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Abstract

Lower and upper bounds as well as Nordhauss-Gaddum-type results for
the resistance–distance spectral radius are obtained.
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dius
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1. Introduction and preliminaries

The resistance distance is a metric function on a graph, proposed by Klein and Randić
[18]. The resistance distance Rij between the vertices vi and vj of a connected graph G
is defined to be equal to the resistance between the respective two nodes of an electrical
network, corresponding to G , in which the resistance between any two adjacent nodes is
1 Ohm. It is known that the resistance distance satisfies the mathematical requirements
for a distance ([2, 3, 17]).

It is known that the resistance distance can be expressed in terms of the eigenvalues
and eigenvectors of the Laplacian matrix and normalized Laplacian matrix associated
with the network; for details on this matter see [8, 14, 15, 21, 22, 23, 24]. We also refer
to [4] for a new method for computing the resistance distances.

In [18] a molecular structure descriptor was introduced, equal to the sum of resistance
distances of all pairs of vertices of a molecular graph:

Kf = Kf(G) =
∑
i<j

Rij .

Eventually, it has been named the “Kirchhoff index” ([6]).
The Kirchhoff index was much studied in mathematical chemistry. Details on its

theory can be found in the recent papers [5, 9, 12, 25, 27, 28, 32] and the references cited
therein.
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The Laplacian matrix of the graph G , denoted by L = ||Lij || , is a square matrix of
order n whose (i, j)-entry is defined by

Lij =


−1 if i 6= j and the vertices vi and vj are adjacent

0 if i 6= j and the vertices vi and vj are not adjacent

di if i = j

where di is the degree of the vertex vi . Further, J is the square matrix of order n whose
all elements are unity. Then for all connected graphs (with two or more vertices) the

matrix L+
1

n
J is non-singular, its inverse

X = ‖xij‖ =

(
L+

1

n
J

)−1

does exist and, by [22], Rij = xii +xjj−2xij . The resistance–distance matrix is an n×n
matrix R = R(G) = ‖Rij‖ . Note that the diagonal elements of R are equal to zero.

Since R is a real symmetric matrix, all its eigenvalues are real numbers. Let λ1(G) be
the maximum eigenvalue (i.e., the spectral radius) of R . Balaban et al. ([1]) proposed
to use the maximum eigenvalues of distance–based matrices as structural descriptors in
chemical researches. For more work along these line see [13, 16, 29, 31].

In this paper we present our results for the maximum eigenvalue of the resistance–
distance matrix. We also provide some lower and upper bounds for λ1(G) for molecular
graphs and a few Nordhaus–Gaddum–type results [20]. (Recall that in [20] the bounds
have been obtained for the sum of chromatic numbers of a graph and its complement.
Eventually, such Nordhaus–Gaddum–type results were elaborated also for other graph
invariants.)

The following lemma is one of the key point in our considerations.

1.1. Lemma. [29, 30] Let B = (Bij) be an n × n nonnegative, irreducible, symmetric
matrix (n ≥ 2) with row sums B1, B2, . . . , Bn . If λ1(B) is the maximum eigenvalue of
B , then√∑n

i=1B
2
i

n
≤ λ1(B) ≤ max

1≤j≤n

n∑
i=1

Bij

√
Bj

Bi

with equality holding if and only if B1 = B2 = · · · = Bn or if there is a permutation
matrix Q such that

QT BQ =

(
0 C
CT 0

)
,

where all the row sums of C are equal.

2. Bounds for λ1

2.1. Theorem. Let G be a connected graph with n ≥ 2 vertices. Then

(2.1)

√∑n
i=1R

2
i

n
≤ λ1(G) ≤ max

1≤j≤n

n∑
i=1

Rij

√
Rj

Ri

where Ri is the sum of i-th row of the matrix R . Moreover equality holds in (2.1) if and
only if R1 = R2 = · · · = Rn .
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Proof. It is clear that the matrix R is irreducible for n ≥ 2 , and then, by Lemma 1.1, we
obtain the inequality in (2.1). By definition, we know that Rij 6= 0 for i 6= j and Rij = 0
otherwise. We note that for n ≥ 3 , there is no permutation matrix Q such that

QT RQ =

(
0 C
CT 0

)
where all the row sums of C are equal. By Lemma 1.1, the equality in (2.1) holds if and
only if R1 = R2 = · · · = Rn . �

2.2. Corollary. Let G be a connected graph with n ≥ 2 vertices. Then

(2.2) λ1(G) ≥ 2Kf

n

with equality holding if and only if R1 = R2 = · · · = Rn or G ∼= Kn .

Proof. By the left part of the inequality given in (2.1) and in view of the Cauchy–Schwarz
inequality, we obtain

λ1(G) ≥
√∑n

i=1R
2
i

n
≥
∑n

i=1Ri

n
=

2Kf

n

and equality holds if and only if R1 = R2 = · · · = Rn or G ∼= Kn . �

Note that trace[R] = 0 and denote by S = S(G) the trace of R2 . Therefore, the
eigenvalues λi(G) , i = 1, 2, . . . , n , of R satisfy the relations

(2.3)

n∑
i=1

λi(G) = 0

and

(2.4)

n∑
i=1

λ2
i (G) = S(G) .

It can be shown that S(G) is maximum for G ∼= Pn (where Pn is the n-vertex path),
and S(G) is minimum for G ∼= Kn .

We first recall the long–time known fact ([19, 26]) that if G is a connected graph and
G′ is the graph obtained from G by adding to it a new edge, then Kf(G) > Kf(G′) .
This result is, of course, equivalent to the claim that if G is a connected graph and e is
its edge, and if G− e is also connected, then Kf(G) < Kf(G− e) .

From this result it immediately follows that among connected n-vertex graphs, the
complete graph has minimum Kirchhoff index.

It also follows that the (connected) graph with maximum Kirchhoff index must be a
tree. Because in the case of trees, the Kirchhoff and Wiener indices coincide, and because
we know that among n-vertex trees, the path is the tree with maximum Wiener index
([11, 10]), it follows that the path is also the n-vertex connected graph with maximum
Kirchhoff index.

Let G be the class of connected graphs whose resistance–distance matrices have exactly
one positive eigenvalue. In the following, we give upper and lower bounds for λ1(G) of
graphs in the class G in terms of number of vertices and S(G) . Before that we state a
lemma that will be needed for determining the equality cases in the bounds given in the
following.
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2.3. Lemma. [7] Let B be a nonnegative, irreducible, symmetric matrix with exactly
two distinct eigenvalues. Then B = uuT + r I for some positive column vector u and
some r .

2.4. Theorem. Let G ∈ G with n ≥ 2 vertices. Then

(2.5) λ1(G) ≤
√
n− 1

n
S(G)

with equality holding if and only if G ∼= Kn .

Proof. By (2.3), we have λ1(G) = −
∑n

i=2 λi(G) . Further, by the Cauchy–Schwarz
inequality and using (2.4),

λ2
1(G) =

[
n∑

i=2

λi(G)

]2
≤ (n− 1)

n∑
i=2

nλ2
i (G)

= (n− 1)
[
S(G)− λ2

1(G)
]

with equality if and only if λ2(G) = · · · = λn(G) . We thus have

nλ2
1(G) ≤ (n− 1)S(G)

as required in (2.5).
Suppose now that equality holds in (2.5). Then λ2(G) = · · · = λn(G) , and so the

matrix R has exactly two distinct eigenvalues. Now we prove that the diameter of G is
one, i. e., G does not contain an induced shortest path Pm , m ≥ 3 .

Assume that G contains an induced shortest path Pm , m ≥ 3 . Let M be the principal
submatrix of R indexed by the vertices in Pm . For an arbitrary matrix A , let θi(A)
denote its i-th eigenvalue. Then, by the interlacing theorem,

θi(R) ≥ θi(M) ≥ θn−m+i(R), i = 1, 2, . . . ,m

or, in other words,

θ2(R) ≥ θ2(M) ≥ θ3(M) ≥ · · · ≥ θm(M) ≥ θn(R) .

This then shows that Pm has at most two distinct R-eigenvalues for m ≥ 3 , which is
impossible. Therefore G does not contain any two vertices at distance two or more, and
hence it is complete. The other way around is quite obvious, i.e., if G ∼= Kn , then the
equality holds in (2.5). �

2.5. Remark. By considering Lemma 2.3, the equality part of (2.5) in Theorem 2.4
can be obtained quite similarly as in the proof of Theorem 3 of the paper [31].

The next result provides a lower bound for λ1(G) in terms of S(G) . Recall that
G is the class of connected graphs whose resistance–distance matrices have exactly one
positive eigenvalue.

2.6. Theorem. Let G ∈ G with n ≥ 2 . Then

(2.6) λ1(G) ≥
√
S(G)

2
.

Equality holds in (2.6) if and only if G ∼= K2 .

Proof. We first note that λ1(G) > 0 and λ2(G) ≤ 0 . Then by (2.3),

2λ1(G) =

n∑
i=1

|λi(G)| .
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From (2.3) and (2.4) we also have

∑
1≤i<j≤n

|λi(G)λj(G)| ≥

∣∣∣∣∣∣
∑

1≤i<j≤n

λi(G)λj(G)

∣∣∣∣∣∣ =
S(G)

2

and so

4λ2
1(G) =

[
n∑

i=2

|λi(G)|

]2

=

n∑
i=1

λ2
i (G) + 2

∑
i<j

|λi(G)λj(G)| ≥ 2S(G)

from which (2.6) follows.
If we take n = 2 , then (2.6) is actually an equality. For the case n ≥ 3 , in order to

see that (2.6) is not an equality, the same approach can be applied as in [31, Theorem
4]. Hence the result. �

3. Nordhaus-Gaddum-type bounds for λ1

In this section we consider general graphs, not only those from the class G . We
establish some more bounds involving the Kirchhoff index Kf as well as Nordhaus–
Gaddum–type bounds for λ1(G) .

Before that, consider some fundamental structural parameters of a connected (molec-

ular) graph G and its complement G . Let G be a connected (molecular) graph on n > 2
vertices, m edges, maximum degree ∆ , second maximum degree ∆2 , minimum degree
δ , and second minimum degree δ2 . Further, assume that G has a connected complement
G with m edges and related parameters ∆ , ∆2 , δ , and δ2 . As one can easily prove, the
following equalities exist between these parameters:

(3.1)

2(m+m) = n(n− 1)

∆ = n− 1− δ

δ = n− 1−∆

∆2 = n− 1− δ2

δ2 = n− 1−∆2


.

The following two lemmas have been recently proven in [9]. We nevertheless state
them here (without proof), since these are used for obtaining lower bounds for λ1(G)
involving Kf (cf. Theorem 3.3 below).

3.1. Lemma. [9] Let G be a connected graph on n > 2 vertices and m edges with
parameters ∆ , ∆2 , and δ as defined in (3.1). Then

(3.2) Kf(G) ≥ n

∆ + 1
+

n

2m−∆− 1

[
(n− 2)2 +

(∆2 − δ)2

∆2 δ

]
with equality holding if and only if G ∼= K1,n−1 or G ∼= Kn .

3.2. Lemma. [9] Let G be a connected graph (not equal to Kn) on n > 2 vertices and
m edges with parameters ∆ , ∆2 and δ as given in (3.1). Then

(3.3) Kf(G) ≥ 1 +
n

δ
+

n(n− 3)2

2m−∆− δ − 1

with equality holding if and only if G ∼= K1,n−1 .
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After that we have the following lower bounds for λ1(G) . Their proofs are immediate,
by considering inequalities in (2.2), (3.2), and (3.3).

3.3. Theorem. Let G be a connected graph on n > 2 vertices and m edges with param-
eters ∆ , ∆2 and δ as given in (3.1). Then

(3.4) λ1(G) ≥ 2

{
1

∆ + 1
+

1

2m−∆− 1

[
(n− 2)2 +

(∆2 − δ)2

∆2 δ

]}
and

(3.5) λ1(G) ≥ 2

{
1

n
+
n

δ
+

n(n− 3)2

2m−∆− δ − 1

}
.

Our next three theorems deal with Nordhaus-Gaddum type results for λ1(G) .

3.4. Theorem. Let G be a connected graph on n > 2 vertices and m edges, such that
its complement G is also connected. Then with the parameters given in (3.1),

λ1(G) + λ1(G) ≥ 2

{
1

∆ + 1
+

1

n− δ + (n− 2)2
[

1

2m−∆− 1
+

+
1

n(n− 2)− 2m+ 1 + δ

]
+

(
1

2m−∆− 1

)(
(∆2 − δ)2

∆2 δ

)
+

+

(
1

n(n− 2)− 2m+ 1 + δ

)(
(∆− δ2)2

(n− 1− δ2)(n− 1−∆)

)}
(3.6)

with equality holding if and only if G ∼= Kn .

Proof. Using the inequality (3.4) from Theorem 3.3, we arrive at

λ1(G) + λ1(G) ≥ 2

{
1

∆ + 1
+

1

2m−∆− 1

[
(n− 2)2 +

(∆2 − δ)2

∆2 δ

]}

+ 2

{
1

∆ + 1
+

1

2m−∆− 1

[
(n− 2)2 +

(∆2 − δ)2

∆2 δ

]}

= 2

{
1

∆ + 1
+

1

2m−∆− 1

[
(n− 2)2 +

(∆2 − δ)2

∆2 δ

]}

+ 2

{
1

n− δ +
1

n(n− 2)− 2m+ 1 + δ

[
(n− 2)2 +

(∆− δ2)2

(n− 1− δ2)(n− 1−∆)

]}
and, by rearranging the terms in this final inequality, we obtain (3.6).

By using Corollary 2.2 and Lemma 3.1, one can easily see that the equality in (3.6)
holds if and only if G ∼= Kn . Hence the result. �

3.5. Theorem. Let G be a connected graph on n > 2 vertices and m edges, such that
its complement G is also connected. Then with the parameters given in (3.1),

λ1(G) + λ1(G) ≥ 4

n
+ 2

{(
1

δ
+

1

(n− 1−∆)

)

+ (n− 3)2
[

1

2m−∆− δ − 1
+

1

n(n− 3)− 2m+ 1 + ∆ + δ

]}
.
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Proof. Using the inequality (3.5) from Theorem 3.3 and applying similar arguments as
in the proof of Theorem 3.4, we get the result. �

In view of the equality S(G) = n3 +S(G) and by using Theorem 2.4, we arrive at the
following result, which we present without proof.

3.6. Theorem. Let G ∈ G with n > 2 vertices, and let G be connected. Then,

λ1(G) + λ1(G) ≤
√
n− 1

n

[√
S(G) +

√
n3 + S(G)

]
with equality holding if and only if G ∼= Kn .
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[31] Zhou, B. and Trinajstić, N. On the largest eigenvalue of the distance matrix of a connected
graph, Chem. Phys. Lett. 447, 384-387, 2007.
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