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Abstract
The purpose of the present paper is to establish some properties of fuzzy subordination
of analytic functions associated with Wanas differential operator which defined in the open unit
disk. Further, we obtain results related to fractional derivative (Riemann-Liouville derivative).
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1. Introduction

Denote by M, the class of functions f which are analytic in the open unitdisk U = {z €
C :|z| < 1} and have the form

[0e]

f(z)y=z+ Z a,z"* (0<1<1), (1.1

n=2

For functions f; € M (j = 1,2) given by

fi(z)=z+ Z a2 (j = 1,2),
n=2

we define the Hadamard product (convolution) of f; and f, by

(s @D =2+ ) anaansz"™ = ()@,
n=2

A function f € M is said to be univalent starlike of order p (0 < p < 1), if

zf'(z)
Re{f(z)}>p (z € ).

Denote this class by S(p).
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Wanas [20] introduced the differential operator wn . M, — M, as follows

a,p
Walflg fz)=z+ i zk: (:1) (—1m+t (%)]n a,z",
n=2 Ltm=1

wherea € R, = 0witha + 8 >0,m,n €Ny, ={0,1,2,3,...}.

It is easily verified that if f € M, then we have

b (v (g e

k,
Wa’g f(z)=z+ E
n=2

It follows from (1.2) that

(wgrea) = [ (&) com (1)

Llm=1

Wy f(2)

[a+ i Y om (2 | wirre (1.3)
m 5 a,ﬁf Z). .
L m=1
Some of the special cases of the operator defined by (1.2) can be found in [1,3,4,16,19].

For more details see [22].

Definition 1.1 [23]. Let X be a non-empty set. An application F : X — [0,1] is called fuzzy
subset. An alternate definition, more precise, would be the following:

A pair (A, Fy),where F;: X - [0,1]and A = {x € X: 0 < F4(x) < 1} = supp(4, E,)

is called fuzzy subset. The function F, is called membership function of the fuzzy subset
(Ar FA)

Definition 1.2 [13]. Let two fuzzy subsets of X, (M, Fy,) and (N, Fy). We say that the fuzzy
subsets M and N are equal if and only if Fy(x) = Fy(x),x € X and we denote this by
(M, Fy;) = (N, Fy). The fuzzy subset (M, F,,) is contained in the fuzzy subset (N, Fy) if and
only if F;(x) < Fy(x),x € X and we denote the inclusion relation by ( M, F,,) < (N, Fy).

Let D € Cand f, g analytic functions. We denote by
f(D) = supp(f (D), Frpy) = {f(2) : 0 < Frpy(f(2)) < 1,z € D}
and
g(D) = supp(g(D), Fymy) = {9(2) : 0 < Fypy(9(2)) < 1,z € D}.

Definition 1.3 [13]. Let D € C, z, € D be a fixed point, and let the functions f,g € H (D).
The function f is said to be fuzzy subordinate to g and write f <z g or f(z) <r g(z) if the
following conditions are satisfied:

1) f(zo) = g(20),
2) Fro)(f (@) < Fyoy(9(2)),z € D.
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Definition 1.4 [14]. Lety : C3 x U — C and let h be univalent in U. If p is analytic in U and
satisfies the (second-order) fuzzy differential subordination

Fy(cxo) (@ (2), 2p' (2), 2%p" (2); 2)) < Fyquy(h(2)), (1.4)
i.e. Y(p(2),zp'(2),z%p"(2);z) <p h(2) ,z € U,

then p is called a fuzzy solution of the fuzzy differential subordination. The univalent function
q is called a fuzzy dominant of the fuzzy solutions of the fuzzy differential subordination, or
more simple a fuzzy dominant, if p(z) <r q(2),z € U for all p satisfying (1.4). A fuzzy
dominant § that satisfies §(z) <g q(z),z € U for all fuzzy dominant q of (1.4) is said to be the
fuzzy best dominant of (1.4).

In order to prove our main results, we need the following lemma.

Lemma 1.1 [6]. Let g be univalent in U and let 8 and ¢ be analytic in a domain D containing

q(U) with ¢(w) =0 when w € q(U). Set Q(z) = Zq’(z)qb(q(z)) and h(z) = G(q(z)) +
Q(z). Suppose that

1) Q(2) is starlike in U,

zh'!(2)
2) Re{%} >0 forzeU.

If p is analytic in U, with p(0) = q(0),p(U) c Dand y:C?> x U - C, I/J(p(z),zp’(z)) =
0(p(2)) + zp'(2). ¢(p(2)) is analytic in U, then

Fyexo)[6(p(2) +2p'(2). ¢ (0(2))] < Faqyh(2),

implies F,yp(2) < Fyw)q(2),

i.e. p(z) <r q(2) and q is the fuzzy best dominant, where
Y(C? x U) = supp (CZ x U, Fw((czxu)tp(p(z),zp’(z))>

- {z € C: 0 < Fyeub(p(@), 20’ (@) < 1}’
and h(U) = supp (U, Fh(U)h(z)) ={z€C:0 < Fyyh(z) <1}

Recently, Oros and Oros [14,15], Lupas [7-11], Lupas and Oros [12], Wanas and Majeed [21]
and Altinkaya and [2] have obtained fuzzy differential subordination results for certain classes
of analytic functions.

2. Fuzzy Subordination Results

Theorem 2.1. Lety,8,u € C, t € C\ {0}, T > 0 and q be univalent function in U with q(0) =
1,q(z) # 0 and assume that

2q'(z) N 2q"(z)
q(z)  q'(2)

Suppose that z(q(z))* 2q'(z) is starlike in U. If f € M; and x(v,6, 1,7, k,n,a,B;z) is
analytic in U, where

Re {%q(z) + (u—2) +1 +§(/¢ - 1)} > 0. (2.1)
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kn+1 hﬂ T
X(y'aouTJk'n'aJﬁ;Z)=<—f()> |:V+6<—f(Z)>

Weis f@) @)
k wkn kn+2 kn+1
k m1 ([ Wes f(2) f() W,z f(z)
w2, () 0 () + 1)< EG )) ( e W ﬂ o
then
u 4 zq'(z)
Fyexo)x .8 w7 kom, @ B 2] < Fy e [(q(z)) <Hq(z)+ (4@)° )]
q\z
= Fayh(2), (2.3)
implies
kn+1
f(2)
F /o ensa® — o | SF (2),
(M/‘Z—fn) (U)< Wos F(2) ) ot
W%$
i.e.

kn+1
fz ))
— | <ra(@
< Wy f(2)

and q is the fuzzy best dominant.

Proof. Define p by

T

m my\n+1

Wi T (14 B [ () O™ (G )| @

p(2) = (—) T TIC (2.4)
Wei /) 14 55 [Shoa () -0t (S50 )] s
Then the function p is analytic in U and p(0) = 1. After simple computation we have
u 6 ., 7P '(z) )

= ) 6’ ) ) k’ ) ) ; ) 2-5
(p(2)) (V o T om ) = XY o m Tk Bi2) (2.5)

where x(y, 6, u, T, k,n, a, B; z) is given by (2.2).
From (2.3) and (2.5), we obtain

o, @ 6 | 2@
Fuen () (1 55+ )| < P |0 (1 25+ )|

Define the functions 6 and ¢ by
O(w) =(@w+ 8wt and ¢(w) =t wH2,

Obviously, the functions 6 and ¢ are analyticin D = C \ {0} and ¢(w) # 0,w € D. Also, we
get
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0(2) = 2¢' @ (q(@) = tz(¢()" "' (2)

and

5 . 24 "(2) )
q(Z) (61(2))2

Since z(q(2))* %q'(2) is starlike univalent in U, we find that Q is starlike univalent in U.

' (2) @ e s
re{g) = e Few+ -0 g1t n) @o

Using (2.1), (2.6) becomes

h(z) = 0(q(2) + Q@) = (¢()" (y +

R {Zh'(Z)} S0
e .
Q(2)
Therefore, by Lemma 1.1, we get F,;yp(2) < F, (U)q(z). By using (2.4), we obtain
F ke T < Fqwq(2),

k17+1f(z)
Ie. (T) <r q(z) and q is the fuzzy best dominant.

By taking the fuzzy dominant q(z) = — ,ll =t=1andy =& = 0inTheorem 2.1, we
obtain the following corollary:

1+2z2

Corollary 2.1. Let Re{

k m f( ) w, f(2)
S () ) (s - )

is analytic in U, then

\ N (Wl @) W""“f( )
oS )
= Fy(c2xv) [1—_222]
W (2) 142z
( a,ﬁf()) <1”1—Z

and q(z) = g is the fuzzy best dominant.

}>O If f € M and

implies

By fixing n = 0 in Corollary 2.1, we obtain the following corollary:
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1+z2 zf''(2)  zf'(2)

'@ f(2)
zf"(z) zf'(z) 2z
Fw((csz) [‘[ (1 + @) — @ )l < Fl,b((CZXU) [—1 — ZZ] )

zf' (2)\" 1+z
<f(z) > R

and q(z) = g is the fuzzy best dominant.

Corollary 2.2. Let Re{ } >0.IffeM,andt (1 + ) is analytic in U, then

implies

3. Fractional Derivative Operator Results

In this section, we introduce some applications of section 2 containing fractional
derivative operators (Riemann-Liouville derivative).

Definition 3.1 [16]. The fractional derivative of order 4, (0 < A1 < 1) of a function £ is defined
by
f f(€) SO,
A) dz ), (z—e)%
where f is an analytic function in a simply-connected region of the z-plane containing the origin

and the multiplicity of (z — €)% is removed by requiring log(z — €) to be real, when (z — €) >
0.

D}f(z) = (3.1

Let a,b,c € Cwithc # 0,—1,—2, .... The Gaussian hypergeometric function 2F1 (see [17])
is defined by

N @y (b), 2
2F1(a’blclz) - ZFl(a,b,C,Z) - (C‘Tm'

where (x),, is the Pochhammer symbol defined in terms of the Gamma function by

n=0

(x)n=F(x+n)={1 (n=0)

r'(x) x(x+1)..(x+n-1) (neN).
Definition 3.2 [4]. Let 0<A<1 and u,v € R. Then, in terms of familiar (Gauss 5)

hypergeometric function 2F1 , the generalized fractional derivative operator ]“” of a function
f is defined by:

(1 df . .( . 1_1.1_6
EErE {,1 fo(z—e) f(e). zFl(u—/l,—v,l—A,l—E)de},
Jorf(2) = O<i<1)
—n](/},;n'u'vf(z), (m<i<n+1,neN),

(3.2)

where the function f is analytic in a simply-connected region of the z-plane containing the
origin with the order
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f(2) =0(lz[9),(z = 0),

for € > max {0,u — v} —1, and the multiplicity of (z—e€)~* is removed by requiring
log(z — €) to be real, when (z — €) > 0.

By comparing (3.1) with (3.2), we find
Jo2Vf(2) = Df(2), (0<A<1).
In terms of gamma function, we have

Aup n _ rm+Drin—u+v+1) ,
0z rm—u+DIrn—A4+v+1)

(0<A<1l,uveEeRandn>max{0,u—v}—1).

o, (3.3)

Now, we define
Q(z) = Z AL
n=2

rn+1)

n-i _ n-1
rn+1-1)" E“nz ’
n=2 n=2

By Definition 3.1, we have

Dra(z) =

(0]

where
B rn+1)
T+ 1-0
Thus G,(z) = z + D}Q(z) € My, then we obtain the following result:

n=23,...

Theorem 3.1. Let the assumptions of Theorem 2.1 hold. Then

(Wa]fg-l-lGl(Z))T <, 4(2)
R Fq\z
W, Gy (2)

and q is the fuzzy best dominant.

Proof. It can easily observed that G, (z) = z + D}Q(z) € M;. Thus by using Theorem 2.1, we
obtain the result.

Also, by using (3.3), we have

I'm+DIrrn—u+v+1) -
0.7 = a,z" 4
2I“(n—u+1)]“(n—l+v+1) " Z "
n= n

Jea(z) =
=2
where

rnm+Drin—u+v+1)

= , =23 ...
n I“(n—u+1)F(n—A+v+1)G" n

Letu = A. Then G,(2) = z +]&'ZL"”Q(Z) € M, then we obtain the following result:

Theorem 3.2. Let the assumptions of Theorem 2.1 hold. Then
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(Wa’f;?“c:z (2)

T
<r q(2)
Walfg? Gy (2) )

and q is the fuzzy best dominant.

u

Proof. It can easily observed that G,(z) = z +
2.1, we obtain the result.

YO (z) € M. Thus by using Theorem

4. Conclusions

In the present work, we have introduced some properties of fuzzy differential
subordination of analytic functions by using Wanas differential operator. Further, fractional
derivative (Riemann-Liouville derivative) is investigated in this study and therefore it may be
considered as a useful tool for those who are interested in the above-mentioned topics for further
research.
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