CONVEXITY OF INTEGRAL OPERATORS OF p-VALENT FUNCTIONS

Gülşah Saltık Ayhanöz^{*†} and Ekrem Kadıoğlu^{*}

Received 07:07:2011 : Accepted 31:12:2011

Abstract

In this paper, we consider two general *p*-valent integral operators for certain analytic functions in the unit disc \mathcal{U} and give some properties for these integral operators on some classes of univalent functions.

Keywords: Analytic functions, Integral operators, *p*-valently starlike functions, *p*-valently convex functions.

2000 AMS Classification: 30 C 45.

1. Introduction and preliminaries

Let $\mathcal{A}(p, n)$ denote the class of functions of the form

(1.1)
$$f(z) = z^p + \sum_{k=p+n}^{\infty} a_k z^k \ (p, n \in \mathbb{N} = \{1, 2, \ldots\}),$$

which are analytic in the open disc $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$. Also $\mathcal{A}(1,n) = \mathcal{A}(n)$, $\mathcal{A}(p,1) = \mathcal{A}(p)$ and $\mathcal{A}(1,1) = \mathcal{A}$.

A function $f \in \mathcal{A}(p, n)$ is said to be *p*-valently starlike of order α , $(0 \le \alpha < p)$, if and only if

(1.2)
$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha, \ (z \in \mathcal{U}).$$

We denote by $S_p^*(\alpha)$ the class of all such functions. Also $S_1^*(\alpha) = S^*(\alpha)$. On the other hand, a function $f \in \mathcal{A}(p, n)$ is said to be *p*-valently convex of order α $(0 \le \alpha < p)$ if and only if

(1.3)
$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \alpha, \ (z \in \mathfrak{U}).$$

^{*}Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey.

E-mail: (G.S. Ayhanöz) gulsah
1984@windowslive.com $% (E. \ Kadıoğlu)$ ekrem@atauni.edu.tr $^{\dagger} Corresponding \ Author.$

Let $C_p(\alpha)$ denote the class of all those functions which are *p*-valently convex of order α in \mathcal{U} . Also $C_1(\alpha) = C(\alpha)$. A function $f \in \mathcal{A}(p, n)$ is said to be class $R_p(\alpha)$, $(0 \le \alpha < p)$ if and only if

(1.4)
$$\Re\left\{\frac{f'(z)}{z^{p-1}}\right\} > \alpha, \ (z \in \mathcal{U}).$$

Also $R_1(\alpha) = R(\alpha)$. For a function $f \in \mathcal{A}(p, n)$ we define the following operator

$$D^{0}f(z) = f(z),$$

$$D^{1}f(z) = \frac{1}{p}zf'(z),$$
(1.5)
$$\vdots$$

$$D^k f(z) = D\left(D^{k-1}f(z)\right),$$

where $k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. The differential operator D^k was studied by Shenan *et al.* (see [14]). When p = 1 we get the Sălăgean differential operator (see [12]).

We note that if $f \in \mathcal{A}(p, n)$, then

$$D^{k}f(z) = z^{p} + \sum_{j=n+p}^{\infty} \left(\frac{j}{p}\right)^{k} a_{j}z^{j}, \ (p,n \in \mathbb{N} = \{1,2,\ldots\}) \ (z \in \mathcal{U}).$$

Recently, A. Alb Lupaş (see [2]) define the family $\mathcal{B}S(p,m,\mu,\alpha)$, $\mu \ge 0$, $0 \le \alpha < 1$, $m \in \mathbb{N} \cup \{0\}$, $p, n \in \mathbb{N}$ so that it consists of functions $f \in \mathcal{A}(p,n)$ satisfying the condition

(1.6)
$$\left|\frac{D^{m+1}f(z)}{z^p}\left(\frac{z^p}{D^mf(z)}\right)^{\mu} - p\right|$$

1.1. Remark. The family $\mathcal{B}S(p, m, \mu, \alpha)$ is a new comprehensive class of analytic functions which includes various new classes of analytic univalent functions as well as some very well-known ones. For example, $\mathcal{B}S(1, 0, 1, \alpha) \equiv S^*(\alpha)$, $\mathcal{B}S(1, 1, 1, \alpha) \equiv \mathcal{C}(\alpha)$, $\mathcal{B}S(p, 0, 0, \alpha) = R_p(\alpha)$ and $\mathcal{B}S(1, 0, 0, \alpha) \equiv R(\alpha)$.

Another interesting subclass is the special case $\mathcal{B}S(1, 0, 2, \alpha) \equiv \mathcal{B}(\alpha)$ which has been introduced by Frasin and Darus (see [7]) and also the class $\mathcal{B}S(1, 0, \mu, \alpha) \equiv \mathcal{B}(\mu, \alpha)$ which has been introduced by Frasin and Jahangiri (see [8]).

1.2. Remark. Let $l = (l_1, l_2, ..., l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \mathbb{R}_+^n$ for all $i = \{1, 2, ..., n\}$, $n \in \mathbb{N}$. We define the following general integral operator

(1.7)
$$\begin{aligned}
\mathcal{J}_{n,p}^{l,\delta}\left(f_{1},f_{2},\ldots,f_{n}\right):\mathcal{A}\left(p,n\right)\to\mathcal{A}\left(p,n\right),\\
\mathcal{J}_{n,p}^{l,\delta}\left(f_{1},f_{2},\ldots,f_{n}\right)=F_{p,n,l,\delta}(z),\\
F_{p,n,l,\delta}(z)=\int_{0}^{z}pt^{p-1}\prod_{i=1}^{n}\left(\frac{D^{l_{i}}f_{i}(t)}{t^{p}}\right)^{\delta_{i}}dt,
\end{aligned}$$

and

(1.8)
$$\begin{aligned} \mathcal{J}_{n,p}^{l,\lambda}\left(g_{1},g_{2},\ldots,g_{n}\right):\mathcal{A}\left(p,n\right)\to\mathcal{A}\left(p,n\right)\\ \mathcal{J}_{n,p}^{l,\lambda}\left(g_{1},g_{2},\ldots,g_{n}\right)=\mathcal{G}_{p,n,l,\lambda}(z),\\ \mathcal{G}_{p,n,l,\lambda}(z)=\int_{0}^{z}pt^{p-1}\prod_{i=1}^{n}\left(e^{D^{l_{i}}g_{i}\left(t\right)\setminus t^{p-1}}\right)^{\lambda}\,dt,\end{aligned}$$

where $f_i, g_i \in \mathcal{A}(p, n)$ for all $i = \{1, 2, \dots, n\}$ and D is defined by (1.5).

1.3. Remark. The integral operator (1.7) was studied and introduced by Saltik *et al.* (see [13]). We note that if $l_1 = l_2 = \ldots = l_n = 0$ for all $i = \{1, 2, \ldots, n\}$, then the integral operator $F_{p,n,l,\delta}(z)$ reduces to the operator $F_p(z)$ which was studied by Frasin (see [6]). Upon setting p = 1 in the operator (1.7), we can obtain the integral operator $D^k F(z)$ which was studied by Breaz *et al.* (see [4]). For p = 1 and $l_1 = l_2 = \ldots = l_n = 0$ in (1.7), the integral operator $F_{p,n,l,\delta}(z)$ reduces to the operator $F_n(z)$ which was studied by Breaz (see [3]). Observe that for p = n = 1, $l_1 = 0$ and $\mu_1 = \mu$ we obtain the integral operator $I_{\mu}(f)(z)$ which was studied by Pescar and Owa (see [11]), for $\mu_1 = \mu \in [0, 1]$ the special case of the operator $I_{\mu}(f)(z)$ was studied by Miller *et al.* (see [10]). For p = n = 1, $l_1 = 0$ and $\mu_1 = 1$ in (1.7), we have the Alexander integral operator I(f)(z) in [1]. For $l_1 = l_2 = \ldots = l_n = 0$ in (1.7), the integral operator was studied by E. Deniz (see [5]).

1.4. Remark. For $l_1 = l_2 = \ldots = l_n = 0$ in (1.8), the integral operator was studied by E. Deniz (see [5]).For p = n = 1 and $l_1 = l_2 = \ldots = l_n = 0$ in (1.8), the integral operator $\mathcal{G}_{p,n,l,\lambda}(z)$ was studied by Frasin in [9].

In this paper, we obtain the order of convexity of the operators $F_{p,n,l,\delta}(z)$ and $\mathcal{G}_{p,n,l,\lambda}(z)$ on the class $\mathcal{B}S(p,l_i,\mu,\alpha)$. As special cases, the order of convexity of the operators $\int_{0}^{z} \left(\frac{f(t)}{t}\right)^{\delta} dt$ and $\int_{0}^{z} \left(e^{g(t)}\right)^{\lambda} dt$ are given.

In order to prove our main results, we recall the following lemma.

1.5. Lemma. (General Schwarz Lemma). Let the function f be regular in the disk U_R with |f(z)| < M, M fixed. If f has at z = 0 one zero with multiply $\geq m$, then

(1.9)
$$|f(z)| \leq \frac{M}{R^m} |z|^m, \ z \in \mathfrak{U}_R$$

Equality (in the inequality (1.9) for $z \neq 0$) can hold only if $f(z) = e^{i\theta} \frac{M}{R^m} |z|^m$, where θ is constant.

2. Main results

2.1. Theorem. Let $l = (l_1, l_2, \ldots, l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, \ldots, \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha < p$, $\mu \ge 0$ and $f_i \in \mathcal{A}(p, n)$ be in the class $\mathcal{B}S(p, l_i, \mu, \alpha)$ for all $i = \{1, 2, \ldots, n\}$. If $|D^{l_i}f_i(z)| \le M$, $(M \ge 1; z \in \mathcal{U})$, then the integral operator

$$F_{p,n,l,\delta}(z) = \int_0^z pt^{p-1} \prod_{i=1}^n \left(\frac{D^{l_i} f_i(t)}{t^p}\right)^{\delta_i} dt$$

is in $\mathcal{C}_p(\beta)$, where

(2.1)
$$\beta = p \left[1 - \sum_{i=1}^{n} \delta_i ((2p - \alpha) M^{\mu - 1} + 1) \right],$$

and $\sum_{i=1}^{n} \delta_i ((2p - \alpha) M^{\mu - 1} + 1) \le 1$ for all $i = \{1, 2, \dots, n\}.$

Proof. Define the function $F_{p,n,l,\delta}(z)$ by

$$F_{p,n,l,\delta}(z) = \int_{0}^{z} p t^{p-1} \prod_{i=1}^{n} \left(\frac{D^{l_i} f_i(t)}{t^p} \right)^{\delta_i} dt,$$

for $f_i(z) \in \mathcal{B}S(p, l_i, \mu, \alpha)$. On the other hand it is easy to see that

(2.2)
$$(F_{p,n,l,\delta}(z))' = pz^{p-1} \prod_{i=1}^{n} \left(\frac{D^{l_i} f_i(z)}{z^p}\right)^{\delta_i}$$

Now, we differentiate (2.2) logarithmically and multiply by z to obtain

(2.3)
$$1 + \frac{z \left(F_{p,n,l,\delta}(z)\right)''}{\left(F_{p,n,l,\delta}(z)\right)'} - p = \sum_{i=1}^{n} \delta_i \left(\frac{z \left(D^{l_i} f_i\right)'(z)}{\left(D^{l_i} f_i\right)(z)} - p\right).$$

It follows from (2.3) and $p\left(D^{l_i+1}f_i(z)\right) = z\left(D^{l_i}f_i(z)\right)'$ that

(2.4)
$$\left| 1 + \frac{z \left(F_{p,n,l,\delta}(z)\right)''}{\left(F_{p,n,l,\delta}(z)\right)'} - p \right| \\ \leq p \sum_{i=1}^{n} \delta_{i} \left(\left| \frac{D^{l_{i}+1} f_{i}(z)}{D^{l_{i}} f_{i}(z)} \right| + 1 \right) \\ \leq p \sum_{i=1}^{n} \delta_{i} \left(\left| \frac{D^{l_{i}+1} f_{i}(z)}{z^{p}} \left(\frac{z^{p}}{D^{l_{i}} f_{i}(z)} \right)^{\mu} \right| \left| \frac{D^{l_{i}} f_{i}(z)}{z^{p}} \right|^{\mu-1} + 1 \right)$$

Since $|D^{l_i}f_i(z)| \leq M$, $(M \geq 1, z \in U)$ for all $i = \{1, 2, ..., n\}$, applying the General Schwarz Lemma, we have

$$\left| D^{l_i} f_i(z) \right| \le M \left| z \right|^p.$$

Therefore, from (2.4), we obtain

(2.5)
$$\left|1 + \frac{z \left(F_{p,n,l,\delta}(z)\right)''}{\left(F_{p,n,l,\delta}(z)\right)'} - p\right| \le p \sum_{i=1}^{n} \delta_i \left(\left|\frac{D^{l_i+1}f_i(z)}{z^p} \left(\frac{z^p}{D^{l_i}f_i(z)}\right)^{\mu}\right| M^{\mu-1} + 1\right).$$

From (2.5) and (1.6), we see that

(2.6)
$$\left| 1 + \frac{z \left(F_{p,n,l,\delta}(z)\right)''}{\left(F_{p,n,l,\delta}(z)\right)'} - p \right| \\ \leq p \sum_{i=1}^{n} \delta_{i} \left(\left(\left| \frac{D^{l_{i}+1} f_{i}(z)}{z^{p}} \left(\frac{z^{p}}{D^{l_{i}} f_{i}(z)} \right)^{\mu} - p \right| + p \right) M^{\mu - 1} + 1 \right) \\ \leq p \sum_{i=1}^{n} \delta_{i} ((2p - \alpha) M^{\mu - 1} + 1), \\ = p - \beta.$$

This completes the proof.

2.2. Corollary. Let $l = (l_1, l_2, \ldots, l_n) \in \mathbb{N}_0^n$, $\delta = (\delta_1, \delta_2, \ldots, \delta_n) \in \mathbb{R}_+^n$, $0 \le \alpha < p$, $\mu \ge 0$ and $f_i \in \mathcal{A}(p, n)$ is in the class $\mathbb{B}S(p, l_i, \mu, \alpha)$ for all $i = \{1, 2, \ldots, n\}$. If $|D^{l_i}f_i(z)| \le M$, $(M \ge 1; z \in \mathbb{U})$, then the integral operator $F_{p,n,l,\delta}(z)$ is convex in \mathbb{U} and

$$\sum_{i=1}^{n} \delta_i = \frac{1}{(2p-\alpha)M^{\mu-1}+1}.$$

Letting $p = 1, l_i = 0$ in Theorem 2.1 for all $i = \{1, 2, \dots, n\}$, we have

2.3. Corollary. Let $\delta = (\delta_1, \delta_2, \dots, \delta_n) \in \mathbb{R}^n_+$, $\mu \ge 0$, $0 \le \alpha < 1$ and $f_i \in \mathcal{A}(n)$ is in the class $\mathcal{B}(\mu, \alpha)$ for all $i = \{1, 2, \dots, n\}$. If $|f_i(z)| \le M$, $(M \ge 1; z \in \mathcal{U})$, then the integral

operator $F_{1,n,0,\delta}(z) \in \mathcal{C}(\beta)$ is in \mathcal{U} and

$$\beta = 1 - \sum_{i=1}^{n} \delta_i \left[(2 - \alpha) M^{\mu - 1} + 1 \right],$$

where $\sum_{i=1}^{n} \delta_i \left[(2 - \alpha) M^{\mu - 1} + 1 \right] \le 1$ for all $i = \{1, 2, \dots, n\}.$

Letting n = 1 in Corollary 2.2, we have

2.4. Corollary. Let $\delta \in \mathbb{R}^+$, $\mu \ge 0$, $0 \le \alpha < 1$ and let $f \in \mathcal{A}$ be in the class $\mathcal{B}(\mu, \alpha)$. If $|f(z)| \le M$, $(M \ge 1; z \in \mathcal{U})$, then the integral operator $F_{1,1,0,\delta}(z) = \int_0^z \left(\frac{f(t)}{t}\right)^{\delta} dt \in \mathcal{C}(\beta)$ is in \mathcal{U} , and

$$\beta = 1 - \delta \left[(2 - \alpha) M^{\mu - 1} + 1 \right],$$

where $\delta \left[(2 - \alpha) M^{\mu - 1} + 1 \right] \le 1.$

Letting $p = 1, l_i = 0, \mu = 1$ in Theorem 2.1 for all $i = \{1, 2, ..., n\}$, we have

2.5. Corollary. Let $\delta = (\delta_1, \delta_2, \dots, \delta_n) \in \mathbb{R}^n_+$, $0 \leq \alpha < 1$ and let $f_i \in \mathcal{A}(n)$ be in the class $S^*(\alpha)$ for all $i = \{1, 2, \dots, n\}$. Then the integral operator $F_{1,n,0,\delta}(z) \in \mathbb{C}(\beta)$ is in \mathcal{U} , where

$$\beta = 1 - \sum_{i=1}^{n} \delta_i \left(3 - \alpha\right),$$

where $\sum_{i=1}^{n} \delta_i \left(3 - \alpha\right) \le 1$ for all $i = \{1, 2, \dots, n\}.$

Letting $n = 1, \delta = \frac{1}{3}$ and $\alpha = 0$ in Corollary 2.5, we have

2.6. Corollary. Let $f \in A$ be starlike in \mathcal{U} . If $|f(z)| \leq M$, $(M \geq 1; z \in \mathcal{U})$, then the integral operator $F_{1,1,0,\frac{1}{2}}(z)$ is convex in \mathcal{U} .

2.7. Remark. Letting δ_i by $\frac{1}{\beta_i}$, p = 1, $l_i = 0$ in Theorem 2.1 for all $i = \{1, 2, \ldots, n\}$ we obtain Theorem 2.1 (see [9]).

2.8. Theorem. Let $l = (l_1, l_2, \ldots, l_n) \in \mathbb{N}_0^n$, $\lambda \in \mathbb{R}_+^n$, $0 \le \alpha < p$, $\mu \ge 0$ and $g_i \in \mathcal{A}(p, n)$ be in the class $\mathbb{B}S(p, l_i, \mu, \alpha)$ for all $i = \{1, 2, \ldots, n\}$. If $|D^{l_i}g_i(z)| \le M$, $(M \ge 1; z \in \mathfrak{U})$, then the integral operator

(2.7)
$$\mathcal{G}_{p,n,l,\lambda}(z) = \int_{0}^{z} p t^{p-1} \prod_{i=1}^{n} \left(e^{D^{l_i} g_i(t) \setminus t^{p-1}} \right)^{\lambda} dt,$$

is in $\mathcal{C}_p(\beta)$, where

$$\beta = p - \left[\lambda n \left\{ (p^2 + (1 - \alpha)p) M^{\mu} + (p - 1)M \right\} \right],$$

and $\lambda \leq \frac{p}{n\left\{\left(p^2+(1-\alpha)p\right)M^{\mu}+(p-1)M\right\}}$.

Proof. Define the function $\mathcal{G}_{p,n,l,\lambda}(z)$ by

$$\mathcal{G}_{p,n,l,\lambda}(z) = \int_{0}^{z} pt^{p-1} \prod_{i=1}^{n} \left(e^{D^{l_i} g_i(t) \setminus t^{p-1}} \right)^{\lambda} dt,$$

for $g_i(z) \in \mathcal{B}S(p, l_i, \mu, \alpha)$. It follows that

(2.8)
$$1 + \frac{z\left(\mathcal{G}_{p,n,l,\lambda}(z)\right)''}{\left(\mathcal{G}_{p,n,l,\lambda}(z)\right)'} - p = \lambda \sum_{i=1}^{n} \left[\frac{\left(D^{l_i}g_i(z)\right)'}{z^{p-1}} - (p-1)\frac{D^{l_i}g_i(z)}{z^p}\right] z.$$

Therefore from (2.8) and $p\left(D^{l_i+1}f_i\right)(z) = z\left(D^{l_i}f_i(z)\right)'$, we obtain

$$\begin{aligned} \left| 1 + \frac{z \left(\mathcal{G}_{p,n,l,\lambda}(z) \right)''}{\left(\mathcal{G}_{p,n,l,\lambda}(z) \right)'} - p \right| \\ &\leq \lambda \left(\sum_{i=1}^{n} \left[p \left| \frac{D^{l_i+1}g_i(z)}{z^p} \right| + (p-1) \left| \frac{D^{l_i}g_i(z)}{z^p} \right| \right] \right) \\ &\leq \lambda \left(\sum_{i=1}^{n} \left[p \left| \frac{D^{l_i+1}g_i(z)}{z^p} \left(\frac{z^p}{D^{l_i}g_i(z)} \right)^{\mu} \right| \left| \frac{D^{l_i}g_i(z)}{z^p} \right|^{\mu} + (p-1) \left| \frac{D^{l_i}g_i(z)}{z^p} \right| \right] \right). \end{aligned}$$

Applying the General Schwarz Lemma once again, we have

$$\left|\frac{D^{l_i}g_i(z)}{z^p}\right| \le M, \ (z \in \mathfrak{U}),$$

and hence

(2.9)
$$\left| \begin{aligned} 1 + \frac{z\left(\mathcal{G}_{p,n,l,\lambda}(z)\right)''}{\left(\mathcal{G}_{p,n,l,\lambda}(z)\right)'} - p \\ & \leq \lambda \left(\sum_{i=1}^{n} \left[p \left| \frac{D^{l_i+1}g_i(z)}{z^p} \left(\frac{z^p}{D^{l_i}g_i(z)} \right)^{\mu} \right| M^{\mu} + (p-1)M \right] \right). \end{aligned} \right.$$

Therefore from (2.9), we obtain

$$\begin{aligned} \left| 1 + \frac{z \left(\mathcal{G}_{p,n,l,\lambda}(z) \right)''}{\left(\mathcal{G}_{p,n,l,\lambda}(z) \right)'} - p \right| \\ & \leq \lambda \left(\sum_{i=1}^{n} \left[\left(p \Big| \frac{D^{l_i+1}g_i(z)}{z^p} \left(\frac{z^p}{D^{l_i}g_i(z)} \right)^{\mu} - p \Big| + p \right) M^{\mu} + (p-1)M \right] \right) \\ & \leq \lambda n \left\{ \left(p^2 + (1-\alpha)p \right) M^{\mu} + (p-1)M \right\} \\ & = p - \beta. \end{aligned}$$

This completes the proof.

Letting $l_i = 0$, $\mu = 0$ in Theorem 2.8 for all $i = \{1, 2, \dots, n\}$, we have

2.9. Corollary. Let $g_i \in \mathcal{A}(n)$ be in the class $R_p(\alpha)$, $\lambda \in \mathbb{R}^n_+$, $0 \leq \alpha < p$. If $|g_i(z)| \leq M$, $(M \geq 1; z \in U)$, then the integral operator $\mathcal{G}_{p,n,0,\lambda}(z)$ is in $\mathcal{C}_p(\beta)$ in \mathcal{U} , where

$$\beta = p - \left\{ \lambda n \left[\left(p^2 + (1 - \alpha)p \right) + (p - 1)M \right] \right\},$$

and $\lambda n \left[\left(p^2 + (1 - \alpha)p \right) + (p - 1)M \right] \le p.$

Letting n = 1, p = 1, l = 0 in Theorem 2.8, we have

2.10. Corollary. Let $\lambda \in \mathbb{R}^+$, $0 \le \alpha < 1$, $\mu \ge 0$ and let $g \in \mathcal{A}$ be in the class $\mathcal{B}(\mu, \alpha)$. If $|g(z)| \leq M$, $(M \geq 1; z \in U)$, then the integral operator $\mathfrak{G}_{1,1,0,\lambda}(z) = \int_{0}^{z} \left(e^{g(t)}\right)^{\lambda} dt$ is in $\mathcal{C}(\beta)$ in \mathcal{U} , where

$$\beta = 1 - \lambda \left(2 - \alpha\right) M^{\mu},$$

and $\lambda(2-\alpha) M^{\mu} \leq 1$.

Letting $p = 1, l_i = 0, \mu = 1$ in Theorem 2.8 for all $i = \{1, 2, ..., n\}$, we have

2.11. Corollary. Let $g_i \in \mathcal{A}(n)$ be in the class $S^*(\alpha)$, $\lambda \in \mathbb{R}^n_+$, $0 \leq \alpha < 1$, for all $i = \{1, 2, ..., n\}$. If $|g_i(z)| \leq M$, $(M \geq 1; z \in \mathcal{U})$, then the integral operator $\mathcal{G}_{1,n,0,\lambda}(z)$ is in $\mathcal{C}(\beta)$ in \mathcal{U} , where

$$\beta = 1 - \lambda n (2 - \alpha) M,$$

and $\lambda \leq \frac{1}{n(2-\alpha)M}$.

Letting $\alpha = 0$, M = n = 1 and $\lambda = \frac{1}{2}$ in Corollary 2.12, we have

2.12. Corollary. Let $g \in A$ be starlike in \mathcal{U} for all $i = \{1, 2, ..., n\}$. If $|g(z)| \leq 1$, $(z \in \mathcal{U})$, then the integral operator $\mathcal{G}_{1,1,0,\frac{1}{n}}(z)$ is convex in \mathcal{U} .

References

- Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics 17 (1), 12–22, 1915.
- [2] Alb Lupaş, A. A subclass of analytic functions defined by differential Sălăgean operator, Acta Universitatis Apulensis 20, 259–263, 2009.
- [3] Breaz D. and Breaz, N. Two integral operators, Studia Universitatis Babes-Bolyai Mathematica 47 (3), 13–19, 2002.
- [4] Breaz, D., Güney, H. Ö. and Sălăgean, G. S. A new general integral operator, Tamsui Oxford Journal of Mathematical Sciences 25 (4), 407–414, 2009.
- [5] Deniz, E., Çağlar, M. and Orhan, H. The order of convexity of two p-valent integral operators, American Institute of Physics, International Symposium of Mathematical Science, Bolu, Turkey, (1309), 234–240, 2010.
- [6] Frasin, B.A. Convexity of integral operators of p-valent functions, Math. Comput. Model. 51, 601–605, 2010.
- [7] Frasin, B. A. and Darus, M. On certain analytic univalent functions, Internat. J. Math. and Math. Sci. 25 (5), 305-310, 2001.
- [8] Frasin, B. A. and Jahangiri, J. A new and comprehensive class of analytic functions, Anal. Univ. Ordea Fasc. Math. XV, 59–62, 2008.
- [9] Frasin, B. A. and Ahmad, A. The order of convexity of two integral operators, Studia Univ. "Babeş-Bolyai", Mathematica LV (2)(6), 113-117, 2010.
- [10] Miller, S. S., Mocanu, P. T. and Reade, M. O. Starlike integral operators, Pacific Journal of Mathematics 79 (1), 157–168, 1978.
- [11] Pescar V. and Owa, S. Sufficient conditions for univalence of certain integral operators, Indian Journal of Mathematics 42 (3), 347–351, 2000.
- [12] Sălăgean, G. St. Subclases of univalent functions (Lecture Notes in Math., Springer Verlag, Berlin, 1983), 362–372.
- [13] Saltik, G., Deniz E., and Kadioğlu, E. Two new general p-valent integral operators, Math. Comput. Model. 52, 1605–1609, 2010.
- [14] Shenan, G.M., Salim, T.O. and Marouf, M.S. A certain class of multivalent prestarlike functions involving the Srivastava-Saigo-Owa fractional integral operator, Kyungpook Math. J. 44, 353–362, 2004.