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Abstract

In this paper, we investigate the dynamical properties of the following
nonlinear difference equation:

xn+1 =
xa
nxn−2xn−3 + xnxn−2x

a
n−3 + 1

xa
nxn−3 + xnxa

n−3 + 1
, n = 0, 1, . . .
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1. Introduction

Recently, there has been a great interest in studying the qualitative behavior of rational
difference equations. Berenhaut et al.[4] has showed that the unique positive equilibrium
ȳ = 1 of the difference equation:

yn =
yn−k + yn−m

1 + yn−kyn−m
, n = 0, 1, . . .

is globally asymptotically stable.

Chen et al.[5] investigated the dynamical properties of the following fourth-order nonlin-
ear difference equation:

xn+1 =
xa
n−2 + xn−3

xa
n−2xn−3 + 1

, n = 0, 1, . . .

with nonnegative initial conditions and a ∈ [0, 1).

Das [6] investigate the qualitative behavior of the following fourth-order difference equa-
tion:

xn+1 =
xn−1x

a
n−2 + xn−1x

a
n−3 + 1

xa
n−2 + xa

n−3 + 1
, n = 0, 1, . . .
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where a ∈ (0,∞) and the initial conditions x−3, x−2, x−1, x0 ∈ (0,∞). For more work,
see [1, 2, 3, 7, 8, 9, 10].

To be motivated by the above studies, in this paper, we consider the following nonlinear
difference equation:

(1.1) xn+1 =
xa
nxn−2xn−3 + xnxn−2x

a
n−3 + 1

xa
nxn−3 + xnxa

n−3 + 1
, n = 0, 1, . . .

where a ∈ (0,∞) and the initial conditions are arbitrary positive real numbers. It is easy
to see that the positive equilibrium x̄ = 1 of Eq.(1.1) satisfies x̄ = (2x̄a+2+1)/(2x̄a+1+1).

In the following, we state some main definitions used in this paper.

1.1. Definition. A positive semi-cycle of a solution {xn}∞n=−3 of Eq.(1.1) consists of a
”string” of terms {x`, x`+1, ..., xm} all greater than or equal to the equilibrium x̄,

with ` ≥ −3 and m <∞ such that

either ` = −3 or ` > −3 and x`−1 < x̄

and

either m =∞ orm <∞ and xm+1 < x̄

A negative semi-cycle of a solution {xn}∞n=−3 of Eq.(1.1) consists of a ”string” of terms
{x`, x`+1, ..., xm} all less than x̄,

with ` ≥ −3 and m <∞ such that

either ` = −3 or ` > −3 and x`−1 ≥ x̄

and

either m =∞ or m <∞ and xm+1 ≥ x̄

The length of a semi-cycle is the number of the total terms contained in it.

1.2. Definition. A solution {xn}∞n=−3 of Eq.(1.1) is said to be eventually trivial if xn

is eventually equal to x̄ = 1 ; Otherwise the solution is said to be nontrivial. A solu-
tion {xn}∞n=−3 of Eq.(1.1) is said to be eventually positive (negative) if xn is eventually
greater (less) than x̄ = 1.

2. Three Lemmas

Before to draw a qualitatively clear picture for the positive solutions of Eq.(1.1), we
first establish three basic lemmas which will play a key role in the proof of our main
results.

2.1. Lemma. A positive solution {xn}∞n=−3 of Eq.(1.1) is eventually equal to 1 if and
only if

(2.1) (x−2 − 1)(x−1 − 1)(x0 − 1) = 0

Proof. Assume that (2.1) holds. Then according to Eq.(??), it is easy to see that the
following conclusions hold:

(i) if x−2 = 1, then xn = 1 for n ≥ 40
(ii) if x−1 = 1, then xn = 1 for n ≥ 40
(ii) if x0 = 1, then xn = 1 for n ≥ 40
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Conversely, assume that

(2.2) (x−2 − 1)(x−1 − 1)(x0 − 1) 6= 0

Then one can show that

(2.3) xn 6= 1 for any n ≥ 1

Assume the contrary that for some N ≥ 1,

(2.4) xN = 1 and that xn 6= 1 for − 2 ≤ n ≤ N − 1

It is easy to see that

(2.5) 1 = xN =
xa
N−1xN−3xN−4 + xN−1xN−3x

a
N−4 + 1

xa
N−1xN−4 + xN−1xa

N−4 + 1

which implies (xa
N−1xN−4 + xN−1x

a
N−4)(xN−3 − 1) = 0. Obviously, this contradicts

(2.3). �

2.2. Remark. If the initial conditions do not satisfy Eq.(1.1), then, for any solution xn

of Eq.(1.1), xn 6= 1 for n ≥ −3. Here, the solution is a nontrivial one.

2.3. Lemma. Let {xn}∞n=−3 be a nontrivial positive solution of Eq.(1.1). Then the
following conclusions are true for n ≥ 0:

(a) (xn+1 − 1)(xn−2 − 1) > 0
(b) (xn+1 − xn−2)(xn−2 − 1) < 0

Proof. It follows in light of Eq.(1.1) that

xn+1 − 1 =
(xa

nxn−3 + xnx
a
n−3)(xn−2 − 1)

xa
nxn−3 + xnxa

n−3 + 1
, n = 0, 1, . . .

xn+1 − xn−2 =
(1− xn−2)

xa
nxn−3 + xnxa

n−3 + 1
, n = 0, 1, . . .

from which inequalities (a) and (b) follow. �

2.4. Lemma.

(i) If x−2, x−1, x0 > 1, then {xn}∞n=−3 has a positive semi-cycle with an infinite
number of terms and it monotonically tends to the positive equilibrium point
x̄ = 1.

(ii) If x−2, x−1, x0 < 1, then {xn}∞n=−3 has a negative semi-cycle with an infinite
number of terms and it monotonically tends to the positive equilibrium point
x̄ = 1.

Proof. (i) If x−2, x−1, x0 > 1, from Lemma 2.3.(a) and (b), for n ≥ −3

1 < x3k−2 < ... < x4 < x1 < x−2

1 < x3k−1 < ... < x5 < x2 < x−1

1 < x3k < ... < x6 < x3 < x0, k = 0, 1, . . .

Clearly, {xn}∞n=−3 has a positive semi-cycle with an infinite number of terms and mono-
tonically decreasing for n ≥ 0. So the limit

(2.6) lim
n→∞

xn = L

exists and finite. Taking the limits on both sides of Eq.(1.1), we have

L =
2La+2 + 1

2La+1 + 1
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we can easily see that {xn}∞n=−3 tends to the positive equilibrium point x̄ = 1.

(ii) If x−2, x−1, x0 < 1, from Lemma 2.3.(a) and (b), for n ≥ −2

x−2 < x1 < x4 < ... < x3k−2 < 1

x−1 < x2 < x5 < ... < x3k−1 < 1

x0 < x3 < x6 < ... < x3k < 1 k = 0, 1, . . .

Therefore, {xn}∞n=−3 has a negative semi-cycle with an infinite number of terms and
monotonically increasing for n ≥ 0. So the limit

(2.7) lim
n→∞

xn = M

exists and finite. Taking the limits on both sides of Eq.(1.1), we have

M =
2Ma+2 + 1

2Ma+1 + 1

So, {xn}∞n=−3 tends to the positive equilibrium point x̄ = 1. �

3. Main Results and their proofs

First we analyze the structure of the semi-cycles of nontrivial solutions of Eq.(1.1).
Here we confine us to consider the situation of the strictly oscillatory solution of Eq.(1.1).

3.1. Theorem. Let {xn}∞n=−3 be a strictly oscillatory solution of Eq.(1.1). Then the
rule for the lengths of positive and negative semi-cycles of this solution to successively
occur is . . . 2+, 1−, 2+, 1−, 2+, 1−, . . . or . . . 2−, 1+, 2−, 1+, 2−, 1+, . . ..

Proof. By Lemma 2.3.(a) and (b), one can see that the length of a positive semi-cycle
is not larger than 2 and the length of a negative semi-cycle is at most 2. Based on the
strictly oscillatory character of the solution, we see, for some p ≥ 0, that one of the
following two cases must occur:

Case1. xp−2 > 1, xp−1 < 1 and xp > 1

Case2. xp−2 > 1, xp−1 < 1 and xp < 1

If Case 1. Occurs, it follows from Lemma 2.3.(a) that

xp+1 > 1, xp+2 < 1, xp+3 > 1, xp+4 > 1, xp+5 < 1, xp+6 > 1, xp+7 > 1, xp+8 < 1, . . .

It means that the rule of the lengths of positive and negative semi-cycles of the solution
of Eq.(1.1) to occur successively is . . . 2+, 1−, 2+, 1−, 2+, 1−, . . ..

If Case 2. Occurs, it follows from Lemma 2.3.(a) that

xp+1 > 1, xp+2 < 1, xp+3 < 1, xp+4 > 1, xp+5 < 1, xp+6 < 1, xp+7 > 1, xp+8 < 1, xp+9 < 1, . . .

It means that the rule of the lengths of positive and negative semi-cycles of the solution
of Eq.(1.1) to occur successively is . . . 2−, 1+, 2−, 1+, 2−, 1+ . . .

Therefore, the proof is complete. �

Now we present the global asymptotically stable results for Eq.(1.1).

3.2. Theorem. Assume that a ∈ (0,∞). Then the positive equilibrium of Eq.(1.1) is
globally asymptotically stable.
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Proof. We should prove that the positive equilibrium point x̄ of Eq.(1.1) is both locally
asymptotically stable and globally attractive. The linearized equation of Eq.(1.1) about
the positive equilibrium point x̄ = 1 is

yn+1 = 0.yn +
2

3
.yn−2 + 0.yn−3 , n = 0, 1, ...

By virtue of [7, Remark 1.3.7], x̄ is locally asymptotically stable. It remains to verify
that every positive solution {xn}∞n=−3 of Eq.(1.1) converges to 1 as n→∞. Namely, we
want to prove

(3.1) lim
n→∞

xn = 1

If the solution is nonoscillatory about the positive equilibrium point x̄ of Eq.(1.1), then
from Lemma 2.1 and Lemma 2.4, the solution is either equal to 1 or eventually positive
or negative one which has an infinite number of terms and monotonically tends to the
positive equilibrium point x̄ of Eq.(1.1), and so Eq.(3.1) holds.Therefore, it suffices to
prove that Eq.(3.1) holds for the solution to be strictly oscillatory.

Consider now {xn} to be strictly oscillatory about the positive equilibrium point x̄ of
Eq.(1.1). By virtue of Theorem 3.1, one understands that the rule for the lengths of
positive and negative semi-cycles which occur successively is . . . 2+, 1−, 2+, 1−, 2+, 1−, . . .
or . . . , 2−, 1+, 2−, 1+, 2−, 1+, . . .

Now, we investigate the case where the rule for the lengths of positive and negative
semi-cycles which occur successively is . . . 2+, 1−, 2+, 1−, . . .

For simplicity, we denote by {xt, xt+1}+ the terms of a positive semi-cycle of length
two, followed by {xt+2}− the terms of a negative semi-cycle with length one,followed by
{xt+3, xt+4}+ the terms of a positive semi-cycle of length two, followed by {xt+5}− the
terms of a negative semi-cycle with length one,and so on. Namely, the rule for the lengths
of positive and negative semi-cycles to occur successively can be periodically expressed
as follows for n = 0, 1, . . .:

{xt+6n, xt+6n+1}+, {xt+6n+2}−, {xt+6n+3, xt+6n+4}+, {xt+6n+5}−

then the following results can be easily observed:

(3.2) 1 < xt+6n+4 < xt+6n+1

(3.3) 1 < xt+6n+6 < xt+6n+3 < xt+6n

(3.4) xt+6n+2 < xt+6n+5 < 1

It follows from 3.2 that {xt+6n+1}∞n=0 is decreasing with lower bound 1. So the limit

lim
n→∞

xt+6n+1 = L

exists and finite. Accordingly, by view of 3.2, we obtain

lim
n→∞

xt+6n+4 = L

Also, it is easy to see from 3.3 that {xt+6n}∞n=0 is decreasing with lower bound 1. So the
limit

lim
n→∞

xt+6n = M
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exists and finite. By view of 3.4, we obtain

lim
n→∞

xt+6n+3 = lim
n→∞

xt+6n+6 = M

Lastly, from 3.4 that {xt+6n+2}∞n=0 is increasing with upper bound 1. So the limit

lim
n→∞

xt+6n+2 = N

exists and finite. By view of 3.4, we obtain

lim
n→∞

xt+6n+5 = N

Taking the limits on both sides of

xt+6n+6 =
xa
t+6n+5xt+6n+3xt+6n+2 + xt+6n+5xt+6n+3x

a
t+6n+2 + 1

xa
t+6n+5xt+6n+2 + xt+6n+5xa

t+6n+2 + 1

one has, M = (2MNa+1 + 1)/(2Na+1 + 1), which gives rise to M = 1.

Similarly, taking the limits on both sides of

xt+6n+5 =
xa
t+6n+4xt+6n+2xt+6n+1 + xt+6n+4xt+6n+2x

a
t+6n+1 + 1

xa
t+6n+4xt+6n+1 + xt+6n+4xa

t+6n+1 + 1

one has, N = (2NLa+1 + 1)/(2La+1 + 1), which gives rise to N = 1.
Lastly, taking the limits on both sides of

xt+6n+4 =
xa
t+6n+3xt+6n+1xt+6n + xt+6n+3xt+6n+1x

a
t+6n + 1

xa
t+6n+3xt+6n + xt+6n+3xa

t+6n + 1

one has, L = (2LMa+1 + 1)/(2Ma+1 + 1), which gives rise to L = 1.

So we can see that

lim
n→∞

xt+6n+k = 1, k = 0, 1, . . . , 6

For . . . , 2−, 1+, 2−, 1+, 2−, 1+, . . . can be similarly shown. �
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