# CONVEXITY OF INTEGRAL OPERATORS OF $p$-VALENT FUNCTIONS 

Gülşah Saltık Ayhanöz* ${ }^{*}$ and Ekrem Kadıoğlu*

Received $07: 07: 2011$ : Accepted $31: 12: 2011$


#### Abstract

In this paper, we consider two general $p$-valent integral operators for certain analytic functions in the unit disc $\mathcal{U}$ and give some properties for these integral operators on some classes of univalent functions.


Keywords: Analytic functions, Integral operators, $p$-valently starlike functions, $p$ valently convex functions.

2000 AMS Classification: 30 C 45.

## 1. Introduction and preliminaries

Let $\mathcal{A}(p, n)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+n}^{\infty} a_{k} z^{k}(p, n \in \mathbb{N}=\{1,2, \ldots\}), \tag{1.1}
\end{equation*}
$$

which are analytic in the open disc $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$. Also $\mathcal{A}(1, n)=\mathcal{A}(n)$, $\mathcal{A}(p, 1)=\mathcal{A}(p)$ and $\mathcal{A}(1,1)=\mathcal{A}$.

A function $f \in \mathcal{A}(p, n)$ is said to be $p$-valently starlike of order $\alpha,(0 \leq \alpha<p)$, if and only if

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha,(z \in \mathcal{U}) \tag{1.2}
\end{equation*}
$$

We denote by $S_{p}^{*}(\alpha)$ the class of all such functions. Also $S_{1}^{*}(\alpha)=S^{*}(\alpha)$. On the other hand, a function $f \in \mathcal{A}(p, n)$ is said to be $p$-valently convex of order $\alpha(0 \leq \alpha<p)$ if and only if

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha,(z \in \mathcal{U}) . \tag{1.3}
\end{equation*}
$$

[^0]Let $\mathcal{C}_{p}(\alpha)$ denote the class of all those functions which are $p$-valently convex of order $\alpha$ in $\mathcal{U}$. Also $\mathfrak{C}_{1}(\alpha)=\mathcal{C}(\alpha)$. A function $f \in \mathcal{A}(p, n)$ is said to be class $R_{p}(\alpha),(0 \leq \alpha<p)$ if and only if

$$
\begin{equation*}
\Re\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\alpha,(z \in \mathcal{U}) \tag{1.4}
\end{equation*}
$$

Also $R_{1}(\alpha)=R(\alpha)$. For a function $f \in \mathcal{A}(p, n)$ we define the following operator

$$
\begin{align*}
D^{0} f(z) & =f(z) \\
D^{1} f(z) & =\frac{1}{p} z f^{\prime}(z)  \tag{1.5}\\
& \vdots \\
D^{k} f(z) & =D\left(D^{k-1} f(z)\right)
\end{align*}
$$

where $k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. The differential operator $D^{k}$ was studied by Shenan et al. (see [14]). When $p=1$ we get the Sălăgean differential operator (see [12]).

We note that if $f \in \mathcal{A}(p, n)$, then

$$
D^{k} f(z)=z^{p}+\sum_{j=n+p}^{\infty}\left(\frac{j}{p}\right)^{k} a_{j} z^{j},(p, n \in \mathbb{N}=\{1,2, \ldots\})(z \in \mathcal{U})
$$

Recently, A. Alb Lupaş (see [2]) define the family $\mathcal{B} S(p, m, \mu, \alpha), \mu \geq 0,0 \leq \alpha<1$, $m \in \mathbb{N} \cup\{0\}, p, n \in \mathbb{N}$ so that it consists of functions $f \in \mathcal{A}(p, n)$ satisfying the condition

$$
\begin{equation*}
\left|\frac{D^{m+1} f(z)}{z^{p}}\left(\frac{z^{p}}{D^{m} f(z)}\right)^{\mu}-p\right|<p-\alpha, \quad(z \in \mathcal{U}) \tag{1.6}
\end{equation*}
$$

1.1. Remark. The family $\mathcal{B} S(p, m, \mu, \alpha)$ is a new comprehensive class of analytic functions which includes various new classes of analytic univalent functions as well as some very well-known ones. For example, $\mathcal{B} S(1,0,1, \alpha) \equiv S^{*}(\alpha), \mathcal{B} S(1,1,1, \alpha) \equiv \mathcal{C}(\alpha)$, $\mathcal{B} S(p, 0,0, \alpha)=R_{p}(\alpha)$ and $\mathcal{B} S(1,0,0, \alpha) \equiv R(\alpha)$.

Another interesting subclass is the special case $\mathcal{B} S(1,0,2, \alpha) \equiv \mathcal{B}(\alpha)$ which has been introduced by Frasin and Darus (see [7]) and also the class $\mathcal{B} S(1,0, \mu, \alpha) \equiv \mathcal{B}(\mu, \alpha)$ which has been introduced by Frasin and Jahangiri (see [8]).
1.2. Remark. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}$ for all $i=$ $\{1,2, \ldots, n\}, n \in \mathbb{N}$. We define the following general integral operator

$$
\begin{align*}
& \mathcal{J}_{n, p}^{l, \delta}\left(f_{1}, f_{2}, \ldots, f_{n}\right): \mathcal{A}(p, n) \rightarrow \mathcal{A}(p, n) \\
& \mathcal{J}_{n, p}^{l, \delta}\left(f_{1}, f_{2}, \ldots, f_{n}\right)=F_{p, n, l, \delta}(z) \\
& F_{p, n, l, \delta}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{D^{l_{i}} f_{i}(t)}{t^{p}}\right)^{\delta_{i}} d t, \tag{1.7}
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{J}_{n, p}^{l, \lambda}\left(g_{1}, g_{2}, \ldots, g_{n}\right): \mathcal{A}(p, n) \rightarrow \mathcal{A}(p, n) \\
& \mathcal{J}_{n, p}^{l, \lambda}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=\mathcal{G}_{p, n, l, \lambda}(z), \\
& \mathcal{G}_{p, n, l, \lambda}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(e^{D^{l_{i}} g_{i}(t) \backslash t^{p-1}}\right)^{\lambda} d t, \tag{1.8}
\end{align*}
$$

where $f_{i}, g_{i} \in \mathcal{A}(p, n)$ for all $i=\{1,2, \ldots, n\}$ and $D$ is defined by (1.5).
1.3. Remark. The integral operator (1.7) was studied and introduced by Saltık et al. (see [13]). We note that if $l_{1}=l_{2}=\ldots=l_{n}=0$ for all $i=\{1,2, \ldots, n\}$, then the integral operator $F_{p, n, l, \delta}(z)$ reduces to the operator $F_{p}(z)$ which was studied by Frasin (see [6]). Upon setting $p=1$ in the operator (1.7), we can obtain the integral operator $D^{k} F(z)$ which was studied by Breaz et al. (see [4]). For $p=1$ and $l_{1}=l_{2}=\ldots=l_{n}=0$ in (1.7), the integral operator $F_{p, n, l, \delta}(z)$ reduces to the operator $F_{n}(z)$ which was studied by Breaz and Breaz (see [3]). Observe that for $p=n=1, l_{1}=0$ and $\mu_{1}=\mu$ we obtain the integral operator $I_{\mu}(f)(z)$ which was studied by Pescar and Owa (see [11]), for $\mu_{1}=\mu \in[0,1]$ the special case of the operator $I_{\mu}(f)(z)$ was studied by Miller et al. (see [10]). For $p=n=1, l_{1}=0$ and $\mu_{1}=1$ in (1.7), we have the Alexander integral operator $I(f)(z)$ in $[1]$. For $l_{1}=l_{2}=\ldots=l_{n}=0$ in (1.7), the integral operator was studied by E. Deniz (see [5]).
1.4. Remark. For $l_{1}=l_{2}=\ldots=l_{n}=0$ in (1.8), the integral operator was studied by E. Deniz (see [5]).For $p=n=1$ and $l_{1}=l_{2}=\ldots=l_{n}=0$ in (1.8), the integral operator $\mathcal{G}_{p, n, l, \lambda}(z)$ was studied by Frasin in [9].

In this paper, we obtain the order of convexity of the operators $F_{p, n, l, \delta}(z)$ and $\mathcal{G}_{p, n, l, \lambda}(z)$ on the class $\mathcal{B} S\left(p, l_{i}, \mu, \alpha\right)$. As special cases, the order of convexity of the operators $\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\delta} d t$ and $\int_{0}^{z}\left(e^{g(t)}\right)^{\lambda} d t$ are given.

In order to prove our main results, we recall the following lemma.
1.5. Lemma. (General Schwarz Lemma). Let the function $f$ be regular in the disk $\mathcal{U}_{R}$ with $|f(z)|<M, M$ fixed. If $f$ has at $z=0$ one zero with multiply $\geq m$, then

$$
\begin{equation*}
|f(z)| \leq \frac{M}{R^{m}}|z|^{m}, z \in \mathcal{U}_{R} \tag{1.9}
\end{equation*}
$$

Equality (in the inequality (1.9) for $z \neq 0$ ) can hold only if $f(z)=e^{i \theta} \frac{M}{R^{m}}|z|^{m}$, where $\theta$ is constant.

## 2. Main results

2.1. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha<p, \mu \geq 0$ and $f_{i} \in \mathcal{A}(p, n)$ be in the class $\mathcal{B} S\left(p, l_{i}, \mu, \alpha\right)$ for all $i=\{1,2, \ldots, n\}$. If $\left|D^{l_{i}} f_{i}(z)\right| \leq M$, $(M \geq 1 ; z \in \mathcal{U})$, then the integral operator

$$
F_{p, n, l, \delta}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{D^{l_{i}} f_{i}(t)}{t^{p}}\right)^{\delta_{i}} d t
$$

is in $\mathcal{C}_{p}(\beta)$, where

$$
\begin{equation*}
\beta=p\left[1-\sum_{i=1}^{n} \delta_{i}\left((2 p-\alpha) M^{\mu-1}+1\right)\right] \tag{2.1}
\end{equation*}
$$

and $\sum_{i=1}^{n} \delta_{i}\left((2 p-\alpha) M^{\mu-1}+1\right) \leq 1$ for all $i=\{1,2, \ldots, n\}$.
Proof. Define the function $F_{p, n, l, \delta}(z)$ by

$$
F_{p, n, l, \delta}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(\frac{D^{l_{i}} f_{i}(t)}{t^{p}}\right)^{\delta_{i}} d t
$$

for $f_{i}(z) \in \mathcal{B} S\left(p, l_{i}, \mu, \alpha\right)$. On the other hand it is easy to see that

$$
\begin{equation*}
\left(F_{p, n, l, \delta}(z)\right)^{\prime}=p z^{p-1} \prod_{i=1}^{n}\left(\frac{D^{l_{i}} f_{i}(z)}{z^{p}}\right)^{\delta_{i}} \tag{2.2}
\end{equation*}
$$

Now, we differentiate (2.2) logarithmically and multiply by $z$ to obtain

$$
\begin{equation*}
1+\frac{z\left(F_{p, n, l, \delta}(z)\right)^{\prime \prime}}{\left(F_{p, n, l, \delta}(z)\right)^{\prime}}-p=\sum_{i=1}^{n} \delta_{i}\left(\frac{z\left(D^{l_{i}} f_{i}\right)^{\prime}(z)}{\left(D^{l_{i}} f_{i}\right)(z)}-p\right) \tag{2.3}
\end{equation*}
$$

It follows from (2.3) and $p\left(D^{l_{i}+1} f_{i}(z)\right)=z\left(D^{l_{i}} f_{i}(z)\right)^{\prime}$ that

$$
\begin{align*}
& \left|1+\frac{z\left(F_{p, n, l, \delta}(z)\right)^{\prime \prime}}{\left(F_{p, n, l, \delta}(z)\right)^{\prime}}-p\right| \\
& \quad \leq p \sum_{i=1}^{n} \delta_{i}\left(\left|\frac{D^{l_{i}+1} f_{i}(z)}{D^{l_{i}} f_{i}(z)}\right|+1\right)  \tag{2.4}\\
& \quad \leq p \sum_{i=1}^{n} \delta_{i}\left(\left|\frac{D^{l_{i}+1} f_{i}(z)}{z^{p}}\left(\frac{z^{p}}{D^{l_{i} f_{i}(z)}}\right)^{\mu}\right|\left|\frac{D^{l_{i}} f_{i}(z)}{z^{p}}\right|^{\mu-1}+1\right) .
\end{align*}
$$

Since $\left|D^{l_{i}} f_{i}(z)\right| \leq M,(M \geq 1, z \in \mathcal{U})$ for all $i=\{1,2, \ldots, n\}$, applying the General Schwarz Lemma, we have

$$
\left|D^{l_{i}} f_{i}(z)\right| \leq M|z|^{p}
$$

Therefore, from (2.4), we obtain

$$
\begin{equation*}
\left|1+\frac{z\left(F_{p, n, l, \delta}(z)\right)^{\prime \prime}}{\left(F_{p, n, l, \delta}(z)\right)^{\prime}}-p\right| \leq p \sum_{i=1}^{n} \delta_{i}\left(\left|\frac{D^{l_{i}+1} f_{i}(z)}{z^{p}}\left(\frac{z^{p}}{D^{l_{i}} f_{i}(z)}\right)^{\mu}\right| M^{\mu-1}+1\right) . \tag{2.5}
\end{equation*}
$$

From (2.5) and (1.6), we see that

$$
\begin{align*}
& \left|1+\frac{z\left(F_{p, n, l, \delta}(z)\right)^{\prime \prime}}{\left(F_{p, n, l, \delta}(z)\right)^{\prime}}-p\right| \\
& \quad \leq p \sum_{i=1}^{n} \delta_{i}\left(\left(\left|\frac{D^{l_{i}+1} f_{i}(z)}{z^{p}}\left(\frac{z^{p}}{D^{l_{i}} f_{i}(z)}\right)^{\mu}-p\right|+p\right) M^{\mu-1}+1\right)  \tag{2.6}\\
& \quad \leq p \sum_{i=1}^{n} \delta_{i}\left((2 p-\alpha) M^{\mu-1}+1\right) \\
& \quad=p-\beta
\end{align*}
$$

This completes the proof.
2.2. Corollary. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha<p, \mu \geq 0$ and $f_{i} \in \mathcal{A}(p, n)$ is in the class $\mathcal{B} S\left(p, l_{i}, \mu, \alpha\right)$ for all $i=\{1,2, \ldots, n\}$. If $\left|D^{l_{i}} f_{i}(z)\right| \leq M$, $(M \geq 1 ; z \in \mathcal{U})$, then the integral operator $F_{p, n, l, \delta}(z)$ is convex in $\mathcal{U}$ and

$$
\sum_{i=1}^{n} \delta_{i}=\frac{1}{(2 p-\alpha) M^{\mu-1}+1}
$$

Letting $p=1, l_{i}=0$ in Theorem 2.1 for all $i=\{1,2, \ldots, n\}$, we have
2.3. Corollary. Let $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, \mu \geq 0,0 \leq \alpha<1$ and $f_{i} \in \mathcal{A}(n)$ is in the class $\mathcal{B}(\mu, \alpha)$ for all $i=\{1,2, \ldots, n\}$. If $\left|f_{i}(z)\right| \leq M,(M \geq 1 ; z \in \mathcal{U})$, then the integral
operator $F_{1, n, 0, \delta}(z) \in \mathcal{C}(\beta)$ is in $\mathcal{U}$ and

$$
\beta=1-\sum_{i=1}^{n} \delta_{i}\left[(2-\alpha) M^{\mu-1}+1\right]
$$

where $\sum_{i=1}^{n} \delta_{i}\left[(2-\alpha) M^{\mu-1}+1\right] \leq 1$ for all $i=\{1,2, \ldots, n\}$.
Letting $n=1$ in Corollary 2.2, we have
2.4. Corollary. Let $\delta \in \mathbb{R}^{+}, \mu \geq 0,0 \leq \alpha<1$ and let $f \in \mathcal{A}$ be in the class $\mathcal{B}(\mu, \alpha)$. If $|f(z)| \leq M,(M \geq 1 ; z \in \mathcal{U})$, then the integral operator $F_{1,1,0, \delta}(z)=\int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\delta} d t \in \mathcal{C}(\beta)$ is in U , and

$$
\beta=1-\delta\left[(2-\alpha) M^{\mu-1}+1\right]
$$

where $\delta\left[(2-\alpha) M^{\mu-1}+1\right] \leq 1$.
Letting $p=1, l_{i}=0, \mu=1$ in Theorem 2.1 for all $i=\{1,2, \ldots, n\}$, we have
2.5. Corollary. Let $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in \mathbb{R}_{+}^{n}, 0 \leq \alpha<1$ and let $f_{i} \in \mathcal{A}(n)$ be in the class $S^{*}(\alpha)$ for all $i=\{1,2, \ldots, n\}$. Then the integral operator $F_{1, n, 0, \delta}(z) \in \mathcal{C}(\beta)$ is in U, where

$$
\beta=1-\sum_{i=1}^{n} \delta_{i}(3-\alpha),
$$

where $\sum_{i=1}^{n} \delta_{i}(3-\alpha) \leq 1$ for all $i=\{1,2, \ldots, n\}$.
Letting $n=1, \delta=\frac{1}{3}$ and $\alpha=0$ in Corollary 2.5, we have
2.6. Corollary. Let $f \in \mathcal{A}$ be starlike in $\mathcal{U}$. If $|f(z)| \leq M,(M \geq 1 ; z \in \mathcal{U})$, then the integral operator $F_{1,1,0, \frac{1}{3}}(z)$ is convex in $\mathcal{U}$.
2.7. Remark. Letting $\delta_{i}$ by $\frac{1}{\beta_{i}}, p=1, l_{i}=0$ in Theorem 2.1 for all $i=\{1,2, \ldots, n\}$ we obtain Theorem 2.1 ( see [9]).
2.8. Theorem. Let $l=\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in \mathbb{N}_{0}^{n}, \lambda \in \mathbb{R}_{+}^{n}, 0 \leq \alpha<p, \mu \geq 0$ and $g_{i} \in \mathcal{A}(p, n)$ be in the class $\mathcal{B} S\left(p, l_{i}, \mu, \alpha\right)$ for all $i=\{1,2, \ldots, n\}$. If $\left|D^{l_{i}} g_{i}(z)\right| \leq M,(M \geq 1 ; z \in \mathcal{U})$, then the integral operator

$$
\begin{equation*}
\mathcal{G}_{p, n, l, \lambda}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(e^{D^{l_{i}} g_{i}(t) \backslash t^{p-1}}\right)^{\lambda} d t \tag{2.7}
\end{equation*}
$$

is in $\mathfrak{C}_{p}(\beta)$, where

$$
\beta=p-\left[\lambda n\left\{\left(p^{2}+(1-\alpha) p\right) M^{\mu}+(p-1) M\right\}\right]
$$

and $\lambda \leq \frac{p}{n\left\{\left(p^{2}+(1-\alpha) p\right) M^{\mu}+(p-1) M\right\}}$.
Proof. Define the function $\mathcal{G}_{p, n, l, \lambda}(z)$ by

$$
\mathcal{G}_{p, n, l, \lambda}(z)=\int_{0}^{z} p t^{p-1} \prod_{i=1}^{n}\left(e^{D^{l} g_{i}(t) \backslash t^{p-1}}\right)^{\lambda} d t
$$

for $g_{i}(z) \in \mathcal{B} S\left(p, l_{i}, \mu, \alpha\right)$. It follows that

$$
\begin{equation*}
1+\frac{z\left(\mathcal{G}_{p, n, l, \lambda}(z)\right)^{\prime \prime}}{\left(\mathcal{G}_{p, n, l, \lambda}(z)\right)^{\prime}}-p=\lambda \sum_{i=1}^{n}\left[\frac{\left(D^{l_{i}} g_{i}(z)\right)^{\prime}}{z^{p-1}}-(p-1) \frac{D^{l_{i}} g_{i}(z)}{z^{p}}\right] z \tag{2.8}
\end{equation*}
$$

Therefore from (2.8) and $p\left(D^{l_{i}+1} f_{i}\right)(z)=z\left(D^{l_{i}} f_{i}(z)\right)^{\prime}$, we obtain

$$
\begin{aligned}
\mid 1 & \left.+\frac{z\left(\mathcal{G}_{p, n, l, \lambda}(z)\right)^{\prime \prime}}{\left(\mathcal{G}_{p, n, l, \lambda}(z)\right)^{\prime}}-p \right\rvert\, \\
& \leq \lambda\left(\sum_{i=1}^{n}\left[p\left|\frac{D^{l_{i}+1} g_{i}(z)}{z^{p}}\right|+(p-1)\left|\frac{D^{l_{i}} g_{i}(z)}{z^{p}}\right|\right]\right) \\
& \leq \lambda\left(\sum_{i=1}^{n}\left[p\left|\frac{D^{l_{i}+1} g_{i}(z)}{z^{p}}\left(\frac{z^{p}}{D^{l_{i}} g_{i}(z)}\right)^{\mu}\right|\left|\frac{D^{l_{i}} g_{i}(z)}{z^{p}}\right|^{\mu}+(p-1)\left|\frac{D^{l_{i}} g_{i}(z)}{z^{p}}\right|\right]\right) .
\end{aligned}
$$

Applying the General Schwarz Lemma once again, we have

$$
\left|\frac{D^{l_{i}} g_{i}(z)}{z^{p}}\right| \leq M, \quad(z \in \mathcal{U})
$$

and hence

$$
\begin{align*}
\mid 1 & \left.+\frac{z\left(\mathcal{G}_{p, n, l, \lambda}(z)\right)^{\prime \prime}}{\left(\mathcal{G}_{p, n, l, \lambda}(z)\right)^{\prime}}-p \right\rvert\, \\
& \leq \lambda\left(\sum_{i=1}^{n}\left[p\left|\frac{D^{l_{i}+1} g_{i}(z)}{z^{p}}\left(\frac{z^{p}}{D^{l_{i}} g_{i}(z)}\right)^{\mu}\right| M^{\mu}+(p-1) M\right]\right) . \tag{2.9}
\end{align*}
$$

Therefore from (2.9), we obtain

$$
\begin{aligned}
1+ & \left.\frac{z\left(\mathcal{G}_{p, n, l, \lambda}(z)\right)^{\prime \prime}}{\left(\mathcal{G}_{p, n, l, \lambda}(z)\right)^{\prime}}-p \right\rvert\, \\
& \leq \lambda\left(\sum_{i=1}^{n}\left[\left(p\left|\frac{D^{l_{i}+1} g_{i}(z)}{z^{p}}\left(\frac{z^{p}}{D^{l_{i}} g_{i}(z)}\right)^{\mu}-p\right|+p\right) M^{\mu}+(p-1) M\right]\right) \\
& \leq \lambda n\left\{\left(p^{2}+(1-\alpha) p\right) M^{\mu}+(p-1) M\right\} \\
& =p-\beta .
\end{aligned}
$$

This completes the proof.
Letting $l_{i}=0, \mu=0$ in Theorem 2.8 for all $i=\{1,2, \ldots, n\}$, we have
2.9. Corollary. Let $g_{i} \in \mathcal{A}(n)$ be in the class $R_{p}(\alpha), \lambda \in \mathbb{R}_{+}^{n}, 0 \leq \alpha<p$. If $\left|g_{i}(z)\right| \leq M,(M \geq 1 ; z \in \mathcal{U})$, then the integral operator $\mathcal{G}_{p, n, 0, \lambda}(z)$ is in $\mathcal{C}_{p}(\beta)$ in $\mathcal{U}$, where

$$
\beta=p-\left\{\lambda n\left[\left(p^{2}+(1-\alpha) p\right)+(p-1) M\right]\right\},
$$

and $\lambda n\left[\left(p^{2}+(1-\alpha) p\right)+(p-1) M\right] \leq p$.
Letting $n=1, p=1, l=0$ in Theorem 2.8, we have
2.10. Corollary. Let $\lambda \in \mathbb{R}^{+}, 0 \leq \alpha<1, \mu \geq 0$ and let $g \in \mathcal{A}$ be in the class $\mathcal{B}(\mu, \alpha)$. If $|g(z)| \leq M,(M \geq 1 ; z \in \mathcal{U})$, then the integral operator $\mathcal{G}_{1,1,0, \lambda}(z)=\int_{0}^{z}\left(e^{g(t)}\right)^{\lambda} d t$ is in $\mathcal{C}(\beta)$ in $\mathcal{U}$, where

$$
\beta=1-\lambda(2-\alpha) M^{\mu},
$$

and $\lambda(2-\alpha) M^{\mu} \leq 1$.
Letting $p=1, l_{i}=0, \mu=1$ in Theorem 2.8 for all $i=\{1,2, \ldots, n\}$, we have
2.11. Corollary. Let $g_{i} \in \mathcal{A}(n)$ be in the class $S^{*}(\alpha), \lambda \in \mathbb{R}_{+}^{n}, 0 \leq \alpha<1$, for all $i=\{1,2, \ldots, n\}$. If $\left|g_{i}(z)\right| \leq M,(M \geq 1 ; z \in \mathcal{U})$, then the integral operator $\mathcal{G}_{1, n, 0, \lambda}(z)$ is in $\mathcal{C}(\beta)$ in $\mathcal{U}$, where

$$
\beta=1-\lambda n(2-\alpha) M,
$$

and $\lambda \leq \frac{1}{n(2-\alpha) M}$.
Letting $\alpha=0, M=n=1$ and $\lambda=\frac{1}{2}$ in Corollary 2.12, we have
2.12. Corollary. Let $g \in \mathcal{A}$ be starlike in $\mathcal{U}$ for all $i=\{1,2, \ldots, n\}$. If $|g(z)| \leq 1$, $(z \in \mathcal{U})$, then the integral operator $\mathcal{G}_{1,1,0, \frac{1}{2}}(z)$ is convex in $\mathcal{U}$.

## References

[1] Alexander, J. W.Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics 17 (1), 12-22, 1915.
[2] Alb Lupaş, A. A subclass of analytic functions defined by differential Sălăgean operator, Acta Universitatis Apulensis 20, 259-263, 2009.
[3] Breaz D. and Breaz, N. Two integral operators, Studia Universitatis Babes-Bolyai Mathematica 47 (3), 13-19, 2002.
[4] Breaz, D., Güney, H. Ö. and Sălăgean, G. S. A new general integral operator, Tamsui Oxford Journal of Mathematical Sciences 25 (4), 407-414, 2009.
[5] Deniz, E., Çağlar, M. and Orhan, H. The order of convexity of two p-valent integral operators, American Institute of Physics, International Symposium of Mathematical Science, Bolu, Turkey, (1309), 234-240, 2010.
[6] Frasin, B. A. Convexity of integral operators of p-valent functions, Math. Comput. Model. 51, 601-605, 2010.
[7] Frasin, B. A. and Darus, M. On certain analytic univalent functions, Internat. J. Math. and Math. Sci. 25 (5), 305-310, 2001.
[8] Frasin, B. A. and Jahangiri, J. A new and comprehensive class of analytic functions, Anal. Univ. Ordea Fasc. Math. XV, 59-62, 2008.
[9] Frasin, B. A. and Ahmad, A. The order of convexity of two integral operators, Studia Univ. "Babeş-Bolyai", Mathematica LV (2)(6), 113-117, 2010.
[10] Miller, S.S., Mocanu, P. T. and Reade, M. O. Starlike integral operators, Pacific Journal of Mathematics 79 (1), 157-168, 1978.
[11] Pescar V. and Owa, S. Sufficient conditions for univalence of certain integral operators, Indian Journal of Mathematics 42 (3), 347-351, 2000.
[12] Sălăgean, G. St. Subclases of univalent functions (Lecture Notes in Math., Springer Verlag, Berlin, 1983), 362-372.
[13] Saltık, G., Deniz E., and Kadıŏlu, E. Two new general p-valent integral operators, Math. Comput. Model. 52, 1605-1609, 2010.
[14] Shenan, G. M., Salim, T. O. and Marouf, M.S. A certain class of multivalent prestarlike functions involving the Srivastava-Saigo-Owa fractional integral operator, Kyungpook Math. J. 44, 353-362, 2004.


[^0]:    *Department of Mathematics, Faculty of Science, Ataturk University, Erzurum, 25240 Turkey.
    E-mail: (G.S. Ayhanöz) gulsah1984@windowslive.com (E. Kadıoğlu) ekrem@atauni.edu.tr
    ${ }^{\dagger}$ Corresponding Author.

