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Abstract

Dual-hyperbolic Fibonacci and Lucas numbers with Fibonacci and Lucas coefficients are
introduced by Cihan et al. and some identities and theorems are given regarding modules
and conjugates of these numbers. Later, generating function and Binet’s formula with the
help of this generating function have been derived. Also, Binet formula, Cassini’s, Catalan’s,
d’Ocagne’s, Honsberger and Tagiuri identities are found for dual-hyperbolic numbers with
generalized Fibonacci and Lucas coefficients. While these operations are being done, we
will benefit from the well-known Fibonacci and Lucas identitites. Moreover, it is seen that
the results which are obtained for the values p = 1 and q = 0 corresponds to the theorems
in the article by Cihan et al. [1].

1. Introduction

Italian mathematician Leonardo Fibonacci’s Liber Abaci was one of the most important books on mathematics in the Middle Ages. Through
this book mathematicians introduced Fibonacci number sequence concept. Several studies have been conducted with respect to Fibonacci
numbers and Fibonacci quaternions [2]-[5].
Dual-hyperbolic numbers with Fibonacci and Lucas coefficients which is constitutes a new number system have been introduced by Cihan
and her colleagues [1]. In this article, the dual-hyperbolic number system has been generalized based on the article [1].
Firstly, addition, multiplication, modules and conjugates of these numbers have been defined and the fundamental identities for these numbers
regarding these operations have been proven. Then, we have defined generating function and this function helped us to find Binet’s formula.
Additionally, d’Ocagne’s, Honsberger, Tagiuri, Catalan identities have been obtained and Cassini’s identity has been given in case of r = 1
for the Catalan identity. Finally, we have discussed special cases and have given examples.

2. Preliminaries

The Fibonacci and Lucas numbers have many interesting properties and applications. Initial conditions for the Fibonacci and Lucas numbers
are defined as follows respectively

F0 = 0, F1 = 1, . . . , Fn+1 = Fn +Fn−1, n≥ 1

and

L0 = 2, L1 = 1, . . . , Ln+1 = Ln +Ln−1, n≥ 1

where Fn and Ln denote the n-th Fibonacci and Lucas numbers, respectively.
Binet formula for the n-th Fibonacci and Lucas numbers are given by the following relation

Fn =
1√
5
(αn−β

n) , Ln = α
n +β

n, n≥ 1
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(see [2]).
On the other hand, Horadam introduced generalized Fibonacci numbers with the initial conditions as follows

H1 = p, H2 = p+q, p, q ∈ Z

where the recurrence relation is defined by

Hn = Hn−1 +Hn−2, n≥ 3,

or

Hn = (p−q)Fn +qFn+1.

In the above equation, if we take p = 1 and q = 0, then the generalized Fibonacci number becomes Fibonacci number. If we take p = 1 and
q = 2, then the generalized Lucas number becomes Lucas number. Furthermore, Horadam investigated Binet formula for the n-th generalized
Fibonacci number such that

Hn =
1

2
√

5
(αn−µβ

n)

(see [2]).

The set of dual-hyperbolic numbers is defined by

DH =
{

w = z1 + z2ε|z1, z2 ∈ H where, ε
2 = 0, ε 6= 0

}
.

If we consider two hyperbolic numbers z1 = x1 + x2 j and z2 = y1 + y2 j, then any dual-hyperbolic number can be written as

w = x1 + x2 j+ y1ε + y2 jε.

There exist five different conjugates and these conjugates are given as follows

|ω|†1 =z̄1 + ε z̄2, hyperbolic conjugation
|ω|†2 =z1− εz2, dual conjugation
|ω|†3 =z̄1− ε z̄2, coupled conjugation

|ω|†4 =z̄1

(
1− ε

z2
z1

)
(ω ∈ DH−A) , dual −hyperbolic conjugation

|ω|†5 =z2− εz1, anti−dual conjugation

where “− “ denotes the standard complex conjugation and the zero divisors of DH is defined by the set A [6]. Namely, DH −A is a
multiplicative group. The dual hyperbolic numbers form a commutative ring with 0 characteristic. Unlike quaternions, the multiplication
of dual-hyperbolic numbers with generalized Fibonacci and Lucas number has a commutative ring structure. However, multiplication of
dual-hyperbolic numbers with generalized Fibonacci and Lucas number constitutes two-dimensional Complex Clifford and 4-dimensional
Real Clifford algebra structure.

3. Properties of Dual-Hyperbolic numbers with generalized Fibonacci and Lucas coefficients

The dual-hyperbolic Fibonacci and Lucas numbers are defined as

DHFn = Fn +Fn+1 j+Fn+2ε +Fn+3 jε

and

DHLn = Ln +Ln+1 j+Ln+2ε +Ln+3 jε

respectively. Here, Fn and Ln are the n-th generalized Fibonacci number and Lucas numbers respectively and ε denotes dual unit(
ε2 = 0, ε 6= 0

)
, j denotes imaginary unit

(
j2 = 1

)
, jε denotes imaginary-dual unit

(
jε2 = 0

)
. After these numbers have been defined in

the article [1], some identities regarding the modules, conjugates have been obtained for dual-hyperbolic Fibonacci and Lucas numbers.
Then, negadual-hyperbolic Fibonacci, negadual-hyperbolic Lucas, d’Ocagne’s, Cassini, Catalan identities and the correspondence of Binet
formula have been given for these numbers. Now, Let’s define the dual-hyperbolic number system with generalized Fibonacci and Lucas
coefficients by considering the study [1].

Definition 3.1. Hn is called as n-th Fibonacci number which have either Hn = Hn−1 +Hn−2, n ≥ 3 or Hn = (p− q)Fn + qFn+1 the
recurrence relations and depending on the initial values such that

H1 = p, H2 = p+q, H3 = 2q+3p, ... (p, q ∈ Z) .

Then, the sets of generalized Fibonacci and Lucas sequences are defined

DHX = {DHXn = Rn + εR∗n = (Hn + jHn+1)+ ε (Hn+2 + jHn+3) | Hn Generalized Fibonacci Number}

and

DHY = {DHYn = Pn + εP∗n = (Vn + jVn+1)+ ε (Vn+2 + jVn+3 ) |Vn Generalized Lucas Number}

where ε
(
ε2 = 0, ε 6= 0

)
, j
(

j2 = 1
)

and iε
(
( jε)2 = 0

)
, denote dual unit, imaginary unit and dual-imaginary unit, respectively. So the

base elements of dual-hyperbolic numbers with generalized Fibonacci and Lucas coefficients are (1, j, ε, jε). Multiplication scheme of
these base elements are given in Table 1.
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× 1 j ε jε

1 1 j ε jε
j j 1 jε ε

ε ε jε 0 0
jε jε ε 0 0

Table 1: Multiplication scheme of dual-hyperbolic units

If two dual-hyperbolic numbers with generalized Fibonacci coefficients are DHX1
n = Rn +R∗nε = Hn +Hn+1 j +Hn+2ε +Hn+3 jε and

DHX2
n = Kn +K∗n ε = Gn +Gn+1 j+Gn+2ε +Gn+3 jε then the addition, subtraction and multiplication operations of these numbers are

defined as

DHX1
n ±DHX2

n = (Rn +R∗nε)± (Kn +K∗n ε)
= (Hn +Hn+1 j+Hn+2ε +Hn+3 jε)± (Gn +Gn+1 j+Gn+2ε +Gn+3 jε)
= (Hn±Gn)+(Hn+1±Gn+1) j+(Hn+2±Gn+2)ε +(Hn+3±Gn+3) jε

(3.1)

and

DHX1
n ×DHX2

n = (Rn +R∗nε)× (Kn +K∗n ε)
= (Hn +Hn+1 j+Hn+2ε +Hn+3 jε)× (Gn +Gn+1 j+Gn+2ε +Gn+3 jε)
+(HnGn +Hn+1Gn+1)+(HnGn+1 +Hn+1Gn) j
+(HnGn+2 +Hn+1Gn+3 +Hn+3Gn+1 +Hn+2Gn)ε
+(HnGn+3 +Hn+1Gn+2 +Hn+2Gn+1 +Hn+3Gn) jε

(3.2)

respectively. Also, any dual-hyperbolic number with generalized Fibonacci coefficient can be expressed as follows

DHXn = Rn +R∗nε = (Hn +Hn+1 j)+(Hn+2 +Hn+3 j)ε. (3.3)

This yields five different conjugates. Thus, these five different conjugates can be defined as follows

DHX†1
n = (Hn−Hn+1 j)+(Hn+2−Hn+3 j) ε, hyperbolic conjugation (3.4)

DHX†2
n = (Hn +Hn+1 j)− (Hn+2 +Hn+3 j)ε, dual conjugation (3.5)

DHX†3
n = (Hn−Hn+1 j)− (Hn+2−Hn+3 j)ε, coupled conjugation (3.6)

DHX†4
n = (Hn−Hn+1 j)×

(
1− Hn+2 +Hn+3 j

Hn +Hn+1 j
ε

)
, dual−hyperbolic conjugation (3.7)

DHX†5
n = (Hn+2 +Hn+3 j)− (Hn +Hn+1 j)ε, anti−dual conjugation. (3.8)

Five different norms can be given for dual-hyperbolic numbers with generalized Fibonacci coefficients thanks to the definition of conjugates.

Definition 3.2. Let DHXn be a dual-hyperbolic number with generalized Fibonacci coefficient. In this case, j-th modulus of DHXn are
denoted by |DHXn|2†i

, ( j = 1,2,3,4,5) and are given as follows

|DHXn|2†1
=DHHn×DHH†1

n

|DHXn|2†2
=DHHn×DHH†2

n

|DHXn|2†3
=DHHn×DHH†3

n

|DHXn|2†4
=DHHn×DHH†4

n

|DHXn|2†5
=DHHn×DHH†5

n

Proposition 3.3. Let DHXn be a dual-hyperbolic number with generalized Fibonacci coefficient. Then, the following identities are satisfied:

DHXn +DHX†1
n = 2(Hn +Hn+2ε) (3.9)

DHXn×DHX†1
n = (H2

n −H2
n+1)+2ε (HnHn+2−Hn+1Hn+3) (3.10)

DHXn +DHX†2
n = 2(Hn +Hn+1 j) (3.11)

DHXn×DHX†2
n = [(2p−q)H2n+1− eF2n+1]+2HnHn+1 j (3.12)
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DHXn +DHX†3
n = 2(Hn +Hn+3 jε) (3.13)

DHXn×DHX†3
n = (H2

n −H2
n+1)+ jε

[
2e(−1)n+1

]
(3.14)

DHXn +DHX†4
n = 2Hn + ε

2Hn+1

H2
n −H2

n+1
[(Hn+3Hn−Hn+1Hn+2)+ j (Hn+2Hn−Hn+1Hn+3)] (3.15)

DHXn×DHX†4
n = H2

n −H2
n+1 (3.16)

DHXn +DHX†5
n = (Hn +Hn+2)+(Hn+1 +Hn+3) j+Hn+1ε +Hn+2 jε (3.17)

DHXn×DHX†5
n = (HnHn+2 +Hn+1Hn+3)+ j (HnHn+3 +Hn+1Hn+2)

+ε
(
H2

n+2 +H2
n+3−H2

n+1−H2
n
)
+2 jε (Hn+3Hn+2−Hn+1Hn)

(3.18)

Proof. (3.9): Using equations (3.1), (3.3) and (3.4), we obtain

DHXn +DHX†1
n = 2(Hn +Hn+2ε) .

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn +DHX†1
n =

2(Fn +Fn+2ε).

(3.10): Considering equations (3.2), (3.3) and (3.4), the result is found by

DHXn×DHX†1
n =

(
H2

n +H2
n+1
)
+2(HnHn+2 +Hn+1Hn+3)ε

= (H2
n −H2

n+1)+2ε (HnHn+2−Hn+1Hn+3) .

Here, If the values p = 1, q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn×DHX†1
n =

F2n+1 +2F2n+3ε .

(3.11): From the equations (3.1), (3.3) and (3.5), we can reach the following identity

DHXn +DHX†2
n = 2(Hn +Hn+1 j) .

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, DHXn +DHX†1
n = 2(Fn +Fn+2 j) .

(3.12): Using the equations (3.2), (3.3), (3.5), using the identity H2
n−1 +H2

n = (2p−q)H2n−1− eF2n−1 (see.ref. [2]) and simplifying
we have

DHXn×DHX†2
n = [(2p−q)H2n+1− eF2n+1]+2HnHn+1 j.

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn×DHX†2
n =

F2n+1 +2FnFn+1 j.

(3.13): We can write the following equation by using the equations (3.1), (3.3) and (3.6)

DHXn +DHX†3
n = 2(Hn +Hn+3 jε) .

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn +DHX†3
n =

2(Fn +Fn+3 jε).

(3.14): From equations (3.2), (3.3) and (3.6), we have

DHXn×DHX†3
n = (H2

n −H2
n+1)+ jε

[
2e(−1)n+1

]
.

While we are obtaining the above equation, the identity HnHn+r+1 −Hn−sHn+r+s+1 = (−1)n+seFsFr+s+1 has been used [2]. Here,
If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn ×DHX†3

n =
−Fn−1Fn+2−2(−1)n jε .

(3.15): If we take into account the equations (3.1), (3.3) and (3.7), then the following identity can be easily seen

DHXn +DHX†4
n = 2Hn + ε

2Hn+1

H2
n −H2

n+1
[(Hn+3Hn−Hn+1Hn+2)+ j (Hn+2Hn−Hn+1Hn+3)] .
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Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that

DHXn +DHX†4
n = 2Fn + ε

2Fn+1

F2
n −F2

n+1
[(Fn+3Fn−Fn+1Fn+2)+ j (Fn+2Fn−Fn+1Fn+3)] .

(3.16): By making the necessary operations with the help of the equations (3.2), (3.3), (3.7) and rearranging the last equation, the following
identity can be given

DHXn×DHX†4
n = H2

n −H2
n+1.

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn×DHX†4
n =

F2
n −F2

n+1.

(3.17): Considering the equations (3.1), (3.3) and (3.8), we have

DHXn +DHX†5
n = (Hn +Hn+2)+(Hn+1 +Hn+3) j+Hn+1ε +Hn+2 jε.

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn +DHX†5
n =

Fn +Fn+2 +(Fn+1 +Fn+3)J+Fn+1ε +Fn+2 jε.

(3.18): If we use equations (3.2), (3.3), (3.8) and make the necessary calculations, then the rearranged equation yields

DHXn×DHX†5
n = (HnHn+2 +Hn+1Hn+3)+ j (HnHn+3 +Hn+1Hn+2)

+ε
(
H2

n+2 +H2
n+3−H2

n+1−H2
n
)
+2 jε (Hn+3Hn+2−Hn+1Hn) .

Here, If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that

DHXn×DHX†5
n = (FnFn+2 +Fn+1Fn+3)+ j (FnFn+3 +Fn+1Fn+2)

+ε
(
F2

n+2 +F2
n+3−F2

n+1−F2
n
)
+2 jε (Fn+3Fn+2−Fn+1Fn) .

Theorem 3.4. Let DHXn and DHXn−1 be two dual-hyperbolic numbers with generalized coefficients. There exist the following identities for
these numbers and their conjugates:

i)
(

DHXn×DHX†1
n

)
+
(

DHXn−1×DHX†1
n−1

)
=− [(2p−q)H2n− eF2n] +2ε

(
−H2

n+1
)

ii) DHX2
n = 2HnDHXn−

(
DHXn×DHX†1

n

)
+2ε

(
H2

n+2−Hn+1Hn+3
)
+2 jε (Hn+1Hn+2)

iii) DHX2
n +DHX2

n−1 = 2(2p−q)DHX2n−1−DHXn×DHX†1
n −DHXn−1×DHX†1

n−1 +(2p−q)(2H2n+3ε +2H2n+2 jε)
−e(2F2n−1 +2F2n j+2(F2n+3 +F2n+1)ε +4F2n+2iε)−2H2

n+1ε

iv) DHYn×DHX†1
n −DHY †1

n ×DHXn = (−1)n [(4p2−8pq+8q2)+ (−6p2) jε
]
.

Proof. i) By using identity H2
n−1 +H2

n = (2p−q)H2n−1− eF2n−1 [2] and considering the equations (3.2), (3.3) and the above equations
which have been defined by Horadam, the proof can be seen easily.

ii) Considering the equation (3.1), the proof can be easily seen.

iii) From the identity HnHm +Hn+1Hm+1 = (2p−q)Hm+n+1− eFm+n+1 [3] and equation (3.1), the proof is completed.

iv) Using the equation (3.1) and the identity LnFm = Fm+n +(−1)mFm−n [2], the desired result is obtained. Also, the equations given in
Proposition 2.2. in the article [1] are specially obtained by giving values p = 1,q = 0 in the equations we have found above.

i)
(

DHXn×DHX†1
n

)
+
(

DHXn−1×DHX†1
n−1

)
=−F2n +2ε

(
−F2

n+1
)

ii) DHX2
n = 2HnDHXn−

(
DHXn×DHX†1

n

)
+2ε

(
F2

n+2−Fn+1Fn+3
)
+2 jε (Fn+1Fn+2)

iii) DHX2
n +DHX2

n−1 = 4DHX2n−1−DHXn×DHX†1
n −DHXn−1×DHX†1

n−1 +[−2F2n−1 +2(F2n+3−F2n+1)ε−2F2n j]−2F2
n+1ε

iv) DHYn×DHX†1
n −DHY †1

n ×DHXn = (−1)n [4+(−6) jε]

Theorem 3.5. Let DHXn be a dual-hyperbolic number with generalized coefficient. Then, the following identities are valid:

1) DHXn +DHXn+1 = DHXn+2

2) (DHXn)
2 = 2(HnDHXn)+2(Hn+1DHXn+1)−

[(
H2

n +H2
n+1
)
+2(Hn+1Hn+2) j+2(Hn+1Hn+3) jε

]
3) −DHXn +DHXn+1 j+DHXn+2ε−DHXn+3 jε = Hn+1
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4) (DHXn×DHXm)+(DHXn+1×DHXm+1) = (2p−q)
[
(Hm+n+1 +Hm+n+3)+2Hm+n+2 j+2(Hm+n+3 +Hm+n+5)ε +4Hm+n+4iε

]
−e
[
(Fm+n+1 +Fm+n+3)+2Fm+n+2 j+2(Fm+n+3 +Fm+n+5)ε +4Fm+n+4 jε

]
5) DHXn

2 +DHX2
n−1 = [(2p−q)(H2n+1 +H2n−1)− e(F2n+1 +F2n−1)]+2 j [(2p−q)H2n− eF2n]

+2ε [(2p−q)(H2n+3 +H2n+1)− e(F2n+3 +F2n+1)]+4 jε [(2p−q)H2n+2− eF2n+2]

Proof. 1) Let DHXn and DHXn+1 be two dual-hyperbolic numbers with generalized coefficients. In this case, taking into account that the
equation (3.1), we get

DHXn +DHXn+1 = Hn+2 +Hn+3 j+Hn+4ε +Hn+5 jε = DHXn+2.

Here, if the values p = 1 and q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that DHXn +DHXn+1 =
DHFn+2.

2) Let DHXn be dual-hyperbolic numbers with generalized coefficients. If the equation (3.2) is used, then the following equality is
obtained

DHX2
n = [(Hn +Hn+1 j)+(Hn+2 +Hn+3 j)ε]× [(Hn +Hn+1 j)+(Hn+2 +Hn+3 j)ε]
= 2(HnDHXn)+2(Hn+1DHXn+1)−

[(
H2

n +H2
n+1
)
+2(Hn+1Hn+2) j+2(Hn+1Hn+3) jε

]
.

Here, if the values p = 1 and q = 0 are specially taken in the generalized Fibonacci number Hn, then (DHXn)
2 = 2(FnDHFn) +

2(Fn+1DHFn+1)−
[(

F2
n +F2

n+1
)
+2(Fn+1Fn+2) j+2(Fn+1Fn+3) jε

]
is found.

3) By considering the equation (3.1) and doing some algebraic calculations, we obtain

−DHXn +DHXn+1 j+DHXn+2ε−DHXn+3 jε =− [(Hn +Hn+1 j)+(Hn+2 +Hn+3 j)ε]
+[(Hn+1 +Hn+2 j)+(Hn+3 +Hn+4 j)ε] j
+[(Hn+2 +Hn+3 j)+(Hn+4 +Hn+5 j)ε]ε
− [(Hn+3 +Hn+4 j)+(Hn+5 +Hn+6 j)ε] iε
= Hn+1.

Here, if the values p = 1 and q = 0 are specially taken in the generalized Fibonacci number Hn,

−DHXn +DHXn+1 j+DHXn+2ε−DHXn+3 jε = Fn+1

is found.

4) Follows from the identity HnHm +Hn+1Hm+1 = (2p−q)Hm+n+1− eFm+n+1 (see ref. [3]) and using the equation (3.2), we achieve that

(DHXn×DHXm)+(DHXn+1×DHXm+1) = [(Hn +Hn+1 j)+(Hn+2 +Hn+3 j)ε]× [(Hm +Hm+1 j)+(Hm+2 +Hm+3 j)ε]
+[(Hn+1 +Hn+2 j)+(Hn+3 +Hn+4 j)ε]× [(Hm+1 +Hm+2 j)+(Hm+3 +Hm+4 j)ε]

= (2p−q)
[

(Hm+n+1 +Hm+n+3)+2Hm+n+2 j+2(Hm+n+3 +Hm+n+5)ε

+4Hm+n+4iε

]
−e [(Fm+n+1 +Fm+n+3)+2Fm+n+2 j+2(Fm+n+3 +Fm+n+5)ε +4Fm+n+4 jε]

Here, If the values p = 1 and q = 0 are specially taken in the generalized Fibonacci number Hn

(DHXn×DHXm)+(DHXn+1×DHXm+1) = (Fm+n+1 +Fm+n+3)+2Fm+n+2 j+2(Fm+n+3 +Fm+n+5)ε +4Fm+n+4 jε

5) Considering the identity HnHm +Hn+1Hm+1 = (2p−q)Hm+n+1− eFm+n+1 (see ref. [3]) and the equation (3.2), we reach the result.
Here, If the values p = 1 and q = 0 are specially taken in the generalized Fibonacci number DHXn

2 +DHX2
n−1 = (F2n+1 +F2n−1)+

2F2n j+2(F2n+3 +F2n+1)ε +4F2n+2 jε.

Theorem 3.6. Let DHXn and DHLn be dual-hyperbolic Fibonacci and dual-hyperbolic Lucas numbers with generalized Fibonacci and
Lucas coefficients, respectively. For n≥ 0, there exist the following relationships between these numbers:
1) DHXn+1 +DHXn−1 = pDHLn +qDHLn

2) DHXn+2−DHXn−2 = pDHLn +qDHLn

Proof. Equations 1) and 2) are found by taking the identity Hn+1 +Hn−1 = pLn +qLn−1 (see ref. [4]) and using the recurrence relation
Hn = (p−q)Fn +qFn+1, respectively.

DHXn+1 +DHXn−1 = (Hn+1 +Hn+2 j+Hn+3ε +Hn+4 jε)+(Hn−1 +Hn j+Hn+1ε +Hn+3 jε)
= (Hn+1 +Hn−1)+(Hn+2 +Hn) j+(Hn+3 +Hn+1)ε +(Hn+4 +Hn+3) jε
= (pLn +qLn−1)+(pLn−1 +qLn) j+(pLn+2 +qLn+1)ε +(qLn+3 +qLn+2) jε
= pDHLn +qDHLn
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DHXn+2−DHXn−2 = (Hn+2 +Hn+3 j+Hn+4ε +Hn+5 jε)− (Hn−2 +Hn−1 j+Hnε +Hn+1 jε)
= (Hn+2−Hn−2)+(Hn+3−Hn−1) j+(Hn+4−Hn)ε +(Hn+5−Hn+1) jε
= (pLn +qLn−1)+(pLn−1 +qLn) j+(pLn+2 +qLn+1)ε +(qLn+3 +qLn+2) jε
= pDHLn +qDHLn

Here, if the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then the desired results are obtained.

Theorem 3.7. The sums of the dual-hyperbolic numbers with generalized Fibonacci coefficients satisfy the following relations:

1)
n
∑

s=1
DHXs = DHXn+2−DHX2

2)
p
∑

s=0
DHXs+n +DHXx+1 = DHXn+p+2

3)
n
∑

s=1
DHX2s−1 = DHX2n−DHX0

4)
n
∑

s=1
DHX2s = DHX2n+1−DHX1

Proof. Using the identity
n
∑

t=a
Ht = Hn+2−Ha+1 (see ref. [4]), the proof can be seen easily as follows

1)
n
∑

s=1
DHXs =

n
∑

s=1
Hs+ j

n
∑

s=1
Hs+1 + ε

n
∑

s=1
Hs+2 + jε

n
∑

s=1
Hs+3 =DHXn+2−DHX2

2)
p
∑

s=0
DHXn+s+DHXn+1 =

n
∑

s=1
Hn+s +Hn+1 + j

n
∑

s=1
Hn+s+1 +Hn+2 + ε

n
∑

s=1
Hn+s+2 +Hn+3 + jε

n
∑

s=1
Hn+s+3 +Hn+4 = DHXn+p+2

3)
n
∑

s=1
DHX2s−1 =

n
∑

s=1
H2s−1 + j

n
∑

s=1
H2s + ε

n
∑

s=1
H2s+1 + jε

n
∑

s=1
H2s+2 = DHX2n−DHX0

4)
n
∑

s=1
DHX2s =

n
∑

s=1
H2s + j

n
∑

s=1
H2s+1 + ε

n
∑

s=1
H2s+2 + jε

n
∑

s=1
H2s+3 = DHX2n+1−DHX1

Also, if we consider the values p = 1,q = 0 in the generalized Fibonacci number Hn, then the above equations becomes as follows:

1)
n
∑

s=1
DHXs = DHFn+2−DHF2

2)
p
∑

s=0
DHXs+n +DHXx+1 = DHFn+p+2

3)
n
∑

s=1
DHX2s−1 = DHF2n−DHF0

4)
n
∑

s=1
DHX2s = DHF2n+1−DHF1

Now, let’s find correspondence of the Binet formula for the dual-hyperbolic Fibonacci numbers which helps to find golden ratio.

Theorem 3.8. Let DHXn be dual-hyperbolic number with generalized Fibonacci coefficient. For m,n≥ 1, the Binet formula for this number
is given by

DHXn =
ᾱ αn− β̄ β n

α−β

where α = 1+
√

5
2 , β = 1−

√
5

2 and the coefficients ᾱ , β̄ are as follows

ᾱ = (p−qβ )+ [p(1−β )+q] j+[p(2−β )+q(1−β )]ε +[p(3−2β )+q(2−β )] jε

and

β̄ = (p−qα)+ [p(1−α)+q] j+[p(2−α)+q(1−α)]ε +[p(3−2α)+q(2−α)] jε.

Proof. If t1 and t2 denote the roots of characteristic equation t2−t−1 = 0 associated to the recurrence relation DHXn+DHXn+1 = DHXn+2.
Then, these roots can be found as α = t1 = 1+

√
5

2 and β = t2 = 1−
√

5
2 . Note that, α +β = 1,α.β =−1 and α−β =

√
5. Therefore, the

general term of the dual-hyperbolic number sequence with generalized Fibonacci coefficients may be expressed in the form:

DHXn = Aα
n +Bβ

n

for some coefficients A and B. For n = 0 and n = 1, the following equalities can be written

DHX0 = (q, p, p+q, 2p+q)

and

DHX1 = (p, p+q, 2p+q, 3p+2q) .
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Also, if we give to n the values n = 0 and n = 1, we get

DHX0 = A+B

and

DHX1 = αA+βB.

Then, solving this system of linear equations, we have

A =
DHX1−βDHX0

α−β
and B =

αDHX0−DHX1

α−β

where some coefficients ᾱ and β̄ are

ᾱ = (p−qβ )+ [p(1−β )+q] j+[p(2−β )+q(1−β )]ε +[p(3−2β )+q(2−β )] jε

and

β̄ = (p−qα)+ [p(1−α)+q] j+[p(2−α)+q(1−α)]ε +[p(3−2α)+q(2−α)] jε.

Theorem 3.9. The generating function for dual-hyperbolic number with generalized coefficients is

g(x) =
1

1− x− x2

3

∑
s=0

(DHXs +DHXs−1x)es.

Proof. Assuming that the generating function for dual-hyperbolic number with generalized coefficients becomes

g(x) =
∞

∑
n=0

Pnxn.

such that

Pn = (DHXn, DHXn+1, DHXn+2 ,DHXn+3) .

Multiplying the generating function by x and x2, the following equalities can be written

xg(x) = P0x+P1x2 + ...+Pn−1xn + ...
x2g(x) = P0x2 +P1x3 + ...+Pn−2xn + ...

After some algebraic calculations, we obtain

g(x) =
1

1− x− x2

3

∑
s=0

(P0 +(P1−P0)x).

This completes the proof.

Now, let’s write the Binet formula in terms of the generating function which has been obtained in Theorem 3.9.

Theorem 3.10. Binet formula for the dual-hyperbolic numbers with generalized Fibonacci coefficients is

Pn = P1Hn +P0Hn−1.

Proof. Let’s we take the relation

Pn = Aα
n +Bβ

n.

Putting n = 0 and n = 1 in the above equation, A and B are obtained by

A =
P1−βP0

α−β
, B =

αP0−P1

α−β

In this case, Pn can be rewritten as

Pn =
1

α−β
[(P1−βP0)α

n +(αP0−P1)β
n] .

When the equalities of P0 and P1 is written in Theorem 3.9 and is arranged, Pn is found as

Pn =

(
αn−β n

α−β

) 3

∑
s=0

DHXs+1es +

(
αn−1−β n−1

α−β

) 3

∑
s=0

DHXses.

Finally

Pn = P1Hn +P0Hn−1

is obtained.
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Let us express the Catalan identity which is one of the most known identities of Fibonacci numbers.

Theorem 3.11. (Catalan’s Identity)
For n≥ r, the relation

DHX2
n −DHXn+r×DHXn−r = (−1)n−r

µF2
r [ j+3 jε]

is verified.

Proof. Squaring DHXn, multiplying DHXn+r and DHXn−r and noting that Hm+kHn−k−HmHn = (−1)n−k+1
µFkFm+k−n [7], the following

equalities are obtained

DHX2
n = H2

n +H2
n+1 +2HnHn+1 j+2(HnHn+2 +Hn+1Hn+3)ε +2(Hn+1Hn+2 +HnHn+3) jε

and

DHXn+r×DHXn−r = Hn+r Hn−r +Hn+r+1 Hn−r+1 +(Hn+r+1 Hn−r +Hn+r Hn−r+1) j
+(Hn+r Hn−r+2 +Hn+r+1 Hn−r+3 +Hn−r+2 Hn−r +Hn−r+3 Hn−r+1)ε

+(Hn+r+1 Hn−r+2 +Hn+r Hn−r+3 +Hn+r+3 Hn−r +Hn+r+2 Hn−r+1 ) jε.

Adding the above equations gives us the proof. Writting p = 1 and q = 0 in the Catalan identity for dual-hyperbolic numbers with generalized
coefficients, Catalan identity for dual-hyperbolic numbers with Fibonacci coefficients is found. Namely

DHX2
n −DHXn+r×DHXn−r = (−1)n−rF2

r ( j+3 jε) .

Let’s give Cassini identity for generalized dual-hyperbolic numbers as a special case of Catalan identity.

Theorem 3.12. (Cassini’s Identity)
Let DHXn be the dual-hyperbolic number with generalized Fibonacci coefficients. For n≥ 1, we have

DHX2
n − (DHXn+1×DHXn−1) = (−1)n−1

µ ( j+3 jε) .

Proof. For r = 1, we see that the identity in Theorem 3.11 becomes the desired identity.Putting p = 1 and q = 0 in the above identity, we get

DHX2
n − (DHXn+1×DHXn−1) = (−1)n−1 ( j+3 jε) .

This identity is Cassini formula for dual-hyperbolic numbers.

Theorem 3.13. (Honsberger Identity)
For n,m≥ 0, the Honsberger identity for the dual-hyperbolic number with generalized coefficient DHXn is given by

(DHXk−1×DHXn)+(DHXk×DHXn+1) = [(2p−q)(Hk+n +Hk+n+2)− e(Fk+n +Fk+n+2)]
+2 j [(2p−q)Hk+n+1− eFk+n+1]
+2ε [(2p−q)(Hk+n+2 +Hk+n+4)− e(Fk+n+2 +Fk+n+4)]
+4 jε [(2p−q)Hk+n+3− eFk+n+3] .

Proof. If we take into consider the equations (3.1), (3.2) and use the identity HnHm +Hn+1Hm+1 = (2p−q)Hm+n+1− eFm+n+1 (see ref.
[3]), we complete the proof. If the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then the following identity
is found

(DHXk−1×DHXn)+(DHXk×DHXn+1) = (Fk+n +Fk+n+2)+2Fk+n+1 j
+2(Fk+n+2 +Fk+n+4)ε +4Fk+n+3 jε.

Theorem 3.14. (Tagiuri Identity)
Let DHXn be the dual-hyperbolic number with generalized Fibonacci coefficients. For m n,m≥ 1, Tagiuri’s identity is as follows:

(DHXm+k×DHXn−k)− (DHXm×DHXn) = (−1)n−k−1
µFkFm+k−n ( j+3 jε) .

Proof. The proof can be easily seen by using the identity Hm+kHn−k−HmHn = (−1)n−k+1
µFkFm+k−n [7] and equations (3.1) and (3.2). If

the values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then it is concluded that

(DHXm+k×DHXn−k)− (DHXm×DHXn) = (−1)n−k−1FkFm+k−n ( j+3 jε) .

Theorem 3.15. (d’Ocagne’s Identity)
Let DHXn be the dual-hyperbolic number with generalized Fibonacci coefficients. For m > n, m ∈ N and n ∈ Z, we have

(DHXm+k×DHXn−k)− (DHXm×DHXn) = µFm−n(−1)n ( j+3 jε) .

Proof. Using identity Hm+kHn−k−HmHn = (−1)n−k+1
µFkFm+k−n [7] and the equations (3.1) and (3.2), the proof is completed. If the

values p = 1,q = 0 are specially taken in the generalized Fibonacci number Hn, then the following identity is found

(DHXm+k×DHXn−k)− (DHXm×DHXn) = Fm−n(−1)n ( j+3 jε) .
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4. Conclusion

Our main aim in this study was to generalize the study which was done on dual-hyperbolic numbers. It was seen that, some theorems were
obtained as a result of this generalization and they corresponded to the theorems in the article [1] for p = 1, q = 0. Also, the generating
function was obtained and the Binet formula was given with the help of the generating function. Unlike the identities which was given in the
article [1], Honsberger and Tagiuri identities were proved. At the same time, special cases of these identities were discussed. Because of the
fact that generalized Fibonacci and Lucas coefficient dual-hyperbolic number system have commutative algebra structure, five different
conjugates can be defined. As a result, in addition to the identities related to the conjugates which we obtained in Proposition 3.4, the
following identities are given.

i) (
DHXn×DHX†2

n

)
+
(

DHXn−1×DHX†2
n−1

)
= (2p−q) [H2n−1 +H2n+2]− e [F2n−1 +F2n+2]+2 jHnHn−1(

DHXn×DHX†3
n

)
+
(

DHXn−1×DHX†3
n−1

)
=−(1+2 j) [(2p−q)H2n− eF2n](

DHXn×DHX†4
n

)
+
(

DHXn−1×DHX†4
n−1

)
=− [(2p−q)H2n− eF2n](

DHXn×DHX†5
n

)
+
(

DHXn−1×DHX†5
n−1

)
= [(2p−q)(H2n+3 +H2n+1)− e(F2n+3 +F2n+1)]

+2 j [(2p−q)H2n+2− eF2n+2]
+ε [(2p−q)(2H2n +H2n+5)− e(2F2n+3 +F2n+5)]
+2 jε [(2p−q)(H2n+2 +H2n)− e(F2n+2 +F2n)]

ii)

DHX2
n = 2HnDHXn−DHXnDHX†2

n +2Hn+1 (Hn+1 +Hn j+Hn+2ε +Hn+2 jε)

DHX2
n = 2HnDHXn−DHXnDHX†3

n +2(Hn+2Hn+1ε +HnHn+3 jε)

DHX2
n = 2HnDHXn−DHXnDHX†4

n +2Hn+2 (Hnε +Hn+1 jε)

DHX2
n = 2HnDHXn−DHXnDHX†5

n +(Hn+2Hn−1 +Hn+2Hn +Hn+1Hn+3)
+(Hn+3Hn +Hn+1Hn+2) j+

(
2Hn+2Hn +H2

n+2 +H2
n+3−H2

n+1−H2
n
)

ε

+2(Hn+2Hn+1 +Hn+2Hn+3−Hn+1Hn) jε

iii)

DHX2
n +DHX2

n−1 = 2(2p−q)DHX2n−1−DHXnDHX†2
n −DHXn−1DHX†2

n−1
+(2p−q)(2H2n+1 +2H2n+3ε +2H2n+2 jε)
−e(2F2n−1 +2F2n+1 +F2n j+2(F2n+3 +F2n+1)ε +4F2n+2 jε)+2(HnHn−1) j

DHX2
n +DHX2

n−1 = 2(2p−q)DHX2n−1−DHXnDHX†3
n −DHXn−1DHX†3

n−1
+(2p−q)(−2H2n j+2H2n+3ε +2H2n+2 jε)
−e(2F2n−1 +2(F2n+3 +F2n+1)ε +4F2n+2 jε)

DHX2
n +DHX2

n−1 = 2(2p−q)DHX2n−1−DHXnDHX†4
n −DHXn−1DHX†4

n−1
+2(2p−q)(H2n+3ε +H2n+2 jε)
−2e(F2n−1 +F2n j+(F2n+3 +F2n+1)ε +2F2n+2 jε)

DHX2
n +DHX2

n−1 = 2(2p−q)DHX2n−1−DHXnDHX†5
n −DHXn−1DHX†5

n−1
+(2p−q) [H2n+4 +2H2n+2 j+(2H2n+3 +2H2n +H2n+5)ε +2(2H2n+2 +H2n) jε]
−e [F2n+3 +2F2n+1 +F2n−1 +2(Fn +F2n+2)+(4F2n+3 +F2n+5)ε +(6F2n+2 +F2n) jε]

iv)

DHYn×DHX†2
n −DHY †2

n ×DHXn = 4(−1)n [2p2ε + p2 jε
]

DHYn×DHX†3
n −DHY †3

n ×DHXn = 4(−1)n [(p2−2pq+2q2) j−2p2ε
]

DHYn×DHX†4
n −DHY †4

n ×DHXn =
[
4(−1)n−1 (p2 +2pq−2q2)] j

+
8(−1)n p2

(Vn+Vn+1i)(Hn+Hn+1i)

[
−p2F2n+1 + pq(−2F2n+2−F2n)
+q2 (F2n+1 +F2n)

]
jε

DHYn×DHX†5
n −DHY †5

n ×DHXn = 2(−1)n−1 p2 j

The proofs of these identities are easily seen by following the similar ways in the proof of Theorem 3.4. Finally, the special values p = 1 and
q = 0 provide the above equations.
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