣∣∣∣∣∣∣
1 ρ

. . .

1

∣∣∣∣∣∣∣ = (1− ρ)n−1 (1 + ρp− ρ)

that is ρ > −1/(p− 1). It is clear that (4.1) is a decreasing function of both p and ρ. So,
the efficiency can be considered high if p is small and/or ρ is small. At ρ = −(p− 1)−1,
the efficiency is 1− n−1

11 mρ(1− ρ2)−1 which is also a decreasing function of ρ.
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Figure 4.1 The efficiency, (4.1), versus ρ when nij are all equal, Cii ≡ 1 and Cij ≡ ρ
for i 6= j. The curves from the top to bottom correspond to the increasing values
p = 2, 3, . . . , 9.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.21 0.22 0.23 0.24

ρ
Relative MSE

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.190 0.200 0.210 0.220

ρ

Relative MSE



196 C. S. Withers, S. Nadarajah

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.185 0.190 0.195 0.200 0.205 0.210

ρ

Relative MSE

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.185 0.190 0.195 0.200 0.205 0.210

ρ

Relative MSE

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.165 0.175 0.185 0.195

ρ

Relative MSE

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.165 0.170 0.175 0.180

ρ

Relative MSE

Figure 4.2 Relative mean squared error versus ρ for m/n11 = 0.2 (top left), m/n11 = 0.4
(top right), m/n11 = 0.6 (middle left), m/n11 = 0.8 (middle right), m/n11 = 1 (bottom
left) and m/n11 = 2 (bottom right).

The above calculations are analytical and asymptotic. For better understanding about
how µ̂1 and µ̃1 compare, we now perform a simulation study. We use the following scheme:

(1) Suppose (X1, X2, . . . , Xp) has the p-variate normal distribution with zero means
and covariance given by Cii ≡ 1, Cij ≡ ρ for i 6= j;

(2) Simulate a sample of size m from
(
Xi
Xj

)
for all 1 ≤ i < j ≤ p;

(3) Simulate a sample of size n11 from Xi for all 1 ≤ i ≤ p;
(4) Using the data in steps 2 and 3, estimate µ̂1 and µ̃1;
(5) Repeat steps 2 to 4 ten thousand times;
(6) Compute the mean squared errors of µ̂1 and µ̃1;
(7) Compute the relative mean squared error as the mean squared error of µ̂1 divided

by that of µ̃1.

We executed this scheme for p = 3, ρ = 0.01, 0.02, . . . , 0.99 andm/n11 = 0.2, 0.4, 0.6, 0.8, 1, 2.
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The relative mean squared errors are plotted in Figure 4.2. The actual values plotted
are the lowess (Cleveland, 1979, 1981) smoothed versions versus ρ for ρ = 0.01, 0.02, . . . , 0.99.
While lowess smoothing, we used the default options. These are: a smoothing span of
2/3, three ‘robustifying’ iterations and the speed of computations determined by 0.01th
of the range of the ρ values.

The following observations can be drawn from Figure 4.2:

(1) the relative mean squared error decreases with respect to ρ for all m/n11 even
for m/n11 > 1;

(2) the relative mean squared errors are largest for m/n11 = 0.2;
(3) the relative mean squared errors are smallest for m/n11 = 2.

In the simulations, we have limited p = 3. But similar results hold for higher p. We have
not presented them in order to avoid repetitive discussion.

5. Future work

The work of this note can be extended in several ways. One way is to consider
estimation of µ and C of when samples are available only from q of the components of

X, where q < p. Another work is to study properties of C̃+ = HΛ+H′. Yet another
work is to perform simulations and analytical calculations as in Section 4 to compare the

efficiencies of C̃ij and Ĉij .
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