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1. Introduction
In recent decades, there have been many results on the extension and refinement of the

famous inequalities by using different approaches and methods. Some of them are the ones
based on the notion of abstract convex functions and sets. In the literature, there have been
plenty of several convexity types, some of them can be seen in [5,15,18]. For the function
classes of different convexity types, many new inequalities and its refinements such as
integral, fractional integral, Hermite-Hadamard type inequalities etc. have been obtained
by the different authors in [1, 2, 6–15, 17, 19–22]. Also some refined or sharper versions
of the well-known inequalities have been obtained by means of the results of abstract
convexity in [3, 16, 19]. In [16], the function which is abstract convex with respect to a
class of certain quadratic functions defined on Rn is considered and the necessary condition
for this function to have minimum on a set is expressed as an inequality involving global
minimum point. In this study, the Brunn-Minkowski inequality for boxes is considered
and sharpened by means of this condition.

The Brunn-Minkowski inequality is one of the well-known inequalities which gives the
relation between Lebesgue measures of two nonempty compact sets and their Minkowski
Sum in Rn. If this measure is accepted as different geometric measures like length, area
or volume, one can have interesting inequalities which can be interpreted geometrically
[4]. For the volume measure V on Rn, the Brunn-Minkowski inequality can be stated as
follows:

Let A and B compact sets in Rn. Then

V (A + B)
1
n ≥ V (A)

1
n + V (B)

1
n
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where A + B = {a + b | a ∈ A, b ∈ B}. The equality occurs in three cases:
i) If these sets are compact convex sets of nonzero volume which are homothetic to each
other with an arbitrary center and positive coefficient;
ii) One of the sets consists of single point;
iii) V (A + B) = 0 [4].

If A and B are cuboids with the side lengths (x1, ..., xn) and (y1, ..., yn) in Rn respec-
tively, the Brunn Minkowski Inequality for boxes is obtained as follows:(

n∏
i=1

(xi + yi)
) 1

n

≥
(

n∏
i=1

xi

) 1
n

+
(

n∏
i=1

yi

) 1
n

(1.1)

Equality occurs when xi = λyi for i ∈ {1, 2, ..., n} := [n], λ > 0.
In this paper, a Brunn-Minkowski type inequality is studied on the results based on

abstract convexity which is presented [3, 19]. A refinement of this inequality is derived.
The paper is arranged as follows: In the second section, some definitions and theorems

related to abstract convexity are presented. In the third section, Brunn-Minkowski in-
equality is considered and sharper version is derived. In the forth section, the sharpness
of new version of the inequality is shown on numerical experiments.

2. Preliminaries
For the easiness, let us recall some notations that are used throughout the paper. R is

the real line; R−∞ := R ∪ {−∞} ; R̄ := R ∪ {−∞, +∞} ;Rn is an Euclidean Space; Rn
+,

Rn
++ are nonnegative and positive orthants, respectively; X is a Hilbert space with the

inner product 〈., .〉 and the norm ‖x‖ =
√

〈x, x〉; B(x0, r) = {x ∈ X : ‖x − x0‖ ≤ r} is a
closed ball.

Let g : Ω → R̄ and f : Ω → R̄. If g(x) ≤ f(x) for all x ∈ Ω then g ≤ f .
Let H be the class of functions on Ω. If there exists a function h ∈ H such that h ≥ f

then f : Ω → R−∞ is majorized by H.
In [15], A. M. Rubinov gives the definition of abstract concave function as follows: Let

H be the set of functions h : Ω → R+∞. A function f : Ω → R−∞ is called abstract concave
with respect to H (or H − concave) if there exists a set U ⊂ H such that f(x) = inf

h∈U
h(x)

for all x ∈ Ω.
Let Ω ⊂ X and let H be the set of quadratic functions given in the following form:

h(x) = a ‖x‖2 + 〈l, x〉 + c, x ∈ X (2.1)

where a > 0, l ∈ X and c ∈ R. Then a function f : Ω → R−∞ is abstract concave with
respect to H if and only if f is majorized by H and f is upper semicontinuous (see [15]).

The subsequent proposition asserts that the function f satisfying certain conditions can
be abstract concave with respect to the functions in the form of (2.1) (see [16]).

Proposition 2.1 ([16]). Let Ω ⊂ X be a convex set and let f be a differentiable mapping
defined on an open set including Ω. Suppose that ∇f is Lipschitz continuous on Ω, i.e.

K := sup
x,y∈Ω

x 6=y

‖∇f(x) − ∇f(y)‖
‖x − y‖

< +∞.

Let a ≥ K and for each t ∈ Ω

ft(x) = f(t) + 〈∇f, x − t〉 + a‖x − t‖2, x ∈ X.

Then f(x) = min
t∈Ω

ft(x), x ∈ Ω.

In [16], optimality conditions for the function f which can be expressed as the infimum
of a family (ft)t∈T of convex functions over a convex set are considered and derived. For
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the unconstrained minimization of a function f : X → R such that ‖∇f(x) − ∇f(y)‖ ≤
a ‖x − y‖ for all x, y ∈ X, the following result is obtained:

If x∗ is a global minimum point of f over X, then

f(x) − f(x∗) ≥ 1
4a

‖∇f(x)‖2 (2.2)

for all x ∈ X.
The following theorem which represents the general case of inequality (2.2) is proved in

[16].

Theorem 2.2. Let ‖.‖ be the Euclidean norm and ‖.‖◦ be any norm on Rn. Let Ω ⊂ Rn be
a set with nonempty interior and let f ∈ C1 (Ω). Suppose that the mapping x 7−→ ∇f(x)
is Lipschitz continuous on Ω :

K := sup
x,y∈Ω

x 6=y

‖∇f(x) − ∇f(y)‖
‖x − y‖

< ∞.

Let f have global minimum at x∗ ∈ int Ω over Ω. Consider the ball
B◦(x∗, r) = {x : ‖x − x∗‖◦ ≤ r} ⊂ intΩ

and let
M := max {‖∇f(x)‖◦ : x ∈ B◦(x∗, r)} .

Let q > 0 be a number such that B◦(x∗, r + q) ⊂ Ω and let a ≥ max
(

K,
M

2q

)
. Then

1
4a

‖∇f(x)‖2 ≤ f(x) − f(x∗), x ∈ B◦(x∗, r).

3. Main results
If there exists u(x) > 0 for x ∈ A such that f ≥ u on A ⊂ R, then f ≥ u is sharper

than the inequality f ≥ 0.
Theorem 2.2 has been used to derive sharper versions of some inequalities in [3,19]. In

a similar way, by means of this theorem, the inequality in following theorem is derived as
the sharper version of the Brunn-Minkowski inequality for boxes in certain conditions.

Theorem 3.1. Let λ > 0, y = (y1, y2, · · · , yn) ∈ Rn
++ , λ′ = min

i∈{1,2,...,n}
{λyi}, 0 < r < λ′

and
aλ′,r = min

r<d<λ′
max

{
a1(λ′, d), M0

2(d − r)

}
where

a1(λ, d) =
√

2(n − 1)
n

√
n

×

 ∑
δ∈{λ,λ+1}

∏
i∈[n]

Ai(y, δ, d)
1
n

∑
k∈[n]

Ak(y, δ, −d)−2

 1
2

,

Ai(y, α, β) = αyi + β and

M0 = 1
n

max
i∈[n]

 ∑
δ∈{λ,λ+1}

∏
i∈[n] Ai(y, δ, r)

1
n

Ai(y, δ, −r)

 . (3.1)

Then the following inequality holds for all x ∈ Rn
++ such that ‖x − λy‖∞ ≤ r:

n∏
i=1

(xi + yi)
1
n ≥

(
n∏

i=1
xi

) 1
n

+
(

n∏
i=1

yi

) 1
n

+ 1
4n2aλ′,r

n∑
k=1


n∏

i=1
(xi + yi)

1
n

(xk + yk)
−

n∏
i=1

x
1
n
i

xk


2

.
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Proof. Let y = (y1, y2, · · · , yn) be arbitrary point in Rn
++ and let us define fy(x) on Rn

++
as follows

fy(x) =
n∏

i=1
(xi + yi)

1
n −

(
n∏

i=1
xi

) 1
n

−
(

n∏
i=1

yi

) 1
n

.

For x ∈ Rn
++, fy(x) ≥ 0 and fy(x) = 0 is valid if and only if x = λy, λ > 0. It is seen that f

has global minimum on the points λy over Rn
++. Now considering the function in Theorem

2.2 as fy(x), we can sharpen the Brunn-Minkowski inequality, namely, fy(x) ≥ 0. Some
easy calculations imply that

∇fy(x) = 1
n


n∏

i=1
(xi + yi)

1
n

(x1 + y1)
−

n∏
i=1

x
1
n
i

x1
, · · · ,

n∏
i=1

(xi + yi)
1
n

(xn + yn)
−

n∏
i=1

x
1
n
i

xn

 .

Hence ‖∇f(x)‖2 = 1
n2

n∑
k=1


n∏

i=1
(xi+yi)

1
n

(xk+yk) −

n∏
i=1

x
1
n
i

xk


2

. Later we will use not only the norm

‖.‖ = ‖.‖2 but also the norm ‖.‖∞ . Let us consider the ball

Vλ′,d = B∞(λy, d) = {x ∈ Rn : ‖x − λy‖∞ ≤ d}
= {x ∈ Rn : λyi − d ≤ xi ≤ λyi + d, i = 1, ..., n}

where λ′ = min
i

{λyi} > d > 0. Since d < λyi, it follows that Vλ′,d ⊂ Rn
++. Let ρi(x) =

n∏
i=1

(xi+yi)
1
n

(xk+yk) −

n∏
i=1

x
1
n
i

xk
. Since it will be used to show that ∇f meets the condition of Lipschitz

continuity, we need to estimate ‖∇ρi(x)‖ for x ∈ Vλ′,d. We have

∣∣∣∣∂ρi

∂xi
(x)
∣∣∣∣ = n − 1

n

∣∣∣∣∣∣∣∣−
n∏

i=1
(xi + yi)

1
n

(xi + yi)2 +

n∏
i=1

x
1
n
i

x2
i

∣∣∣∣∣∣∣∣
≤ n − 1

n


n∏

i=1
(d + λyi)

1
n

(λyi − d)2 +

n∏
i=1

(d + (1 + λ)yi)
1
n

((λ + 1)yi − d)2


∣∣∣∣∣ ∂ρi

∂xj
(x)
∣∣∣∣∣ = 1

n

∣∣∣∣∣∣∣∣
n∏

i=1
(xi + yi)

1
n

(xi + yi)(xj + yj)
−

n∏
i=1

x
1
n
i

xixj

∣∣∣∣∣∣∣∣
≤ 1

n


n∏

i=1
(d + λyi)

1
n

(λyi − d)2 +

n∏
i=1

(d + (1 + λ)yi)
1
n

((λ + 1)yi − d)2


so

‖∇ρi(x)‖ ≤

√
2(n − 1)

n


n∏

i=1
(d + λyi)

1
n

(λyi − d)2 +

n∏
i=1

(d + (1 + λ)yi)
1
n

((λ + 1)yi − d)2


1
2

= si. (3.2)
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Let x, z ∈ Vλ′,d. With the help of the Mean Value Theorem and the Cauchy-Schwarz
Inequality, it can be deduced that there exist numbers θi ∈ (0, 1), i = 1, ..., n such that

‖∇fy(x) − ∇fy(z)‖ = 1
n

‖[ρ1(x) − ρ1(z)] , [ρ2(x) − ρ2(z)] , ..., [ρn(z) − ρn(z)]‖

= 1
n

(
n∑

k=1
[ρk(x) − ρk(z)]2

) 1
2

= 1
n

(
n∑

k=1
[∇ρk(x + θk(z − x))(x − z)]2

) 1
2

≤ 1
n

(
n∑

k=1
‖∇ρk(x + θk(z − x))‖2

) 1
2

‖x − z‖

≤
√

2(n − 1)
n

√
n

× ‖x − z‖ × A,

where A =
(

n∏
i=1

(d + λyi)
1
n

n∑
k=1

(λyk − d)−2 +
n∏

i=1
(d + (1 + λ)yi)

1
n

n∑
k=1

((λ + 1)yi − d)−2
) 1

2
.

Because x, z ∈ Vλ′,d, x + θi(z − x) ∈ Vλ′,d for all i.
Using (3.2), we derive that ‖∇fy(x) − ∇fy(z)‖ ≤ a1(λ, d) ‖x − z‖ , x, z ∈ Vλ′,d, where

a1(λ, d) =
√

2(n − 1)
n

√
n

×

(
n∏

i=1
(d + λyi)

1
n

n∑
k=1

(λyk − d)−2 +
n∏

i=1
(d + (1 + λ)yi)

1
n

n∑
k=1

((λ + 1)yi − d)−2
) 1

2

.

As a consequence, the mapping x → ∇f(x) is Lipschitz continuous on Vλ′,d with the
Lipschitz constant K ≤ a1(λ′, d). Let us apply Theorem 2.2 to a set Ω = Vλ′,d where
d < λ′ = min

i
{λyi} and the global minimum points x∗ = λy of the function f. Suppose

that ‖.‖◦ is used in Theorem 2.2 as ‖.‖∞ . Let r ∈ (0, d) and q = d − r. Let us estimate
M = max

{
‖∇fy(x)‖∞ : x ∈ Vλ′,r

}
as follows:

M = max
x∈Vλ′,r

{‖∇f(x)‖∞} = 1
n

max
x∈Vλ′,r

max
1≤i≤n

∣∣∣∣∣∣∣∣
n∏

i=1
(xi + yi)

1
n

(xk + yk)
−

n∏
i=1

x
1
n
i

xk

∣∣∣∣∣∣∣∣


≤ 1
n

max
1≤i≤n


n∏

i=1
(r + λyi)

1
n

(λyi − r)
+

n∏
i=1

(r + (1 + λ)yi)
1
n

((λ + 1)yi − r)

 ≡ M0.

Let

a2(λ′, d, r) = M0
2(d − r)

and
a(λ′, d, r) = max

{
a1(λ′, d), a2(λ′, d, r)

}
.

Note that lim
d→λ′−0

a(λ′, d, r) = lim
d→r+0

a(λ′, d, r) = +∞ so the function d 7−→ a(λ′, d, r) takes
its minimum on the interval (r, λ′) . Let aλ′,r = min

r<d<λ′
a(λ′, d, r). Applying Theorem 2.2
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we conclude that

n∏
i=1

(xi + yi)
1
n ≥

(
n∏

i=1
xi

) 1
n

+
(

n∏
i=1

yi

) 1
n

+ 1
4n2aλ′,r

n∑
k=1


n∏

i=1
(xi + yi)

1
n

(xk + yk)
−

n∏
i=1

x
1
n
i

xk


2

for x ∈ Vλ′,r. �

4. Some numerical experiments on the sharper inequality
To illustrate the numerical efficacy of the refined inequality in comparison to usual

inequality, some numerical experiments have been carried out. First, for some xi and yi

values for certain parameters n, λ and r numerical results are given as the tables. Second,
the effect of the variation of parameters n, λ, r is considered empirically.

The value of aλ′,r is determined by searching of 104 uniformly separated points in the
interval (r, λ′)

Throughout the numerical experiments, results are shown by at least six significant
figures in scientific notation.

In the tables, for given values of n, λ, xi, yi, r the values of fy(x), u(x) and u(x)
fy(x)

are

computed where fy(x) represents the difference between the right side and left side in
(1.1),

u(x) = 1
4n2aλ′,r

n∑
k=1


n∏

i=1
(xi + yi)

1
n

(xk + yk)
−

n∏
i=1

x
1
n
i

xk


2

denotes the sharpness amount and u(x)
fy(x)

can be called relative sharpness ratio.

To illustrate the numerical efficacy of sharper version, we chose yi in two ways. First,
we have taken yi = 10i cos2 i which gives the fluctuating values and xi = λyi +r cos i which
does not violate the condition λyi − r < xi < λyi + r in Theorem 2.2. For n = 5, 10,
20 and various λ, r such that r < λ′, results are shown in Table 1, Table 2 and Table 3
respectively.

Table 1. Results for n = 5, yi = 10i cos2 i, xi = λyi + r cos i

λ r λ′ fy(x) u(x) u(x)
fy(x)

1 2 2.91927 7.40765 × 10−2 8.85441 × 10−4 1.19531 × 10−2

5 10 14.59632 1.22432 × 10−1 2.95644 × 10−4 2.41475 × 10−3

10 20 29.19276 1.33422 × 10−1 1.32525 × 10−4 9.93275 × 10−4

20 30 58.38532 7.93102 × 10−2 4.47886 × 10−5 5.64727 × 10−4

40 100 116.77063 2.23874 × 10−1 1.54104 × 10−5 6.88354 × 10−5

It is seen that for each experiment the amount of sharpness u(x) changes. In Table 3,
it is too small because λ′ is relatively too small hence r in comparison to experiments in
Table 1 and Table 2. Although n is larger here, it stems from the choice of yi affecting λ′

since yi is too small for some i > 10.
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Table 2. Results for n = 10, yi = 10i cos2 i, xi = λyi + r cos i

λ r λ′ fy(x) u(x) u(x)
fy(x)

1 1 1.69362 2.21459 × 10−2 2.76298 × 10−4 1.24763 × 10−2

5 5 8.46810 3.65856 × 10−2 1.03438 × 10−4 2.82728 × 10−3

10 10 16.93621 3.98410 × 10−2 4.90442 × 10−5 1.23100 × 10−3

20 25 33.87242 6.45404 × 10−2 1.81733 × 10−5 2.81581 × 10−4

40 50 67.74448 6.60825 × 10−2 7.58624 × 10−6 1.14800 × 10−4

Table 3. Results for n = 20, yi = 10i cos2 i, xi = λyi + r cos i

λ r λ′ fy(x) u(x) u(x)
fy(x)

1 10−3 2.15455 × 10−3 8.24187 × 10−7 6.38044 × 10−8 7.74150 × 10−2

5 10−2 1.07727 × 10−2 5.47901 × 10−6 3.19564 × 10−9 5.83252 × 10−4

10 10−2 2.15455 × 10−2 1.49772 × 10−6 1.84856 × 10−8 1.23425 × 10−2

20 10−2 4.30910 × 10−2 3.92740 × 10−7 5.10792 × 10−9 1.30059 × 10−2

40 10−2 8.61820 × 10−2 1.00643 × 10−7 8.87448 × 10−10 8.81775 × 10−3

In the second way, we have chosen yi as arithmetically increasing numbers and xi as
alternating numbers in [λyi − r, λyi + r]. For n = 5, 10, 20 and various λ, r such that
r < λ′ results are shown in Table 4, Table 5 and Table 6 respectively.

Table 4. Results for n = 5, yi = 20i, xi = λyi + (−1)ir
2

λ r λ′ fy(x) u(x) u(x)
fy(x)

1 2 20 8.92929 × 10−3 2.23510 × 10−4 2.50311 × 10−2

5 50 100 4.30586 × 10−1 1.48812 × 10−3 3.45604 × 10−2

10 100 200 4.73842 × 10−1 6.47896 × 10−4 1.36732 × 10−3

20 200 400 4.98942 × 10−1 2.57650 × 10−4 5.16393 × 10−4

40 400 800 5.12529 × 10−1 9.74210 × 10−5 1.90079 × 10−4

Table 5. Results for n = 10, yi = 20i, xi = λyi + (−1)ir
2

λ r λ′ fy(x) u(x) u(x)
fy(x)

1 10 20 2.48602 × 10−1 6.64682 × 10−2 2.67568 × 10−2

5 50 100 4.31267 × 10−1 2.08523 × 10−3 4.83513 × 10−3

10 100 200 4.75102 × 10−1 9.17230 × 10−4 1.93060 × 10−3

20 200 400 5.00580 × 10−1 3.67309 × 10−4 7.33767 × 10−4

40 400 800 5.14385 × 10−1 1.39541 × 10−4 2.71278 × 10−4
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Table 6. Results for n = 20, yi = 20i, xi = λyi + (−1)ir
2

λ r λ′ fy(x) u(x) u(x)
fy(x)

1 10 20 2.39523 × 10−1 8.23519 × 10−3 3.43816 × 10−2

5 50 100 4.16243 × 10−1 2.71825 × 10−3 6.53044 × 10−3

10 100 200 4.58746 × 10−1 1.21076 × 10−3 2.63927 × 10−3

20 200 400 4.83347 × 10−1 4.89261 × 10−4 1.01198 × 10−3

40 400 800 4.96867 × 10−1 1.87122 × 10−4 3.76604 × 10−4

In order to see how the alteration in variables xi, yi and parameters n, λ, r affects
the sharpness of inequality numerically, all variables and parameter n, λ and r except
one has been kept constant. So it can be shown the effect of variation of this variable
into the inequality. Since the variation of n requires adding or removing some xi or yi

values and variation of λ requires the changing xi values which should obey the condition
λyi − r < xi < λyi + r, only the effect of variation of r can be observed provided that xi

values are constant.

Numerical results are given in Table 7, Table 8, Table 9 and Table 10 in order to show
the impact of the change in parameter r. According to conditions imposed by Theorem
2.2, r can be selected any positive number smaller than λ′.

Table 7. Results for n = 10, λ = 10, λ′ = 500, yi = 50i, xi = 500i + 50 cos i

r fy(x) u(x) u(x)
fy(x)

50 5.30226 × 10−2 4.62241 × 10−5 8.71781 × 10−4

100 5.30226 × 10−2 4.14820 × 10−5 7.82345 × 10−4

200 5.30226 × 10−2 3.17775 × 10−5 5.99320 × 10−4

400 5.30226 × 10−2 1.06071 × 10−4 2.00049 × 10−4

499 5.30226 × 10−2 7.52190 × 10−8 1.41862 × 10−7

Table 8. Results for n = 20, λ = 10, λ′ = 500, yi = 50i, xi = 500i + 50 cos i

r fy(x) u(x) u(x)
fy(x)

50 5.06348 × 10−2 5.34698 × 10−5 1.05599 × 10−3

100 5.06348 × 10−2 4.82349 × 10−5 9.52603 × 10−4

200 5.06348 × 10−2 3.72388 × 10−5 7.35437 × 10−4

400 5.06348 × 10−2 1.22733 × 10−5 2.42388 × 10−4

499 5.06348 × 10−2 7.39036 × 10−9 1.45954 × 10−7
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Table 9. Results for n = 10, λ = 100, λ′ = 1.69362 × 102, yi = 10i cos2 i,
xi = λyi + 50 cos i

r fy(x) u(x) u(x)
fy(x)

10 4.58435 × 10−4 6.24138 × 10−8 1.36146 × 10−4

50 4.58435 × 10−4 4.66779 × 10−8 1.01820 × 10−4

100 4.58435 × 10−4 2.61021 × 10−8 5.69375 × 10−5

150 4.58435 × 10−4 4.84804 × 10−9 1.05752 × 10−5

168 4.58435 × 10−4 5.46284 × 10−12 1.19163 × 10−7

Table 10. Results for n = 20, λ = 100, λ′ = 2.15455 × 10−1, yi = 10i cos2 i,
xi = λyi + 50 cos i

r fy(x) u(x) u(x)
fy(x)

10−4 1.63523 × 10−12 7.49248 × 10−15 4.58192 × 10−3

10−3 1.63523 × 10−12 7.42960 × 10−15 4.54285 × 10−3

10−2 1.63523 × 10−12 6.80921 × 10−15 4.16407 × 10−3

10−1 1.63523 × 10−12 2.13159 × 10−15 1.30293 × 10−3

2.14 × 10−1 1.63523 × 10−12 4.73303 × 10−19 2.89441 × 10−7

It is observed empirically from Table 7, Table 8, Table 9 and Table 10 that when r

is chosen close to λ′, the sharpening amount u(x) and relative sharpening ratio u(x)
fy(x)

decreases. This shows that the increase in r values might have little effect on sharpening
the inequality.
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