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IMPLEMENTATION OF DRBEM FOR THE DETERMINATION
OF THE HEAT FLUX IN AN INVERSE PROBLEM

Nagehan ALSOY AKGÜN

Department of Mathematics, Van Yüzüncü Y¬l University, Van, TURKEY

Abstract. A numerical investigation of inverse unsteady natural convection
�ow in a square cavity �lled with Cu�water nano�uid is performed. In the
direct problem, the enclosure is bounded by one isothermally heated vertical
wall at temperature Tm and by three adiabatic walls. In the inverse problem,
the enclosure is bounded by right hostile wall on which no boundary condition
can be prescribed or measured and by left accessible wall on which both the
boundary temperature and heat �ux data are overspeci�ed. The dual reci-
procity boundary element method (DRBEM) with the fundamental solutions
of Laplace and modi�ed Helmholtz equations is used for the solutions of direct
and inverse problems. Inhomogeneities are approximated with radial basis
functions. Computations are performed for several values of Rayleigh number
(Ra), solid volume fraction (�) and percentage of noise (�), and accurate and
stable results are given for three forms of heat �ux namely, steady heat �ux
(q = q(y)), time dependent uniform heat �ux (q = q(t)) and non-uniform time
dependent heat �ux (q = q(y; t)).

1. Introduction

In the thermo-�uid areas, �ow heat transfer analysis is one of the most interesting
subject among the researchers. The researchers who study in this area focused to
the idea of using nano�uid instead of a using conventional heat transfer base �uids
with the low thermal conductivity such as water, engine oil etc. Nano�uid is the
combination of the base �uid and added nanoparticles, and this term is made use
of for the �rst time by Choi in [1]. The aim of using nano�uids is to increase the
thermal performance of conventional �uids. Some studies published as review on
nano�uids can be found in [2]- [9].
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In some applications of heat transfer, because of the high temperature it may not
be possible to measure of boundary conditions on some part of the surface. The non-
measurable temperature or heat �ux boundary conditions can be determined by the
temperature measurements from the other parts of the surface or inside of the body.
The estimation of temparature or heat �ux boundary conditions is called inverse
heat conduction problem for temperature and the excellent study about this subject
has been done by Beck et al. [10]. After that, a number of studies for the inverse
problem have been published in [11]- [16]. An inverse forced-convection problem in
a channel has been investigated in [11] while convection-di¤usion equation has been
solved in [12]- [14]. In addition, advection-di¤usion and reaction-di¤usion equations
for an inverse problem case have been considered in [15] and [16], respectively. Later
on, one-dimensional inverse heat conduction problem has solved in [17].
The inverse natural convection �ow has been solved by using a solution algorithm

based on the sequential function speci�cation method in [18], and by using an
implicit control volume discretization procedure in [19]. Also, DRBEM applications
have been presented for the inverse natural convection �ow under a magnetic �eld
problem in [20] and for the Magnetohydrodynamics (MHD) �ow problem in [21]. In
all these studies mentioned above, the governing equations are coupled nonlinearly
which leads to extra di¢ culty for the inverse problem.
The purpose of this study is to solve the inverse natural convection of copper

based nano�uid problem using di¤erent type heat �ux boundary conditions. To
do this aim, computations are carried using for three types of adiabatic boundary
conditions, namely, steady heat �ux (q(y) = � cos(�y)), time dependent uniform
heat �ux (q(t) = � sin(�t=tf )) and non-uniform time dependent heat �ux (q(y; t) =
� sin(�t) cos(�y)). Since the analytical solution of corresponding direct problem is
not available, it is necessary to solve the corresponding direct problem using any
numerical method. In this study both direct and inverse problems are solved using
DRBEM. In the DRBEM procedure, it is only necessary to discretize the boundary
of the domain to be analyzed, so it requires less storage and less computing time.
The fundamental concepts about this method can be found in [22]. Since DRBEM

uses the fundamental solution of di¤erential equation for converting the domain in-
tegral into a boundary integral, the original di¤erential equation should be written
as a di¤erential equation whose fundamental solution can be obtained. In this cur-
rent work, vorticity transport and temperature equations are written in the forms
of modi�ed Helmholtz equations by considering all the nonlinear terms as the non-
homogeneous terms.
A well-posed problem in generally can be de�ned as a mathematical problem

where its solution(s) has/have three properties namely existence, uniqueness and
stability. If any of these three properties mentioned above fail then the problem
becomes an ill-posed problem and this kind of a problem is called an inverse prob-
lem. Due to the ill-posedness property of the problem, the small errors occurred
in the measurement causes the big deviations in the inverse solution. Therefore,
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Figure 1. Schematic diagram of the domain.

Tikhonov regularization method [23] have been utilized to regularize ill-posedness
of the problem.
The inverse natural convection in a nano�uid �lled cavity presented in this study

has not been considered and investigated yet. This article is planned in the fol-
lowing way. In Section 2 de�nition of the direct and inverse problems are given.
Section 3 contains the mathematical model of the governing equations. DRBEM is
described for both direct and inverse problems in Section 4. Results based on nu-
merical simulation are discussed and presented for three types of heat �ux boundary
conditions in Section 5. Finally, Section 6 presents the conclusions obtained from
this study.

2. Definition of the Direct and Inverse Problems

Consider the two-dimensional unsteady equations of motion and energy for nano�uid
(Cu-water) in the non-dimensional velocity (u; v), pressure (p) and temperature (T )
form as
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where �; �; �; and � are dynamic viscosity, e¤ective density, thermal di¤usivity and
thermal expansion coe¢ cient, respectively. The above non-dimensional equations
are obtained by using the following non-dimensional variables

x =
x
0

L0
; y =

y
0

L0
; u =

u
0
L0
�f
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0
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;
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0
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2
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2
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0
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L0
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g�fL
3
0�T

�f�f
; P r =

�f
�f
;

(5)

where L0; g; � and �T = Thot � Tcold are the characteristic length, gravitional
acceleration, kinematic viscosity and temperature di¤erence, respectively. Also,
Ra is the Rayleigh number and Pr is the Prandtl number. The prime in Equation
(5) refers that the variables are dimensional.
The thermo-physical properties of the nano�uid, water and copper can be given

as in [24] by

�nf = (1� �)�f + ��s; �nf =
knf

(�Cp)nf
;

(�Cp)nf = (1� �)(�Cp)f + �(�Cp)s; �nf =
�f

(1� �)2:5 ;

(��)nf = (1� �)(��)f + �(��)s; knf = kf

�
ks + 2kf � 2�(kf � ks)
ks + 2kf + �(kf � ks)

�
;

(6)
where � is nanoparticle volume fraction, k is thermal conductivity, (�Cp)nf is heat
capacitance, (��)nf is thermal expansion coe¢ cient, � is dynamic viscosity and the
subscripts �nf�, �f�and �s�refer to nano�uid, �uid and solid, respectively.
Two-dimensional unsteady equations of motion and energy for nano�uid in the

non-dimensional stream function ( ), vorticity (w) and temperature (T ) form can
be de�ned as

r2 = �w; (7)
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2.1. Direct Problem: The schematic of the physical situations of both direct and
inverse problems, which have the same boundary conditions as those previously
investigated in [19], are shown in Figure (1). The boundary conditions for the
direct problem are

 (0; y; t) =  (1; y; t) =  (x; 0; t) =  (x; 1; t) = 0; (11)

@T

@x
(1; y; t) = q(y; t);

@T

@x
(0; y; t) =

@T

@y
(x; 0; t) =

@T

@y
(x; 1; t) = 0: (12)

where q(y,t) is the most general form of nondimensional heat �ux boundary condi-
tion at x = 1: Vorticity boundary conditions are obtained using the Equation (10).
Direct problem is subject to the initial conditions

w(x; y; 0) = T (x; y; 0) = 0: (13)

2.2. Inverse Problem: In the inverse problem one of the terms (boundary con-
ditions at the right wall) is not known explicitly for the temperature and it should
be speci�ed from a direct problem. In this study, the time varying temeperature
measurement (Tm) at the left wall, which is given in Figure (1) and will be obtained
by solving the direct problem, is considered as an overspeci�cation for the compen-
sation of the missing boundary condition at the right wall. Thus the temperature
boundary conditions for the inverse problem are

T (0; y; t) = Tm;
@T

@x
(0; y; t) =

@T

@y
(x; 0; t) =

@T

@y
(x; 1; t) = 0: (14)

Stream function and vorticity boundary conditions are the same as the direct prob-
lem. Initial conditions for vorticity transport and temperature equations are also
the same as the direct problem.
In the inverse problem, the small measurement errors appeared in the compu-

tation of the Tm can be caused the large errors. Thus, ill-posedness occurs in the
inverse solution procedure. This means that the solutions T (1; y; t) and @T

@x (1; y; t)
can be unstable. Therefore, in order to obtain a stable numerical solution for
the inverse problem, regularization methods, for instance Tikhonovs regularization
should be used in the solution procedure.

3. Mathematical Model

For the solution of both direct and inverse problems DRBEM will be used as a
numerical technique and so we need to use fundamental solutions of the Laplace
and modi�ed Helmholtz equations. Stream function equation is in the form of
Poisson equation and vorticity transport and energy equations are transformed to
the nonhomogeneous modi�ed Helmholtz equations. To do this aim �rst the time
derivatives in the vorticity transport and energy equations are approximated by
using the forward �nite di¤erence approximations

@w

@t
=
w(s+1) � w(s)

�t
;

@T

@t
=
T (s+1) � T (s)

�t
; (15)
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where w(s) = w(x; y; ts); T
(s) = T (x; y; ts); ts = s�t and �t is the time step. Then

vorticity and temperature variables in the Laplace terms are also approximated at
the two time levels by using relaxation parameters �w and �T as

w(s+1) = �ww
(s+1) + (1� �w)w(s);

T (s+1) = �TT
(s+1) + (1� �T )T (s):

(16)

Inserting the approximations in Equations (15) and (16) into the related Equations
(8) and (9), two nonhomogeneous modi�ed Helmholtz equations are obtained for
vorticity transport and energy equations
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(19)

where
�2w =

�nf�f

�nf�t�w
; �2T =

�f
�nf�t�T

:

4. DRBEM Formulation of The Problem

The governing equations given in (17)-(19) for the direct and inverse formulations
are solved by using DRBEM. DRBEM implementation of Poisson and modi�ed
Helmholtz equations for the inverse problem can be done by using the same way
as the direct problem. The DRBEM discretization of the inverse problem leads to
an ill-conditioned linear system of equations for temperature due to overspeci�ed
boundary conditions on the left wall and underspeci�ed conditions on the right wall.
In order to obtain the stable results, the ill-conditioned linear system of equations
for temperature is regularized with Tikhonov regularization method. The governing
equations in the form of Poisson and modi�ed Helmholtz equations can be written
in the compact forms as

r2 (s+1) = b1; (20)

r2w(s+1) � �2ww(s+1) = b2; (21)
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r2T (s+1) � �2TT (s+1) = b3; (22)

where b1; b2; b3 are the right hand sides of corresponding equations (17)-(19). These
right hand side functions contain the values of vorticity and temperature obtained
from the previous time level and the values of stream function obtained from the
current time level.
Equation (20) is weighted in domain by the fundamental solution u� =

1

2�
ln(r)

of Laplace equation, and Equations (21) and (22) are weighted in domain by the fun-

damental solutions u�w =
1

2�
K0(�wr) and u�T =

1

2�
K0(�T r) of modi�ed Helmholtz

equations as in [25]. By applying the Green�s second identity to the resulting
weighted residual statements, left hand side of the governing equations are trans-
formed into boundary integral equations as in [25]
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�
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where ci are the constants which depend on whether the source point i lies in the
interior (ci = 1; i = 1; :::;KI) or on the smooth boundary (ci = 1

2 ; i = 1; :::;KB).
The domain integrals caused by the inhomogeneous terms are transformed to

the boundary integral equations using the DRBEM idea as in [22],[25]. To this aim
the inhomogeneous terms are expanded as

b1 =

KB+KIX
j=1

�1jfj(x; y); (26)

b2 =

KB+KIX
j=1

�2j(t)f j(x; y); (27)

b3 =

KB+KIX
j=1

�3j(t)f j(x; y): (28)

Here KB and KI are the number of the boundary and interior points, respectively.
�1j ; �2j(t) and �3j(t) are initially unknown coe¢ cients. fj = 1+r and f j = r2 log r

are the coordinate functions. fj and fj are related to particular solutions c j ; andcwj ; cTj as
r2c j = fj ; (29)
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r2cwj � �2wcwj = fj ; (30)

r2cTj � �2TcTj = fj : (31)

After inserting fj and fj into the corresponding inhomogeneous terms in Equa-
tions (26)-(28), we have the Laplace and modi�ed Helmholtz operators inside the
domain integrals
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Now the DRBEM idea can be used for the domain integrals appearing on the right
hand sides of Equations (32)-(34) in order to obtain the boundary integrals.
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(37)

After discretizing the boundary using KB constant elements and taking KI interior
nodes, the ultimate form of Equation (35)-(37) can be written as one global scheme
in a matrix form for both boundary and interior nodes as
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H �Gq = (Hb �GcQ )�1;
H

0
w +G

0
qw = (H

0cW +G
0 cQw)�2;

H
0
T +G

0
qT = (H

0 bT +G0 cQT )�3; (38)

where b ; @b 
@n

= cQ ; cW;
@cW
@n

= cQw; bT ; @ bT
@n

= cQT are matrices formed columnwise
from the corresponding particular solutions and their normal derivatives. By using
the relations in Equation (29)-(31), the particular solutions are obtained as

b = r2

4
+
r3

9
(39)

and

bY = ( � 4
�4
(K0(�r) + log r)� r2 log r

�2
� 4

�4
; r > 0

4
�4
(
 + log (�2 ))�

4
�4
; r = 0;

(40)

where bY represents cW and bT , � represents �w and �T : Here the de�nition of r is
r2 = r2x + r2y where rx and ry are the components of r in the direction of x and y
axes.
The entries of the matricesH; G; H

0
andG

0
are de�ned on the boundary elements

�j as in [22,26,27]
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Z
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H
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1
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Z
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@

@n
(K0(�ri)) d�j ;

G
0

i;j =
1

2�

Z
�j

K0(�ri)d�j

(41)

where �ij Kronecker delta function, �j is the j-th boundary element and � refers
to �w and �T :
The collocation of the inhomogeneities at KB +KI points results in the systems

for �k, (k = 1; 2; 3)
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b1 = F�1 ) �1 = F
�1b1;

b2 = F�2 ) �2 = F
�1
b2;

b3 = F�3 ) �3 = F
�1
b3;

(42)

where F and F are the coordinate matrices constructed by taking fj = 1+ rj and
f j = r2j ln rj as columns.
Substituting the �1, �2, �3 into equation (38), the �nal system of equations for

the unknown vectors  w; and T can be given as

H (s+1) �Gq (s+1) = (Hb �GcQ )F�1b1(s);
H

0
w(s+1) +G

0
qw

(s+1) = (H
0cW +G

0 cQw) �F�1b2(s);
H

0
T (s+1) +G

0
qT

(s+1) = (H
0 bT +G0 cQT ) �F�1b3(s):

(43)

In this system all the square matrices have the size (KB +KI) � (KB +KI) and
all the vectors have size (KB +KI)� 1:
First and second derivatives of the variables located in bi, (i = 1; 2; 3) can be

approximated as
@S

@x
=
@ �F

@x
�F�1S;

@S

@y
=
@ �F

@y
�F�1S; (44)

where S represents w(s);  (s+1) and T(s): Also, we need r2w(s) and r2T(s); and
they can be obtained by using the coordinate matrix �F such that

r2S = @ �F

@x
�F�1

�
@S

@x

�
+
@ �F

@y
�F�1

�
@S

@y

�
: (45)

The boundary conditions for vorticity are determined by taking the curl of the
velocity vector and with the help of the DRBEM coordinate matrix �F as

w =
@v

@x
� @u

@y
) w =

@ �F

@x
�F�1v � @ �F

@y
�F�1u: (46)

A system of linear equations for the variables ( -w-T ) can be constructed by
using the equations (43) and by inserting the corresponding known boundary con-
ditions as

A1x1 = y1;

A2x2 = y2;

A3x3 = y3:

(47)

Here, x1; x2 and x3 are constructed by using the unknown information of vari-
ables and their normal derivatives. These system of linear equations are obtained
for both direct and inverse problems. Any numerical method can be used to obtain
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the unknown xi; (i = 1; 2; 3) in the solution of the direct problem. Thus, some
part of the known temperature boundary conditions are prepared in order to use
as a sensor in the solution of the inverse problem. In the solution procedure of the
inverse problem, similar to the solution of direct problem, the classical DRBEM can
be used to obtain x1 and x2. However, the system A3x3 = y3 for the inverse tem-
perature equation is ill-conditioned and it needs to use any regularization method
to obtain a regularized solution. In this study, Tikhonov regularization method [23]
is prefered since it is simple compared to the other regularization methods [16]. In
the regularization procedure, the system A3x3 = y3 is written in the form

(AT
3A3 + �I)x3 = A

T
3 y3: (48)

Here to obtain stable regularized solutions positive regularization parameter �
should be chosen carefully.
In the measurement of the temperature Tm at the right wall small random errors

inherently occur and these errors cause big instability in the solution of the inverse
problem. These measurement errors are taken into account by adding random noise
data to the temperature T (0; y; t) = Tm obtained at the right wall from the direct
problem as

Tnoisem (0; y; t) = Tm(0; y; t)(1 + ��); y 2 (0; 1); (49)

where � is the percentage of the noise and � is a random variable in the interval
[�1; 1] generated by IMSL library subroutines RNUN and SSCAL.

5. Numerical Results

In this study, DRBEM application is derived for the unsteady natural con-
vection problem in a square cavity �lled with Cu�water based nano�uid with
three di¤erent Neumann type boundary conditions, which are imposed at the right
wall and are steady heat �ux (q(y) = � cos(�y)), time dependent uniform heat
�ux (q(t) = � sin(�t=tf )) and non-uniform time dependent heat �ux (q(y; t) =
� sin(�t) cos(�y)), depicted in Figure (1). The numerical results are discussed by
using graphs to emphasize the e¤ect of Ra, �; �; and � on the �uid behaviour.
For the computation of both direct and inverse problem, the stopping criteria is
taken as 10�5: In order to achieve steady-state results by using a small number of
iterations, the relaxation parameters are taken �w = �T = 0:9 [27].
At the beginning of the procedure, the forward �nite di¤erence approximation is

used for both the time derivatives in the vorticity transport and in the temperature
equations. Since forward �nite di¤erence scheme is an explicit method, the choice
of �t is an important point for the stability of the solutions. Also, in the modi�ed
Helmholtz equations, �t is located in the parameters �w and �T . So there is a close
relation between the behavior of function K0(x) and the choice of �t. Since K0(x)
goes to in�nity as x goes to in�nity, too small �t can lead to unstable solutions.
In this present study, �t values used in the computations changes between 0.01 to
0.1.
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Figure 2. Grid Independence of the study for � = 10�6; Ra =
102; � = 0:05 and � = 0 for Case I.

5.1. Case I: Steady heat �ux. In this case, heat �ux is considered as

q(y) = � cos(�y) (50)

which depends only on the coordinates of space variable y. Grid independence
test has been done for the steady heat �ux case and results are presented for the
values Ra = 102; � = 0:05; � = 10�6 and � = 0 in Figure (2). As can be seen
from the �gure, KB = 92 constant boundary elements provides grid independence.
Therefore, KB = 92 is used in all analysis of the rest of the study.
In Figure (3) the e¤ect of the regulation parameter � is presented within the

range � = 10�4 to � = 10�7: From this �gure it can be seen that when the regular-
ization parameter � takes the higher values than 10�5 and takes the smaller values
than 10�7; the numerical results becomes unstable which is expected behavior for
the ill-posed system.
The e¤ect of Rayleigh number on the steady heat �ux is presented in Figure (4).

From the �gure it can be observed that the behavior of the inverse solution for heat
�ux are similar to each other for all values of Rayleigh number. The best result is
obtained when Ra = 103. As the Rayleigh number decreases up to Ra = 0, the
di¤erence between the exact and inverse solutions starts to grow especially near
the top and bottom right corners of the domain. When Ra = 104 an improvement
occurs in the results. But when the Rayleigh number takes the higher values, for
instance Ra = 105; the inverse solutions lose the accuracy and stability. Ra = 0
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Figure 3. Variation of heat �ux q(y) for several values of � when
Ra = 102; � = 0:05 and � = 0 for Case I.

means that the system is pure conduction, and the heat transfer mechanism is
dominated by conduction up to Ra = 103. For Ra = 104, the heat transfer occurs
in the system by convection. So, the worsening behavior of the inverse solution
can be explained by the change in behavior in the system caused by the increase
in Rayleigh number.
The heat �ux obtained from the inverse problem for each iteration up to t = 0:5

is drawn as a global heat �ux in Figure (5). For lower values of Rayleigh number
(up to Ra = 102), the results closely follow the global heat �ux obtained by the
exact solution given by Equation (50). On the other hand, at the beginning of
the iterative solution procedure for the higher values of Rayleigh number (up to
Ra = 104), a de�ection is observed. Then, when the time achieves t = 0:2, this
de�ection disappears, and both exact and inverse solutions become compatible with
each other.
For the same analysis, the isotherms are given for t = 0:5 in Figure (6). As can

be noticed from the �gure, since the heat transfer mechanism is dominated by the
conduction up to Ra = 103, there is no considerable change over the isotherms.
This means that the convection in the system is weak and it can not be e¤ective
on the heat transfer in the system. Also, for all values of Rayleigh number, the
isotherms obtained both direct and inverse problem are well matched with the each
other.
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Figure 4. Variation of heat �ux q(y) for several values of Ra when
� = 10�6; � = 0:05 and � = 0 for Case I.

The variation in heat �ux at di¤erent solid volume fraction (0 � � � 0:05) is
displayed in Figure (7). There is no signi�cant e¤ect of solid volume fraction on
heat �ux when Ra = 0 and Ra = 102: On the other hand, from the �gure it can be
concluded that when Rayleigh number takes the values Ra = 103 and Ra = 104;
the accuracy of the inverse solution improves as the solid volume fraction increases
from 0 to 0:05:

5.2. Case II: Time dependent uniform heat �ux. As a second case, heat �ux
is considered as

q(t) = � sin(�t=tf ); (51)
where all the computations are performed for the total simulation time tf = 1: In
order to compare the e¤ects of steady and time dependent heat �uxes, the same
analyses are done as in the previous case. For both direct and inverse problems, the
time dependent heat �ux, the time dependent global heat �ux and the isotherms
are drawn in Figures (8)-(10) for the Rayleigh numbers 0 � Ra � 104, respectively.
First, the in�uence of Rayleigh number on the accuracy of the time dependent heat
�ux obtained from the inverse problem is investigated and is illustrated in Figure
(8). From this �gure, when the Rayleigh number takes the values between 0 to 103;
the heat �uxes obtained from the inverse problems are very close to each other.
Besides, similar to the steady heat �ux case, there is an improvement in the graph
for the value of Ra = 104: For the convection dominated system, it cannot be
possible to get an accurate results for the heat �ux.
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Figure 5. Variation of global heat �ux for several values of Ra
when � = 10�6; � = 0:05 and � = 0 for Case I.
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Figure 6. Variation of temparature for several values of Ra when
� = 10�6; � = 0:05 and � = 0 for Case I.
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Figure 7. Variation of heat �ux q(y; t) for several values of �
when � = 10�6 and � = 0 for Case I.

The global heat �ux for the unsteady case is presented in Figure (9) which is
depicted for each iteration up to t = 1:0: By comparing Figures (5) and (9), it can
be seen that in the unsteady case the global heat �ux obtained from the direct and
inverse problems are in good agreement with each other for all values of Rayleigh
number.
Figure (10) shows the e¤ect of the variation of Rayleigh numbers on the isotherms

at t = 0:5. From the �gure, the e¤ect of convective forces on heat transfer mech-
anism can be seen clearly. When the system is dominated by conduction, the
isothermes are parallel to the vertical walls. But as the Rayleigh number increases,
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Figure 8. Variation of heat �ux q(t) at y = 0:5 for several values
of Ra when � = 10�6; � = 0:05 and � = 0 for Case II.

the isotherms are curled near the top right and the bottom left corners of the do-
main. These behaviors of isotherm can be observed from the solutions of both the
direct and inverse problems.
Figures (11) shows the e¤ect of volume fraction for di¤erent Rayleigh numbers

on the unsteady heat �ux. Similar to the steady case, as Rayleigh number increases
from 0 to 102; there is no remarkable e¤ect of changes of volume fraction on the
heat �ux. However after the Rayleigh number reaches 103 and 104; as the volume
fraction increases from 0 to 0:05; the inverse solutions approach to the exact values.

5.3. Case III: Nonuniform time dependent heat �ux. As the last case, heat
�ux is considered as

q(y; t) = � sin(�t) cos(�y) (52)
which is nonuniform time-dependent boundary condition. The Rayleigh number
e¤ect is reported by giving the global heat �ux simulation and isotherm variation
for both direct and inverse problems. In Figure (12) global heat �ux is presented
for Case III by drawing the heat �ux at each iteration up to t = 1:0: From the
�gure it can be expressed that the level of agreement between the exact and inverse
solutions is better than the solutions in the Case I and Case II.
The corresponding isotherms to the same analysis are presented in Figure (13).

From the �gures it can be concluded that similar to the steady heat �ux case, there
is no noticeable di¤erence on the isotherms as the Rayleigh number increases. As
in Case I, this situation can be explained by the weak convection in the system.
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Figure 9. Variation of global heat �ux for several values of Ra
when � = 10�6; � = 0:05 and � = 0 for Case II.
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Figure 10. Variation of temparature for several values of Ra
when � = 10�6; � = 0:05 and � = 0 for Case II.
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Figure 11. Variation of heat �ux q(t) at y = 0:5 for several values
of � when � = 10�6 and � = 0 for CaseII.

5.4. The e¤ect of noise. The last analysis is done to show how the noisy data
a¤ects the inverse solutions. For this analysis, the time-dependent heat �ux is
used which is given in Case II and the numerical results are obtained with the
values of the parameters Ra = 103; � = 0:05 and � = 10�6 for several values of
percentages of � 2 f0; 0:01; 0:05g. In the following Figures (14)-(16), the variation
in time-dependent heat �ux, the global heat �ux and the isotherms are shown,
respectively.
From the Figure (14) it can be understood that up to t = 0:2; the noisy data

does not a¤ect the heat �ux. But after t = 0:2; there is a deviation occurs for
all values of � and this deviation does not grow further and exhibits unchanging
behavior up to t = 1: Particularly for � = 0:05, the deviation in the graphs is much
more pronounced than the lower values of �.
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Figure 12. Variation of global heat �ux for several values of Ra
when � = 10�6; � = 0:05 and � = 0 for Case III.

Similar result can also be inferred from Figure (15). In the case of no noise
(� = 0), the numerical results agree with the exact solution. But when the noisy
data is used in the solution of inverse problem, a de�ection is occurred in the
numerical results, particularly � = 0:05, as t approaches to the ultimate time 1:
In Figure (16) the isotherms at t = 1 are given to show the e¤ect of noise by

comparing with the direct problem solution. From the �gures it is clear that the
largest deformation occurs at the right wall when the noisy data is used in the
solution of inverse problem. In addition, this deformation caused by the noisy data
increases with the increased value of the percentage of the �: These expected results
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Figure 13. Variation of temparature for several values of Ra
when � = 10�6; � = 0:05 and � = 0 for Case III.
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Figure 14. E¤ect of the percentage of the noise � on the heat
�ux q(t) at y = 0:5 for Ra = 103; � = 0:05 and � = 10�6 for Case
II.

can be explained by the fact that Tm; which is obtained from the direct problem
and considered as a sensor for the inverse problem, is located at the left wall which
is the farthest away from right wall. Thus, it can be concluded that the location of
the sensor is an important factor for the solution of the inverse problem.

6. Conclusion

In this study, the solution of two-dimensional unsteady inverse natural convec-
tion problem in a square enclosure �lled with Cu-water nano�uid has been ob-
tained by using DRBEM. The method is used for the solutions of both direct and
inverse problems. Computations are carried for three types of adiabatic bound-
ary conditions, namely, steady heat �ux (q(y) = � cos(�y)), time dependent uni-
form heat �ux (q(t) = � sin(�t=tf )) and nonuniform time dependent heat �ux
(q(y; t) = � sin(�t) cos(�y)). DRBEM is an extension of BEM and is used to
transform the domain integrals caused by non homogeneous terms of the partial
di¤erential equations occuring in the BEM procedure into the boundary integrals.
So DRBEM does not need to discretize the domain integrals and this is the main
advantage of the method over the domain discretization methods. In the DRBEM
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Figure 15. E¤ect of the percentage of the noise � on the global
heat �ux for Ra = 103; � = 0:05 and � = 10�6 for Case II.

solution procedure, all the terms except the Laplace or modi�ed Helmholtz oper-
ators depending on the fundamental solution to be used are considered as nonho-
mogeneous terms. The nonhomogeneous terms are approximated using the radial
basis functions.
The results are given for a range of Rayleigh number (0 � Ra � 104), particle

volume fraction (0 � � � 0:05) and percentage of the noise (0 � � � 0:05).
The e¤ects of the parameters on the inverse heat �ux and isotherm patterns are
presented graphically. The results of this study can be summarized as follows:
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Figure 16. E¤ect of the percentage of the noise � on theTemper-
ature T for Ra = 103; � = 0:05 and � = 10�6 for Case II.

� The analyses done for di¤erent values of Rayleigh number to show that in
all three cases the Rayleigh number has a crucial e¤ect in obtaining heat
�ux from the inverse problem. Reasonable accurate and stable numerical
results are obtained at various values of Ra using both noiseless and noisy
temperature data. Especially, it is observed that when the heat transfer
mechanism is dominated by weak conduction or convection, the heat �ux
results obtained from the inverse problem are much better. On the other
hand, when the Rayleigh number takes the higher values, it not possible to
obtain stable solutions from the inverse problem.

� Accuracy and stability of the inverse solutions also depend on type of the
boundary conditions. When the graphics of global heat �ux in all three
cases are compared, it can be concluded that the closest solutions to the
exact solution is obtained by using the non uniform time-dependent heat
�ux. Also, when steady and non-uniform time-dependent heat �uxes are
used, the heat transfer in the system is governed by weak conduction, while
it is governed by convection when time-dependent heat �ux is used for the
same Rayleigh numbers.
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� The sensor position becomes key factor to obtain a stable results when the
noisy temperature data is used in the solution of inverse problem. As used
in this study, if the sensor is located at the left wall which is the farthest
away from right wall, the heat �ux at the right wall is obtained with larger
deformation. In addition, the percentage of the noise is another important
factor for the inverse solutions. When the increased value of percentage of
the noise is used, the deformation becomes more pronounced.

These results mentioned above are good agreement with the results for the inverse
natural convection problem and inverse heat conduction problem in [19] and [17],
respectively.
The temperature values at the left wall of the cavity obtained from the direct

problem are considered as a sensor for the inverse problem. These values are used as
overprescribed boundary condition for the solution of inverse problem. In this case,
the accuraccy of the solutions of the direct problem at the boundary become quite
important. DRBEM enables us to get unknowns and their normal derivatives at the
boundary without discretizing the whole domain. Thus, the stable and reasonable
accurate results can be obtained at a small computational expense. DRBEM is the
most appropriate numerical solution technique for the solution of unsteady inverse
natural convection of nano�uid problem. It can be concluded that the DRBEM
solutions are well regularized for the inverse problem.
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