DYNAMICS OF A NONLINEAR RATIONAL DIFFERENCE EQUATION

S. Ebru Daṣ *

Received $22: 08: 2010$: Accepted $20: 12: 2011$

Abstract

In this paper, we investigate the dynamical properties of the following nonlinear difference equation: $$
x_{n+1}=\frac{x_{n}^{a} x_{n-2} x_{n-3}+x_{n} x_{n-2} x_{n-3}^{a}+1}{x_{n}^{a} x_{n-3}+x_{n} x_{n-3}^{a}+1}, n=0,1, \ldots
$$

Keywords: Difference equation, Stability, Global Stability, Oscillation.
2000 AMS Classification: 39A10.

1. Introduction

Recently, there has been a great interest in studying the qualitative behavior of rational difference equations. Berenhaut et al.[4] has showed that the unique positive equilibrium $\bar{y}=1$ of the difference equation:

$$
y_{n}=\frac{y_{n-k}+y_{n-m}}{1+y_{n-k} y_{n-m}}, n=0,1, \ldots
$$

is globally asymptotically stable.
Chen et al.[5] investigated the dynamical properties of the following fourth-order nonlinear difference equation:

$$
x_{n+1}=\frac{x_{n-2}^{a}+x_{n-3}}{x_{n-2}^{a} x_{n-3}+1}, n=0,1, \ldots
$$

with nonnegative initial conditions and $a \in[0,1)$.
Das [6] investigate the qualitative behavior of the following fourth-order difference equation:

$$
x_{n+1}=\frac{x_{n-1} x_{n-2}^{a}+x_{n-1} x_{n-3}^{a}+1}{x_{n-2}^{a}+x_{n-3}^{a}+1}, n=0,1, \ldots
$$

[^0]where $a \in(0, \infty)$ and the initial conditions $x_{-3}, x_{-2}, x_{-1}, x_{0} \in(0, \infty)$. For more work, see $[1,2,3,7,8,9,10]$.
To be motivated by the above studies, in this paper, we consider the following nonlinear difference equation:
\[

$$
\begin{equation*}
x_{n+1}=\frac{x_{n}^{a} x_{n-2} x_{n-3}+x_{n} x_{n-2} x_{n-3}^{a}+1}{x_{n}^{a} x_{n-3}+x_{n} x_{n-3}^{a}+1}, n=0,1, \ldots \tag{1.1}
\end{equation*}
$$

\]

where $a \in(0, \infty)$ and the initial conditions are arbitrary positive real numbers. It is easy to see that the positive equilibrium $\bar{x}=1$ of Eq.(1.1) satisfies $\bar{x}=\left(2 \bar{x}^{a+2}+1\right) /\left(2 \bar{x}^{a+1}+1\right)$.

In the following, we state some main definitions used in this paper.
1.1. Definition. A positive semi-cycle of a solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(1.1) consists of a "string" of terms $\left\{x_{\ell}, x_{\ell+1}, \ldots, x_{m}\right\}$ all greater than or equal to the equilibrium \bar{x},

$$
\begin{aligned}
& \text { with } \ell \geq-3 \text { and } m<\infty \text { such that } \\
& \text { either } \ell=-3 \text { or } \ell>-3 \text { and } x_{\ell-1}<\bar{x} \\
& \quad \text { and } \\
& \text { either } m=\infty \text { or } m<\infty \text { and } x_{m+1}<\bar{x}
\end{aligned}
$$

A negative semi-cycle of a solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(1.1) consists of a "string" of terms $\left\{x_{\ell}, x_{\ell+1}, \ldots, x_{m}\right\}$ all less than \bar{x},

$$
\begin{aligned}
& \text { with } \ell \geq-3 \text { and } m<\infty \text { such that } \\
& \text { either } \ell=-3 \text { or } \ell>-3 \text { and } x_{\ell-1} \geq \bar{x} \\
& \quad \text { and } \\
& \text { either } m=\infty \text { or } m<\infty \text { and } x_{m+1} \geq \bar{x}
\end{aligned}
$$

The length of a semi-cycle is the number of the total terms contained in it.
1.2. Definition. A solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(1.1) is said to be eventually trivial if x_{n} is eventually equal to $\bar{x}=1$; Otherwise the solution is said to be nontrivial. A solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(1.1) is said to be eventually positive (negative) if x_{n} is eventually greater (less) than $\bar{x}=1$.

2. Three Lemmas

Before to draw a qualitatively clear picture for the positive solutions of Eq.(1.1), we first establish three basic lemmas which will play a key role in the proof of our main results.
2.1. Lemma. A positive solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(1.1) is eventually equal to 1 if and only if
$\left(x_{-2}-1\right)\left(x_{-1}-1\right)\left(x_{0}-1\right)=0$
Proof. Assume that (2.1) holds. Then according to Eq.(??), it is easy to see that the following conclusions hold:
(i) if $x_{-2}=1$, then $x_{n}=1$ for $n \geq 40$
(ii) if $x_{-1}=1$, then $x_{n}=1$ for $n \geq 40$
(ii) if $x_{0}=1$, then $x_{n}=1$ for $n \geq 40$

Conversely, assume that

$$
\begin{equation*}
\left(x_{-2}-1\right)\left(x_{-1}-1\right)\left(x_{0}-1\right) \neq 0 \tag{2.2}
\end{equation*}
$$

Then one can show that

$$
\begin{equation*}
x_{n} \neq 1 \text { for any } n \geq 1 \tag{2.3}
\end{equation*}
$$

Assume the contrary that for some $N \geq 1$,

$$
\begin{equation*}
x_{N}=1 \text { and that } x_{n} \neq 1 \text { for }-2 \leq n \leq N-1 \tag{2.4}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
1=x_{N}=\frac{x_{N-1}^{a} x_{N-3} x_{N-4}+x_{N-1} x_{N-3} x_{N-4}^{a}+1}{x_{N-1}^{a} x_{N-4}+x_{N-1} x_{N-4}^{a}+1} \tag{2.5}
\end{equation*}
$$

which implies $\left(x_{N-1}^{a} x_{N-4}+x_{N-1} x_{N-4}^{a}\right)\left(x_{N-3}-1\right)=0$. Obviously, this contradicts (2.3).
2.2. Remark. If the initial conditions do not satisfy Eq.(1.1), then, for any solution x_{n} of Eq.(1.1), $x_{n} \neq 1$ for $n \geq-3$. Here, the solution is a nontrivial one.
2.3. Lemma. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a nontrivial positive solution of Eq.(1.1). Then the following conclusions are true for $n \geq 0$:
(a) $\left(x_{n+1}-1\right)\left(x_{n-2}-1\right)>0$
(b) $\left(x_{n+1}-x_{n-2}\right)\left(x_{n-2}-1\right)<0$

Proof. It follows in light of Eq.(1.1) that

$$
\begin{aligned}
x_{n+1}-1 & =\frac{\left(x_{n}^{a} x_{n-3}+x_{n} x_{n-3}^{a}\right)\left(x_{n-2}-1\right)}{x_{n}^{a} x_{n-3}+x_{n} x_{n-3}^{a}+1}, n=0,1, \ldots \\
x_{n+1}-x_{n-2} & =\frac{\left(1-x_{n-2}\right)}{x_{n}^{a} x_{n-3}+x_{n} x_{n-3}^{a}+1}, n=0,1, \ldots
\end{aligned}
$$

from which inequalities (a) and (b) follow.

2.4. Lemma.

(i) If $x_{-2}, x_{-1}, x_{0}>1$, then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ has a positive semi-cycle with an infinite number of terms and it monotonically tends to the positive equilibrium point $\bar{x}=1$.
(ii) If $x_{-2}, x_{-1}, x_{0}<1$, then $\left\{x_{n}\right\}_{n=-3}^{\infty}$ has a negative semi-cycle with an infinite number of terms and it monotonically tends to the positive equilibrium point $\bar{x}=1$.

Proof. (i) If $x_{-2}, x_{-1}, x_{0}>1$, from Lemma 2.3.(a) and (b), for $n \geq-3$

$$
1<x_{3 k-2}<\ldots<x_{4}<x_{1}<x_{-2}
$$

$$
1<x_{3 k-1}<\ldots<x_{5}<x_{2}<x_{-1}
$$

$$
1<x_{3 k}<\ldots<x_{6}<x_{3}<x_{0}, k=0,1, \ldots
$$

Clearly, $\left\{x_{n}\right\}_{n=-3}^{\infty}$ has a positive semi-cycle with an infinite number of terms and monotonically decreasing for $n \geq 0$. So the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=L \tag{2.6}
\end{equation*}
$$

exists and finite. Taking the limits on both sides of Eq.(1.1), we have

$$
L=\frac{2 L^{a+2}+1}{2 L^{a+1}+1}
$$

we can easily see that $\left\{x_{n}\right\}_{n=-3}^{\infty}$ tends to the positive equilibrium point $\bar{x}=1$.
(ii) If $x_{-2}, x_{-1}, x_{0}<1$, from Lemma 2.3.(a) and (b), for $n \geq-2$

$$
\begin{aligned}
x_{-2} & <x_{1}<x_{4}<\ldots<x_{3 k-2}<1 \\
x_{-1} & <x_{2}<x_{5}<\ldots<x_{3 k-1}<1 \\
x_{0} & <x_{3}<x_{6}<\ldots<x_{3 k}<1 k=0,1, \ldots
\end{aligned}
$$

Therefore, $\left\{x_{n}\right\}_{n=-3}^{\infty}$ has a negative semi-cycle with an infinite number of terms and monotonically increasing for $n \geq 0$. So the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=M \tag{2.7}
\end{equation*}
$$

exists and finite. Taking the limits on both sides of Eq.(1.1), we have

$$
M=\frac{2 M^{a+2}+1}{2 M^{a+1}+1}
$$

So, $\left\{x_{n}\right\}_{n=-3}^{\infty}$ tends to the positive equilibrium point $\bar{x}=1$.

3. Main Results and their proofs

First we analyze the structure of the semi-cycles of nontrivial solutions of Eq.(1.1). Here we confine us to consider the situation of the strictly oscillatory solution of Eq.(1.1).
3.1. Theorem. Let $\left\{x_{n}\right\}_{n=-3}^{\infty}$ be a strictly oscillatory solution of Eq.(1.1). Then the rule for the lengths of positive and negative semi-cycles of this solution to successively occur is $\ldots 2^{+}, 1^{-}, 2^{+}, 1^{-}, 2^{+}, 1^{-}, \ldots$ or $\ldots 2^{-}, 1^{+}, 2^{-}, 1^{+}, 2^{-}, 1^{+}, \ldots$.

Proof. By Lemma 2.3.(a) and (b), one can see that the length of a positive semi-cycle is not larger than 2 and the length of a negative semi-cycle is at most 2. Based on the strictly oscillatory character of the solution, we see, for some $p \geq 0$, that one of the following two cases must occur:

$$
\begin{aligned}
& \text { Case1. } x_{p-2}>1, x_{p-1}<1 \text { and } x_{p}>1 \\
& \text { Case2. } x_{p-2}>1, x_{p-1}<1 \text { and } x_{p}<1
\end{aligned}
$$

If Case 1. Occurs, it follows from Lemma 2.3.(a) that

$$
x_{p+1}>1, x_{p+2}<1, x_{p+3}>1, x_{p+4}>1, x_{p+5}<1, x_{p+6}>1, x_{p+7}>1, x_{p+8}<1, \ldots
$$

It means that the rule of the lengths of positive and negative semi-cycles of the solution of Eq.(1.1) to occur successively is $\ldots 2^{+}, 1^{-}, 2^{+}, 1^{-}, 2^{+}, 1^{-}, \ldots$.
If Case 2. Occurs, it follows from Lemma 2.3.(a) that

$$
x_{p+1}>1, x_{p+2}<1, x_{p+3}<1, x_{p+4}>1, x_{p+5}<1, x_{p+6}<1, x_{p+7}>1, x_{p+8}<1, x_{p+9}<1, \ldots
$$

It means that the rule of the lengths of positive and negative semi-cycles of the solution of Eq.(1.1) to occur successively is $\ldots 2^{-}, 1^{+}, 2^{-}, 1^{+}, 2^{-}, 1^{+} \ldots$
Therefore, the proof is complete.
Now we present the global asymptotically stable results for Eq.(1.1).
3.2. Theorem. Assume that $a \in(0, \infty)$. Then the positive equilibrium of Eq.(1.1) is globally asymptotically stable.

Proof. We should prove that the positive equilibrium point \bar{x} of Eq.(1.1) is both locally asymptotically stable and globally attractive. The linearized equation of Eq.(1.1) about the positive equilibrium point $\bar{x}=1$ is

$$
y_{n+1}=0 \cdot y_{n}+\frac{2}{3} \cdot y_{n-2}+0 \cdot y_{n-3} \quad, \quad n=0,1, \ldots
$$

By virtue of [7, Remark 1.3.7], \bar{x} is locally asymptotically stable. It remains to verify that every positive solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of Eq.(1.1) converges to 1 as $n \rightarrow \infty$. Namely, we want to prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=1 \tag{3.1}
\end{equation*}
$$

If the solution is nonoscillatory about the positive equilibrium point \bar{x} of Eq.(1.1), then from Lemma 2.1 and Lemma 2.4, the solution is either equal to 1 or eventually positive or negative one which has an infinite number of terms and monotonically tends to the positive equilibrium point \bar{x} of Eq.(1.1), and so Eq.(3.1) holds.Therefore, it suffices to prove that Eq.(3.1) holds for the solution to be strictly oscillatory.
Consider now $\left\{x_{n}\right\}$ to be strictly oscillatory about the positive equilibrium point \bar{x} of Eq.(1.1). By virtue of Theorem 3.1, one understands that the rule for the lengths of positive and negative semi-cycles which occur successively is $\ldots 2^{+}, 1^{-}, 2^{+}, 1^{-}, 2^{+}, 1^{-}, \ldots$. or $\ldots, 2^{-}, 1^{+}, 2^{-}, 1^{+}, 2^{-}, 1^{+}, \ldots$
Now, we investigate the case where the rule for the lengths of positive and negative semi-cycles which occur successively is $\ldots 2^{+}, 1^{-}, 2^{+}, 1^{-}, \ldots$
For simplicity, we denote by $\left\{x_{t}, x_{t+1}\right\}^{+}$the terms of a positive semi-cycle of length two, followed by $\left\{x_{t+2}\right\}^{-}$the terms of a negative semi-cycle with length one,followed by $\left\{x_{t+3}, x_{t+4}\right\}^{+}$the terms of a positive semi-cycle of length two, followed by $\left\{x_{t+5}\right\}^{-}$the terms of a negative semi-cycle with length one,and so on. Namely, the rule for the lengths of positive and negative semi-cycles to occur successively can be periodically expressed as follows for $n=0,1, \ldots$:

$$
\left\{x_{t+6 n}, x_{t+6 n+1}\right\}^{+},\left\{x_{t+6 n+2}\right\}^{-},\left\{x_{t+6 n+3}, x_{t+6 n+4}\right\}^{+},\left\{x_{t+6 n+5}\right\}^{-}
$$

then the following results can be easily observed:

$$
\begin{align*}
& 1<x_{t+6 n+4}<x_{t+6 n+1} \tag{3.2}\\
& 1<x_{t+6 n+6}<x_{t+6 n+3}<x_{t+6 n} \tag{3.3}\\
& x_{t+6 n+2}<x_{t+6 n+5}<1 \tag{3.4}
\end{align*}
$$

It follows from 3.2 that $\left\{x_{t+6 n+1}\right\}_{n=0}^{\infty}$ is decreasing with lower bound 1 . So the limit

$$
\lim _{n \rightarrow \infty} x_{t+6 n+1}=L
$$

exists and finite. Accordingly, by view of 3.2 , we obtain

$$
\lim _{n \rightarrow \infty} x_{t+6 n+4}=L
$$

Also, it is easy to see from 3.3 that $\left\{x_{t+6 n}\right\}_{n=0}^{\infty}$ is decreasing with lower bound 1 . So the limit

$$
\lim _{n \rightarrow \infty} x_{t+6 n}=M
$$

exists and finite. By view of 3.4, we obtain

$$
\lim _{n \rightarrow \infty} x_{t+6 n+3}=\lim _{n \rightarrow \infty} x_{t+6 n+6}=M
$$

Lastly, from 3.4 that $\left\{x_{t+6 n+2}\right\}_{n=0}^{\infty}$ is increasing with upper bound 1 . So the limit

$$
\lim _{n \rightarrow \infty} x_{t+6 n+2}=N
$$

exists and finite. By view of 3.4, we obtain

$$
\lim _{n \rightarrow \infty} x_{t+6 n+5}=N
$$

Taking the limits on both sides of

$$
x_{t+6 n+6}=\frac{x_{t+6 n+5}^{a} x_{t+6 n+3} x_{t+6 n+2}+x_{t+6 n+5} x_{t+6 n+3} x_{t+6 n+2}^{a}+1}{x_{t+6 n+5}^{a} x_{t+6 n+2}+x_{t+6 n+5} x_{t+6 n+2}^{a}+1}
$$

one has, $M=\left(2 M N^{a+1}+1\right) /\left(2 N^{a+1}+1\right)$, which gives rise to $M=1$.
Similarly, taking the limits on both sides of

$$
x_{t+6 n+5}=\frac{x_{t+6 n+4}^{a} x_{t+6 n+2} x_{t+6 n+1}+x_{t+6 n+4} x_{t+6 n+2} x_{t+6 n+1}^{a}+1}{x_{t+6 n+4}^{a} x_{t+6 n+1}+x_{t+6 n+4} x_{t+6 n+1}^{a}+1}
$$

one has, $N=\left(2 N L^{a+1}+1\right) /\left(2 L^{a+1}+1\right)$, which gives rise to $N=1$.
Lastly, taking the limits on both sides of

$$
x_{t+6 n+4}=\frac{x_{t+6 n+3}^{a} x_{t+6 n+1} x_{t+6 n}+x_{t+6 n+3} x_{t+6 n+1} x_{t+6 n}^{a}+1}{x_{t+6 n+3}^{a} x_{t+6 n}+x_{t+6 n+3} x_{t+6 n}^{a}+1}
$$

one has, $L=\left(2 L M^{a+1}+1\right) /\left(2 M^{a+1}+1\right)$, which gives rise to $L=1$.
So we can see that

$$
\lim _{n \rightarrow \infty} x_{t+6 n+k}=1, k=0,1, \ldots, 6
$$

For $\ldots, 2^{-}, 1^{+}, 2^{-}, 1^{+}, 2^{-}, 1^{+}, \ldots$ can be similarly shown.

References

[1] Agarwal R.P. Difference Equations and Inequalities, Marcel Dekker, Newyork, NY, USA, 1st Edition, 1992.
[2] Agarwal R.P. Difference Equations and Inequalities, Marcel Dekker, Newyork, NY, USA, 2nd Edition, 2000.
[3] Bayram, M. and Das, S. E. Global Asymptotic Stability of a Nonlinear Recursive Sequence, Int. Math. For., 5(22), 1083-1089, 2010.
[4] Berenhaut, K.S., Foley, J.D. and Stevic, S. The Global Attractivity of the Rational Difference Equation, Appl. Math. Lett., 20, 54-58, 2007.
[5] Chen, Y. and Li, X. Dynamical Properties in a Fourth-order Nonlinear Difference Equation, Adv. Diff. Equ., ID.679409, 9 pages, 2010.
[6] Das, S. E. Qualitative Behavior of a Fourth-order Rational Difference Equation, in review, 2010.
[7] Das, S. E. Global Asymptotic Stability for a Fourth-order Rational Difference Equation, Int. Math. For., 5(32), 1591-1596, 2010.
[8] Kocic, V. L. and Ladas, G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Vol. 256 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.
[9] Li, X. and Zhu, D. Global asymptotic stability of a nonlinear recursive sequence, Compt.Math.Appl., 17, 833- 838, 2004.
[10] Li, X. Qualitative properties for a fourth-order rational difference equation, J.Math.Anal.Appl., 311, 103-111, 2005.

[^0]: *Yıldız Technical University, Department of Mathematics, Istanbul, Turkey.
 E-mail: eyeni@yildiz.edu.tr

