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Abstract

We study directed Baire spaces and their relevant topological properties. A characterization
of directed Baire spaces is given using point finite family of Gδ−sets. Further, we prove
that the product of directed Baire space with a metric hereditarily directed Baire space is a
downward-directed Baire space. Finally, it is established that the product of a Baire space
with a hereditarily metric Volterra space is again a Volterra space.

1. Introduction

A topological space X is a Baire space (resp. second category) if intersection of any sequence of dense open subsets of X is dense (resp.
non-empty). It follows from the definition that the intersection of countably many dense Gδ−sets of Baire space (resp. second category) X
must be dense (resp. non-empty) in X [1]. The properties of Baire spaces and characterizations are studied in [2]. A family B of non-empty
open subsets of a topological space is said to be pseudo base [3] (π−base) if every non-empty open set contains at least one member of B.
A space X is called a P−space [4] if every countable intersection of open subsets of X is open. A directed set [5](or a directed preorder or a
filtered set) is a non-empty set ∆ together with a reflexive and transitive binary relation ≤ (that is, a preorder), with the additional property
that every pair of elements has an upper bound. In other words, for any a and b in ∆, there must exists a c ∈ ∆ with a≤ c and b≤ c. In this
article, we consider only the directed set in which every two elements of it are comparable. A space X is a directed Baire space if intersection
of family of dense Gδ−subsets {Dα | α ∈ ∆} of X is dense and weakly directed Baire space if intersection of family of dense Gδ−subsets
{Dα | α ∈ ∆} of X is non-empty where ∆ is a directed set. A space X is called downward-directed Baire space if intersection of the family of
decreasing dense Gδ−subsets {Dα | α ∈ ∆} of X is dense, where ∆ is a directed set. The following Example 1.1 shows the existence of
directed Baire spaces.

Example 1.1. Consider X = [0,∞) with the topology having B = {[0,a) | a 6= 0 ∈ X} as its basis. In this space, the intersection of any
family of dense Gδ−subsets of X is dense.

By definition itself it is clear that every directed Baire space is Baire, but there are Baire spaces which are not directed Baire, refer Example
1.2.

Example 1.2. Consider R with usual metric. Since R is a complete metric space, it is a Baire space and hence second category. Since
Q∪{α} is countable and each singleton sets of R is closed, Q∪{α} is an Fσ−set and its complement is a dense Gδ−subset of R for every
irrational α ∈ R. Hence there exists a family of dense Gδ−sets such that their intersection is not dense (in particular empty set) namely
(Q∪{α})c where α runs over irrationals. Hence R with usual metric is neither directed Baire space nor weakly directed Baire.

Also, by definition itself it is clear that every directed Baire space is weakly directed Baire, but the converse does not hold as shown by
Example 1.3.

Example 1.3. Consider R with the topology obtained from the basis B = {(a,b)| a,b ∈ R}∪{0}. Since every dense set contains {0}, the
intersection of every family of dense Gδ−sets is non-empty. For every irrational α ∈ R the set (Q−{0})∪{α} is countable, and each
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singleton sets of R is closed, the above defined set is an Fσ−set and its complement is a dense Gδ−subset. Hence there is a family of dense
Gδ−sets such that their intersection is not dense (which equals {0}) namely, (Q−{0}∪{α})c where α runs over irrationals. Hence this
topological space is weakly directed Baire, Baire and second category but not directed Baire.

Example 1.4. There is a space which is weakly directed Baire and hence second category but not Baire and directed Baire. Let X =Q∪(1,2)
where Q denotes the set of the rational numbers in (0,1) of the real line. Topologize X by the subbasis {{(a,b) | a,b ∈ (1,2)}∪Q}. Then X
is not Baire because the open set Q is of first category. But X is weakly directed Baire in itself as the open subset (1,2) is.

Example 1.5. Consider (X ,τ) where X = [0,∞) and the topology τ has {[a,∞)−F | a ∈ X and F is a finite subset of X} as its basis. By its
construction, it is of first category, so it is none of the Baire, second category, directed Baire and weakly directed Baire.

Example 1.6. There is a space which is second category but not weakly directed Baire, Baire and directed Baire. Topologize X =Q∪ (0,2)
by the subbasis {{(a,b) | a,b ∈ (0,2)}∪Q}. Since Q is a first category set, X fails to be a Baire space and so X is not a directed Baire
space. But X is of second category in itself as the open subset (1,2) is. Since Q is countable, {r1,r2,r3 . . .} be the sequential arrangements
of Q and I is the collection of all irrationals in (0,2). Define Hα

i = {ri}∪{I−{α}} where α is irrational in (0,2). {Hα
i | i ∈ N and α ∈ I}

is the collection of dense Gδ−sets in X whose intersection is empty.

Theorem 1.7. Every compact p−space X is a directed Baire space.

Proof. Suppose {Uα | α ∈ ∆} is a family of dense Gδ−subsets of X , and take U as an open subset of X . It is enough to show that
U ∩ (∩

α
Uα ) 6= /0. Since in a p−space, every Gδ−sets are open, it is possible to construct a non-empty open subset Vα of X such that

Vα ⊂U ∩Uα . Defining recursively we have non-empty open subsets {Vα} of X such that Vα+1 ⊂ Vα ∩Uα+1, for each α and Vα+1 is
the successor of Vα . Suppose ∩

α
Vα = /0. Then define Wα = X − cl(Vα ), so that {Wα} is an open cover of X . As X is compact, we find a

finite sub-cover {Wα1 ,Wα2 , ...Wαn} such that {Wαk} covers X . Since Wα = X−cl(Vα ) we have cl(Vα )⊂ int(X−Wα ) = X−cl(Wα ). Hence

Vα ⊂ X− cl(Wα ) for every α. But /0 =
n
∩

k=1
(X− cl(Wαk ))⊃

n
∩

n=1
Vαk =Vαn , which is a contradiction. Thus, /0 6= ∩

α
Vα ⊂U ∩ (∩

α
Uα ).

Corollary 1.8. Every submaximal compact space is a directed Baire space.

Proof. Since in submaximal spaces, every dense set is open, the proof follows.

Since every compact p−spaces are also Baire spaces, by Theorem 1.7, there are spaces which are Baire, directed Baire, weakly directed
Baire and second category. Example 1.2 shows that there are Baire spaces which are not weakly directed Baire space, Example 1.4 shows
that there are weakly directed Baire space which are neither Baire nor directed Baire spaces. The following arrow diagram shows the relation
between the four spaces namely, Baire, second category, directed Baire and weakly directed Baire.

Baire second category

directed Baire weakly directed Baire

Hence Baire, second category, directed Baire and weakly directed Baire are independent concepts.

2. Characterization for directed Baire space

The hereditary property of (resp. weakly) directed Baire spaces need not be true for arbitrary spaces. Here, we prove that for some classes of
subspaces, these properties are hereditary. This gives us a new characterization for directed Baireness of spaces.

Theorem 2.1. In a directed Baire space X , if H ⊂ X and A⊂ H where A is a Gδ set implies that int(A) is dense in H, then H is a directed
Baire space.

Proof. Since int(A) is dense in H, we have H ⊂ (H ∩ intA). For, x ∈ H implies Ux ∩H 6= /0 for every neighborhood Ux of x. Therefore
y∈Ux∩H is a neighborhood of y in H, Since int(A) is dense in H, (Ux∩H)∩ int(A) 6= /0 so that Ux∩(H∩ int(A)) 6= /0. Hence H ⊂ (H ∩ intA).
Since A⊂ H, A⊂ H ⊂ H ∩ int(A). But A⊂ H ⊂ H ∩ int(A)⊂ A. Therefore, A = H = H ∩ int(A).
Let {Dα : α ∈ ∆} be a family of dense Gδ−subsets in H. Then H ∩Dα = H for every α. Define A+ = A∪ (X−H), and D+

α = Dα ∪ (X−H)
for every α. Then A+ and D+

α are dense Gδ−sets in X for every α and X is directed Baire A+∩ (∩
α

Dα ) is dense in X . Hence (A∩ (∩
α

Dα ))∪
(X−H) is dense in X .

Now A = H implies int(A) ⊂ (A∩ (∩
α

Dα )). Suppose not, there is an element a ∈ int(A) with a /∈ (A∩ (∩
α

Dα )). That is, there exists Ua

such that Ua ∩ (A∩ (∩
α

Dα )) = /0. For every a ∈ int(A), there exists Va such that Va ∩ (X −H) = /0. Since a ∈ int(A), there exists an open

set Va,Va ⊂ A so that Va ⊂ H. Take Wa =Ua∩Va. Then Wa∩ ((A∩ (∩
α

Dα ))∪ (X−H)) = /0, which is a contradiction. H ⊂ (H ∩ int(A))⊂

(int(A))⊂ A∩ (∩
α

Dα )⊂ H ∩ (∩
α

Dα )⊂ H. Therefore, ∩
α

Dα is dense in H.

Remark 2.2. Observe that H satisfies the hypothesis of Theorem 2.1 if H is open or a regular closed or a dense Gδ subset of X.

Corollary 2.3. X is a directed Baire space if and only if each non-empty open subspace is a weakly directed Baire space.
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Proof. If X is directed Baire, then every non-empty open subspace is also directed Baire and hence weakly directed Baire. Conversely,
suppose that each non-empty open subspace is weakly directed Baire. Let {Dα | α ∈ ∆} be a family of dense Gδ−subsets of X . If O is
a non-empty open subset of X , then O∩Dα are Gδ−subsets of O which are dense in O. Then ∩

α
(O∩Dα ) 6= /0 so that O∩ (∩

α
Dα ) 6= /0.

Therefore, ∩
α

Dα is dense in X .

Remark 2.4. X is directed Baire if and only if each non-empty open subspaces U of X cannot be written as the union of any family of
nowhere dense Fσ−sets in U.

Theorem 2.5. If O is a family of open subsets of X whose union is dense in X , then the following hold.
(a) If there is some non-empty U1 ∈ O such that U1 is weakly directed Baire, then X is weakly directed Baire.
(b) If each member of O is directed Baire, then X is directed Baire.

Proof. (a) Let U1 be a weakly directed Baire set in O and {Oα | α ∈ ∆} be a family of dense Gδ−subsets of X . Then U1∩Oα are dense
Gδ−sets in U1. Since U1 is weakly directed Baire, ∩

α
(U1∩Oα ) 6= /0 in U1 which implies that U1∩ (∩

α
Oα ) 6= /0 so that ∩

α
Oα 6= /0. Hence X is

a weakly directed Baire space.
(b) Let V1 be a non-empty open subset of X and {Oα | α ∈ ∆} be a family of dense Gδ−subsets of X . Since ∪{U1 |U1 ∈ O} is dense in X ,
V1∩U1 6= /0 for some U1 ∈O. By hypothesis, V1∩U1 is a weakly directed Baire subspace of U1. Now Oα ∩ (U1∩V1) are dense Gδ−sets of
U1∩V1, ∩

α
Oα ∩ (U1∩V1) 6= /0. Therefore, (∩

α
Oα )∩V1 6= /0. Hence X is directed Baire.

Now we characterize directed Baire spaces in terms of point finite Gδ−cover of X . A family U = {Uα | α ∈I } is said to be point
finite in a topological space X if every point of X lies in only finite members of U , and it is locally finite at x ∈ X if every neighborhood of x
intersects only finite members of U .

Theorem 2.6. A space X is directed Baire if and only if every point finite Gδ−cover of X is locally finite at a dense set of points.

Proof. Let W = {Uα | α ∈ ∆} be a point finite Gδ−cover of X and U be a non-empty open subset of X . Assume that W is not locally finite
at any point of U. If V = {Vα},Vα =Uα ∩U, then each open set in W intersects many members of V . Put F = {Fα | Fα ⊂ ∆ and ∆−Fα is
finite}. Let J be the index set of the family F . Now for each J ∈J , define XJ = Bd(∪{Vβ | β ∈ FJ}). Each XJ is closed and int(XJ) = /0,
so that each XJ is nowhere dense. Let x ∈U. Since W = {Uα} is point finite, there exists a J′ ∈J such that x belongs to the members of
{Vα | α ∈ ∆−FJ′}, but no other members of V . So x 6∈ ∪{Vβ | β ∈ FJ′}. If V is an open set containing x, then V intersects some members
of {Vβ | β ∈ FJ′}, since V = {Vα} is not locally finite at any point of U. Since x 6∈ ∪{Vβ | β ∈ FJ′}, x ∈ XJ′ . Hence U = ∪(U ∩XJ), which
is a contradiction, by Remark 2.4. Conversely, let U be a non-empty open subset of X . Suppose X is not directed Baire, U = ∪Xα , where
int(Xα ) = /0 for each α in the index set ∆, by Remark 2.4. Let U0 = X and for each α ∈ ∆ define Uα =U− ∪

β≤α

Xβ . Let U= {Uα} where

α ∈ ∆, which is a point finite Gδ−cover of X . Then U is locally finite at some x in U. Let O be an open set of x such that x ∈ O⊂U. Since
int(Xα ) = /0, O * ∪

β≤α

Xβ for each α. Thus, O must intersect every member of U, which is a contradiction to locally finiteness of the point

finite Gδ−cover U.

Blumberg [6] showed that for every real valued function f defined on the real line R, there exists a dense subset D of R such that f |D is
continuous. We will say that space X has Blumberg’s property with, respect to Y if for every function f : X → Y, there exists a dense subset
D of X such that f |D is continuous. It is known [7] that for a metric space X , X is a Baire space if and only if X has Blumberg’s property
with respect to the reals. In Theorem 2.7, the similar result is proved for directed Baire space.

Theorem 2.7. Let Y contain an infinite discrete subset D = {yα | α ∈ ∆}. If X satisfies Blumberg’s property with respect to Y, then X is a
directed Baire space.

Proof. Let D= {yα | α ∈ ∆} be a infinite discrete subset of Y. If X is not a directed Baire space, then there is an open set U in X such that
U = (∪

α
Uα ). Define a function f : X → Y as follows: let f (x) = yα0 for each x ∈ X −U, where yα0 ∈ D and let f (x) = yβ for each x ∈U,

where β = min {α | x ∈Uα}. From the construction of the function f , f |D is not continuous for every dense subset D of X .

3. Product of directed Baire spaces

A directed Baire space in which every closed subspace is also directed Baire space is called a hereditarily directed Baire space. We
discuss the product of directed Baire spaces. The following Lemma 3.1 is useful in the sequel.

Lemma 3.1. Let Y be a topological space, (A,d) be a metric space and C be a dense Gδ−subset of Y ×A. Then given any finite subset F of
A, ε > 0 and non-empty open set O of Y, there exists a finite subset A′ of A and a dense Gδ−subset CY of O such that
(i) for each z ∈ F, there exists a ∈ A′ with d(z,a)< ε

(ii) CY ×A′ ⊆C.

Proof. For the given finite subset F of A, define an open subset V = ∪B(z,ε) of A where union runs over the points of F. Since C is dense in
Y ×A, (O×V )∩C 6= /0. Then CY = PX ((O×V )∩C) and A

′ ⊂ PY ((O×V )∩C) are the requirements.

Theorem 3.2. If X is a directed Baire space and Y is a metrizable hereditarily directed Baire space, then X×Y is a downward-directed
Baire space.
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Proof. Let {Dα | α ∈ ∆} be a family of decreasing dense Gδ−sets in X ×Y. We prove that ∩
α

Dα is dense in X ×Y. Let G and H be any

non-empty open sets in X and Y, respectively. To prove [∩
α

Dα ]∩ (G×H) 6= /0. Let {sα | α ∈ ∆} be a net in [0,∞) with usual metric, which
converges to 0.
Let α1 be the least member of ∆. Since Dα1 is dense (G×H)∩Dα1 6= /0. Define a dense Gδ−set of G, Xα1 = PX ((G×H)∩Dα1) and
Zα1 = {y}, where y ∈ PY ((G×H)∩Dα1).
By Lemma 3.1, for any finite subset Zα1 of Y, non-empty open set G in X , dense Gδ−set Dβ of X×Y and sβ > 0, we can find a finite subset
Yβ of Y and a dense Gδ subset Xβ of G such that
(i) for each z ∈ Zα1 , one can find y ∈ Yβ with d(z,y)< sβ

(ii) Xβ ×Yβ ⊆ Dβ . Then we define
(iii) Zβ = Zα1 ∪Yβ , where β is the successor of α1.
Continuing in this way, we reached a family of dense Gδ−subsets {Xα | α ∈ ∆} of G. Since X is a directed Baire space, ∩

α
Xα 6= /0. Choose

x ∈ ∩
α

Xα and define, for each α ∈ ∆, the dense Gδ−subsets {Wα | α ∈ ∆} of Y so that {x}×Wα = ({x}×Y )∩Dα .

Let Z+ =∪
α

Zα ⊂H. Since Y is hereditarily directed Baire, Z+ is directed Baire which implies Wα ∩Z+ is dense in Z+ for each α ∈ ∆. For, let

z ∈ Z+, α ∈ ∆ and ε > 0 be given. Since the net (sα ) converges to 0, for the neighborhood [0,ε) of 0, we can find δ ∈ ∆ such that 0≤ sα < ε

for every α > δ . Choose ρ ∈ ∆ sufficiently large so that ρ > α, sρ < ε and z ∈ Zρ . There is an element y ∈ Yρ1 with d(y,z)< sρ1 < sδ < ε

and (x,y) ∈ Dρ1 ∩ ({x}×Y ), which implies that y ∈Wρ1 ⊂Wα , where ρ1 is the successor of ρ. Thus, y ∈ B(z,ε)∩ (Wα ∩Z+) so that
B(z,ε)∩ (Wα ∩Z+) is non-empty. Choosing y ∈ (∩

α
Wα )∩H ∩Z+, we get that (x,y) ∈ [∩

α
Dα ]∩ (G×H).

Theorem 3.3. Let X and Y be directed Baire spaces. If either of the space has a countable pseudo base, their product is directed Baire.

Proof. Assume that X×Y is not directed Baire. We can find an open set G×H in the product space such that (G×H)∩ (∩
α

Dα ) = /0 where

{Dα | α ∈ ∆} is a family of dense Gδ− sets in X×Y. Since Dα are Gδ−sets, Dα =
∞

∩
n=1

Dn
α where Dn

α are open in X×Y. Since Dα is dense,

each Dn
α is also dense.

Let {Vk} be a countable pseudo base for Y. Now for each n,k and α, define hn,k
α = Dn

α ∩ (U×Vk). Also, define Hn,k
α = PX (h

n,k
α ) so that Hn,k

α

are open. Also, Dn
α is dense in G×H implies Dn

α ∩ (G×Vk) is dense in G×Vk which implies hn,k
α is dense in G×Vk. For any open set U1 in

G,U1×Vk is an open set in U×Vk. Therefore, (U1×Vk)∩hn,k
α 6= /0 implies U1∩PX (h

n,k
α ) 6= /0 which implies U1∩Hn,k

α 6= /0. Therefore, each
Hn,k

α is dense in G. Since X is directed Baire, G will become directed Baire, by Remark 2.4.
Since G is directed Baire, ∩

n,k
[G∩Hn,k

α ] are dense in G and so ∩
n,k
[G∩Hn,k

α ] 6= /0. Therefore, there exists some a ∈ G with a ∈ ∩
n,k
[G∩Hn,k

α ]

which gives a ∈ Hn,k
α for every n,k.

Define Dn
α (a) = {b ∈ H | (a,b) ∈ Dn

α}. For each Vk, (a,b) ∈ Dn
α ∩ (G×Vk) for all n,k implies (a,b) ∈ ∩

n
[Dn

α ∩ (G×Vk)] which gives that

(a,b) ∈ Dα ∩ (G×Vk). Therefore, there is some b ∈ Vk with (a,b) ∈ D so that b ∈ Vk such that b ∈ Dn
α (a). Therefore, Dn

α (a)∩Vk 6= /0.
Therefore, Dn

α (a) is dense in H. Also, Dn
α (a) is an open set.

Since Y is directed Baire, H is also directed Baire and hence ∩
n,α

Dn
α (a) 6= /0. Therefore, we can find z ∈ H with z ∈ ∩

n,α
Dn

α (a) and hence

(a,z) ∈ ∩
n,k

Dn
α = Dα which is not possible. Thus, ∩

α
Dα 6= /0 and so G×H is a weakly directed Baire space.

4. Product of Volterra spaces

In 1993, the class of Volterra spaces was introduced by Gauld and Piotrowski [8]. A topological space (X ,τ) is said to be Volterra
[8, 9] (resp. weakly Volterra [8]) if the intersection of any two dense Gδ− sets in X is dense (resp. non-empty). By the definition itself,
every Baire space is Volterra and every space of second category is weakly Volterra. Is there exists a Baire space X whose square X2 is not
Baire ? The first space with such properties, constructed under the Continuum Hypothesis, is due to Oxtoby [3]. This example was improved
to an absolute one by Cohen [10] relying on forcing. Finally, Fleissner and Kunen [11] constructed a metrizable Baire space X whose square
X2 is not Baire in ZFC by direct combinatorial arguments. Gauld, Greenwood and piotrowski [12], using stationary sets in the result of
Flessner proved that there exists a metric Baire space whose square is not even Weakly Volterra. Spadaro [13] proved that the product of a
hereditarily volterra space and a hereditarily Baire space may fail to be weakly volterra. In [14], Moors proved that ”The Product of a Baire
space with a hereditarily Baire metric space is Baire”. In that proof, he use Choquet game [15]-[17] played on X to get a non-empty subset
for any given sequence of dense open sets in X .

Theorem 4.1. If X is Baire and Y is metrizable hereditarily Volterra, then X×Y is a Volterra space.

Proof. Suppose that C and D are two dense Gδ−sets in X ×Y. Let G and H be non-empty open sets in X and Y, respectively. To prove

(C∩D)∩ (G×H) 6= /0. Since C and D are dense Gδ−sets, C =
∞

∩
n=1

Cn and D =
∞

∩
n=1

Dn, where {Cn} and {Dn} are decreasing sequence of

open dense sets in X×Y.
Denseness of C gives that (G×H)∩C 6= /0. Define a dense Gδ−set of G,C1 =PX ((G×H)∩C) and ZC

1 = {bC}, where bC ∈PY ((G×H)∩C).
Also, since D is dense, (G×H)∩D 6= /0. Define a dense Gδ−set of G, D1 = PX ((G×H)∩D) and ZD

1 = {bD}, where bD ∈ PY ((G×H)∩C).
Also, define Z1 = ZC

1 ∪ZD
1 .

By Lemma 3.1, for a finite set Z1 of Y, non-empty open set G in X , dense Gδ−set C of X×Y and 1
2 > 0, there is a finite subset ZC

2 of Y and
a dense Gδ subset C2 of G such that
(i) for every a ∈ Z1, there is some b ∈ ZC

2 with d(a,b)< 1
2

(ii) C2×ZC
2 ⊆C.
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Also, by Lemma 3.1, for a finite set Z1 of Y, non-empty open set G in X , dense Gδ−set D of X×Y, and 1
2 > 0 there is a finite subset ZD

2 of
Y and a dense Gδ subset D2 of G such that
(i) for every a ∈ Z1, there is some b ∈ ZD

2 with d(a,b)< 1
2

(ii) D2×ZD
2 ⊆ D.

Define Z2 = Z1∪ZC
2 ∪ZD

2 .
Continuing in this way, for every n ∈ D, by Lemma 3.1, given any finite subset Zn−1 of Y, non-empty open set G in X , dense Gδ−set C of
X×Y and 1

n > 0, there is a finite subset ZC
n of Y and a dense Gδ subset Cn of G such that

(i) for every a ∈ Zn−1, there is some b ∈ ZC
n with d(a,b)< 1

n
(ii) Cn×ZC

n ⊆C.
Also, given any finite subset Zn−1 of Y, non-empty open set G in X , dense Gδ−set D of X×Y and 1

n > 0, there is a finite subset ZD
n of Y and

a dense Gδ subset Dn of G such that
(i) for every a ∈ Zn−1, there is some b ∈ ZD

n with d(a,b)< 1
n

(ii) Dn×ZD
n ⊆ D.

Define Zn = Zn−1∪ZC
n ∪ZD

n .
The countable collection {Cn | n ∈ D}∪{Dn | n ∈ D} of dense Gδ−subsets can be enumerated as a sequence of dense Gδ−sets {Hi | i ∈ D}
of G. Since every Hi is a dense Gδ−set, Hi =

∞

∩
j=1

H j
i where H j

i is a dense open set in G. Since a countable union of countable set the family

{H j
i | i, j ∈ D} also can be enumerated as a sequence of dense open sets {Om | m ∈ D}. Since X is a Baire space, the open subset G is also a

Baire space. Therefore,
∞

∩
m=1

Om 6= /0.

Choose s ∈
∞

∩
m=1

Om and define, C(s) = {t ∈ H | (s, t) ∈ C} and D(s) = {t ∈ H | (s, t) ∈ D}. Now C(s) = (∩
m

Cm)(s) = ∩m[Cm(s)], because

t ∈ (∩
m

Cm)(s)⇔ (s, t) ∈ ∩
m

Cm⇔ (s, t) ∈Cm for all m⇔ t ∈Cm(s) for all m⇔ t ∈ ∩
m
[Cm(s)]. Therefore, C(s) is a Gδ−set. Similarly, D(s) is

also a Gδ−set.

Let S =
∞

∪
n=1

Zn ⊂ H. Since Y is hereditarily Volterra, S is Volterra and hence C(s)∩S and D(s)∩S are dense in S.

For, a ∈ Z, and ε > 0 be given. Choose N ∈ N sufficiently large so that 1/N < ε and a ∈ ZN−1. There is some t ∈ ZC
N such that

d(t,a)< 1/N < ε and CN×ZC
N ⊆C. Hence (s, t) ∈ (CN×Y )∩ ({s}×Y )⊂C, which implies that t ∈C(s). Thus, t ∈ B(a,ε)∩C(s)∩Z 6= /0.

Similarly, D(s)∩Z is also dense in Z. Choosing t ∈C(s)∩D(s)∩H∩Z, we get (s, t) ∈C∩D∩ (G×H). Hence C∩D is dense in the product
space.

In Theorem 4.1 above, the hereditary property cannot be dropped, since Fleissner and Kunen [11] constructed a metrizable Baire space X
whose square X2 is not Baire. Since Spadaro [13], shows that the product of a hereditarily volterra space and a hereditarily Baire space may
fail to be weakly volterra the metrizability of the Volterra space cannot be dropped in the above theorem.
Piotrowski raised a question that, “Whether X × [0,1] is Volterra or not? for any Volterra space X”. As a partial answer to this question,
in Corollary 4.2 below, we consider a subfamily of Volterra spaces consisting of metrizable hereditarily Volterra space, and proved that
cartesian product of X and [0,1] is again a Volterra space.

Corollary 4.2. If (X ,τ) is a metrizable hereditarily Volterra space, then X× [0,1] is also a Volterra space.

Proof. It is well known that, a subset A of a complete metric space (M,d) is complete if and only if A is a closed subset of M and
consequently, [0,1] is complete. Since [0,1] is Baire, X× [0,1] is Volterra, by Baire Category Theorem and Theorem 4.1.

5. Conclusion

In this paper, we have introduced the concepts of directed Baire and weakly directed Baire spaces. Since every compact p-spaces are also
Baire spaces, we have proved that there are spaces which are Baire, directed Baire, weakly directed Baire and second category. Also, it is
shown that there are Baire spaces which are not weakly directed Baire space and there are weakly directed Baire space which are neither
Baire nor directed Baire spaces, by giving examples. Hence we have proved that the concepts namely, Baire, second category, directed
Baire and weakly directed Baire are independent. We have proved that the product of directed Baire spaces is also Directed Baire if either
of the space has a countable pseudo base. Also, we have provided partial answer for the question raised by Piotrowski regarding product
of Volterra spaces. The results of this article can also be applied on generalized topological spaces and ideal topological spaces by some
suitable modifications. We hope that this work will provide the basis for further study on directed Baire spaces.
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