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Abstract

In this paper, we study some new properties of Sadik transform such as integration, time delay, initial value
theorem, and final value theorem. Moreover, we prove the theorem of Sadik transform for Caputo fractional
derivative and we also establish sufficient conditions for the existence of the Sadik transform of Caputo
fractional derivatives. At the end, the fractional-order dynamical systems in control theory as application of
this transform is discussed, in addition, some numerical examples to justify our results.
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1. Introduction

The integral transformation method is excessively used to solve different kinds of differential equations
in a simple way. As integral transforms converts differential equations into algebraic equation algebraic
equations are more simple than differential equations. In the literature, there are several integral transforms
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and all of them are acceptable to resolve numerous types differential equations. Recently some new integral
transforms were introduced, see [3, 7, 8, 18]. Recently Shaikh [14, 15, 16, 17], proposed a new integral
transform that known as Sadik transform. This transform is an unification of some famous transforms such
as Laplace transform, Sumudu transform, Kamal transform, Tarig and Laplace- Carson transform and Elzaki
transform. For example, Shaikh in [15], presented some properties of this transform, like the existing theorem
of Sadik transform and duality theorem. Further, the author proved that above mentioned transforms are
particular cases of Sadik transform. Shaikh in [16], proved properties of Sadik transform for derivative of
functions, shifting theorem for Sadik transform. Also, the author obtained transfer function of dynamical
system in control theory using Sadik transform. Moreover, he solved some applications in control theory by
Sadik transform. At the outsight, integral transform method is useful and effective tool for solving fractional
differential equations. But it is also true that all types of fractional differential equations are not solvable
by integral transform technique see [4, 5, 13] and the references therein. Abhale and Pawar in [10], proved
some fundamental properties of Sadik transform and used these properties of Sadik transform to solve first
order and second order ordinary differential equations.

On the other hand, the fractional calculus is a generalization of classical differentiation and integra-
tion into non-integer order. Some fundamental definitions of fractional derivatives were given by Riemann-
Liouville, Hadamard, Caputo, Hilfer, Liouville-Caputo, Grünwald-Letnikov, Riesz, Coimbra and Weyl. The
fractional derivatives describe the property of memory and heredity of many materials. see [6, 9].

Fractional ordinary and partial differential equations, as a generalization of classical integer order dif-
ferential equations. Fractional differential equations have enabled the investigation of multiple phenomena
such as diffusion processes, electrodynamics, fluid flow, elasticity and it increasingly used to model problems
in biology, viscoelasticity, fluid mechanics, physics, engineering, and others applications [6, 9, 11, 12].

In this paper, we introduce Sadik transform of fractional order (Caputo derivative operator) and some
new properties of this transform such as time delay, initial and final value theorems are proved. Further, we
established a sufficient condition for the existence of Sadik transform of Caputo fractional derivatives and
have solved Caputo fractional differential equations. Finally, the time-domain analysis of dynamical systems
involving fractional-order is presented to solving systems of control theory.

2. preliminaries:

In this section, we recall some notions, definitions and lemmas that used through this paper. Let [a, b] ⊂
R+ and C[a, b] be the space of all continuous functions ϕ : [a, b] −→ R with the norm ‖ϕ‖∞ = max{|ϕ(t)| :
t ∈ [a, b]} for any ϕ ∈ C[a, b]. Denote L1[a, b] the labesgue integrable functions with the norm ‖ϕ‖L1 =∫ b
a |ϕ(t)| dt <∞.

Definition 2.1. [6] Let ϕ be a locally integrable function on [0,+∞). The Riemann-Liouville fractional
integral of order γ > 0 of function ϕ is given by

Iγ
0+
ϕ(t) =

{
1

Γ(γ)

∫ t
0 (t− τ)γ−1ϕ(τ)dτ, γ > 0,

ϕ(t), γ = 0.

where Γ(z) =
∫∞

0 e−ttz−1dt is a Gamma function of Euler, z ∈ C.

Definition 2.2. [6] Let n − 1 < γ < n ∈ N, and ϕ(t) has absolutely continuous derivatives up to order
(n− 1). Then the left sided Riemann-Liouville fractional derivative of order γ of ϕ is defined by

Dγ
0+
ϕ(t) =

(
d

dt

)n
In−γ

0+
ϕ(t)

=

(
d

dt

)n 1

Γ(n− γ)

∫ t

0
(t− τ)n−γ−1ϕ(τ)dτ,

where n = [γ] + 1 and [γ] denotes the integer part of the real number γ.
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Definition 2.3. [6] The left sided Caputo derivative of fractional order γ (n− 1 < γ < n ∈ N) is given by

cDγ
0+
ϕ(t) = In−γ

0+
dn

dtn
ϕ(t) =

1

Γ(n− γ)

∫ t

0
(t− τ)n−γ−1ϕ(n)(τ)dτ,

where the function ϕ(t) has absolutely continuous derivatives up to order (n−1). In particular, if 0 < γ < 1,
we have

cDγ
0+
ϕ(t) = I1−γ

0+
d

dt
ϕ(t) =

1

Γ(1− γ)

∫ t

0
(t− τ)−γϕ′(τ)dτ.

Definition 2.4. [15] (Sadik transform) Assume that ϕ is piecewise continuous on the interval [0, A] for any
A > 0 and satisfies |ϕ(t)| ≤ Keat when t ≥M , for any real constant a, and some positive constants K and
M . Then the Sadik transform of ϕ(t) is defined by

Φ(v, α, β) = S[ϕ(t)] =
1

vβ

∫ ∞
0

e−tv
α
ϕ(t)dt,

where v is complex variable, α is any non zero real number, and β is any real number.

Definition 2.5. [12] (Mittag-Leffer function) Let p, q ∈ C, Re(p) > 0, Re(q) > 0. Then the Mittag-Leffer
function of one variable is given by

Ep(t) =

∞∑
k=0

tk

Γ(pk + 1)
.

The Mittag-leffer function of two variables is given by

Ep,q(t) =
∞∑
k=0

tk

Γ(pk + q)
.

Properties: [15] Let Φ(v, α, β) be a Sadik transform of ϕ(t), i.e. S[ϕ(t)] = Φ(v, α, β). Then

1. If ϕ(t) = 1, then S[1] = 1
vα+β

.

2. If ϕ(t) = tn, then S[tn] = n!
vnα+(α+β) .

3. If ϕ(t) = eat, then S[eat] = v−β

vα−a .

4. If ϕ(t) = sin(at), then S[sin(at)]= av−β

v2α+a2
.

Lemma 2.6. [15] Let ϕ1 and ϕ2 two functions belong to L1[a, b] the usuall convolution product is given by

(ϕ1 ∗ ϕ2)(t) =

∫ ∞
−∞

ϕ1(τ)ϕ2(t− τ)dτ, t > 0.

Lemma 2.7. [15] Let Φ1(v, α, β) and Φ2(v, α, β) are Sadik Transforms of ϕ1(t) and ϕ2(t) respectively, and
(ϕ1 ∗ ϕ2)(t) is a convolution of ϕ1(t) and ϕ2(t). Then, Sadik transform of (ϕ1 ∗ ϕ2)(t) is

S[(ϕ1 ∗ ϕ2)(t)] = vβΦ1(v, α, β).Φ2(v, α, β),

where ∗ denotes convolution.

Lemma 2.8. [10] Let S[ϕ(t)] = Φ(v, α, β). Then

S[tnϕ(t)] = (−1)n
(

1

αvα−1

d

dv
+

β

αvα

)n
Φ(v, α, β).
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3. Main results

In this section, we prove a new some properties of Sadik transform that is, the Mittag-Liffler function,
the integration, the time delay, the initial and final value theorems. Moreover, we demonstrate the Sadik
transform of Caputo fractional differential equations, and the existence theorem of Sadik transform.

Theorem 3.1. Let Φ(v, α, β) is a Sadik transform of ϕ(t) and ϕ(t), ϕ′(t), ϕ′′(t),....,ϕ(n−1)(t) are continuous
on [0,∞). Then

S[ϕ(n)(t)] = vnαΦ(v, α, β)−
n−1∑
k=0

vkα−βϕ(n−1−k)(0).

Proof. For the first order derivative of ϕ(t), we starting with the definition of Sadik transform,

S[ϕ′(t)] = v−β
∫ ∞

0
v−tv

α
ϕ′(t)dt.

By using integration of parts, we obtain,

= v−β
[
v−tv

α
ϕ(t)

∣∣∞
0
−
∫ ∞

0
v−tv

α
(−vα)ϕ(t)dt

]
,

Assuming Re(vα) > 0, we get

S[ϕ′(t)] = −v−βϕ(0) + vα
1

vβ

∫ ∞
0

v−tv
α
ϕ(t)dt

= vαΦ(v, α, β)− v−βϕ(0). (1)

By using a minner way of second order derivative of ϕ(t) we get

S[ϕ′′(t)] = v−β
∫ ∞

0
v−tv

α
ϕ′′(t)dt

= v−β
[
v−tv

α
ϕ′(t)

∣∣∞
0
−
∫ ∞

0
v−tv

α
(−vα)ϕ′(t)dt

]
= −v−βϕ′(0) + vαv−β

∫ ∞
0

v−tv
α
ϕ′(t)dt

= −v−βϕ′(0) + vαS[ϕ′(x)],

from Eq.(1), we get

S[ϕ′′(t)] = −v−βϕ′(0) + vα
[
vαU(v, α, β)− v−βϕ(0)

]
= v2αU(v, α, β)− vα−βϕ(0)− v−βϕ′(0). (2)

Similarly, for third order partial derivative of ϕ(t) and using Eq.(2), we get

S[ϕ′′′(t)] = v3αU(v, α, β)− v2α−βϕ(0)− vα−βϕ′(0)− v−βϕ′′(0)

= vnαU(v, α, β)−
n−1∑
k=0

vkα−βϕ(n−k−1)(0), n = 3, k = 0, 1, 2.

Continually in the general, we get

S[ϕ(n)(t)] = vnαU(v, α, β)−
n−1∑
k=0

vkα−βϕ(n−k−1)(0).
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Lemma 3.2. Let ϕ(t) = tpm+q−1E
(m)
p,q (±atp). Then the Sadik Transform of ϕ(t) is given by

1

vβ

∫ ∞
0

e−v
αttpm+q−1E(m)

p,q (±atp)dt =
m!vαp−(αq+β)

(vαp ∓ a)m+1
,

where α, β ∈ C,Re(p) > 0, Re(q) > 0, Re(v) > |a|
1

Re(αp) and E(m)
p,q (t) = dm

dtmEp,q(t).

Proof. In view of definitions of Mittag-leffler function and Sadik transform with the help of classical calculus,
we have

1

vβ

∫ ∞
0

e−v
αttpm+q−1E(m)

p,q (±atp)dt

=
1

vβ

∫ ∞
0

e−v
αttpm+q−1 d

m

dtm

∞∑
k=0

(±atp)k

Γ(pk + q)
dt

=
1

vβ

∫ ∞
0

e−v
αttpm+q−1

∞∑
k=0

(k +m)!(±a)ktpk

k!Γ(pk + pm+ q)
dt

=

∞∑
k=0

(k +m)!(±a)k

k!Γ(p (k +m) + q)

1

vβ

∫ ∞
0

e−v
αttp(m+k)+q−1dt

=
v−α(pm+q)

vβ

∞∑
k=0

(k +m)!

k!

(
±a
vαp

)k
=

v−α(pm+q)

vβ

∞∑
k=0

(k +m).......(k + 1)

(
±a
vαp

)k
.

Now let k = k −m, it follows that
1

vβ

∫ ∞
0

e−v
αttpm+q−1E(m)

p,q (±atp)dt

=
v−α(pm+q)

vβ

∞∑
k=m

(k)(k − 1)...(k −m− 1)

(
±a
vαp

)k
= v−αpm−αq−β

dm

dam

∞∑
k=m

(
±a
vαp

)k
= v−αpm−αq−β

dm

dam

∞∑
k=m

(
1

1∓ a
vαp

)
= v−αpm−αq−β

m!(
1∓ a

vαp

)m+1

=
m!vαp−(αq+β)

(vαp ∓ a)m+1
. (3)

Lemma 3.3. (Integration) Let S[ϕ(t)] = Φ(v, α, β) is a Sadik transform of ϕ(t). Then Sadik transform of
integration of ϕ(t) is

S
[∫ t

0
ϕ(τ)dτ

]
=

1

vα
Φ(v, α, β).

Proof. According to the definition of Sadik transform, we have

S
[∫ t

0
ϕ(τ)dτ

]
=

1

vβ

∫ ∞
0

e−tv
α

[∫ t

0
ϕ(τ)dτ

]
dt.
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Then by the integration of parts, we get

S
[∫ t

0
ϕ(τ)dτ

]
=

1

vβ

[∫ t

0
ϕ(τ)dτ

e−tv
α

vα

∣∣∣∣∞
0

−
∫ ∞

0

e−tv
α

−vα

]
ϕ(t)dt

=
1

vα

[
1

vβ

∫ ∞
0

e−tv
α
ϕ(t)dt

]
=

1

vα
Φ(v, α, β).

Theorem 3.4. Let n−1 < γ < n, (n = [γ] + 1) and ϕ(t), ϕ′(t),ϕ′′(t), ....., ϕ(n−1)(t) are continuous on [0,∞)
and of exponential order, while cDγ

0+
ϕ(t) is piecewise continuous on [0,∞). Then Sadik transform of Caputo

fractional derivative of order γ of function ϕ is given by

S[cDγ
0+
ϕ(t)] = vγαΦ(v, α, β)−

n−1∑
k=0

v(γ−n+k)α−βϕ(n−1−k)(0+).

Proof. In light of Definitions 2.3, 2.4, then using Theorem 3.1, and property 2, we find that

S[cDγ
0+
ϕ(t)] =

1

vβ

∫ ∞
0

e−tv
α [cDγ

0+
ϕ(t)

]
dt

=
1

vβ

∫ ∞
0

e−tv
α

[
1

Γ(n− γ)

∫ t

0
(t− τ)n−γ−1ϕ(n)(τ)dτ

]
dt

=
1

Γ(n− γ)

1

vβ

∫ ∞
0

∫ ∞
τ

e−tv
α
(t− τ)n−γ−1ϕ(n)(τ)dtdτ

=
1

Γ(n− γ)

1

vβ

∫ ∞
0

ϕ(n)(τ)

∫ ∞
0

e−v
α(u+τ)un−γ−1dudτ

=
1

Γ(n− γ)

1

vβ

∫ ∞
0

e−τv
α
ϕ(n)(τ)dτ

∫ ∞
0

e−uv
α
un−γ−1du

=
1

Γ(n− γ)

∫ ∞
0

e−τv
α
ϕ(n)(τ)dτ

1

vβ

∫ ∞
0

e−uv
α
un−γ−1du

=
vβ

Γ(n− γ)
S
[
ϕ(n)(t)

]
S
[
tn−γ−1

]
=

vβ

Γ(n− γ)
S
[
ϕ(n)(t)

] Γ(n− γ)

v(n−γ−1)α+(α+β)

=
vβ

v(n−γ)α+β

[
vnαΦ(v, α, β)−

n−1∑
k=0

vkα−βϕ(n−1−k)(0)

]

= vαγΦ(v, α, β)−
n−1∑
k=0

v(γ+k−n)α−βϕ(n−1−k)(0).

Theorem 3.5. Assume that a linear Caputo fractional differential equation

cDγ
0+
u(t) = ϕ(t), 0 < γ < 1, (4)

with intial condition
u(0) = u0, (5)
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has a unique continuous solution

u(t) = u0 +
1

Γ(γ)

∫ t

0
(t− τ)γ−1ϕ(τ)dτ, (6)

if ϕ(t) is continuous on [0,∞) and exponentially bounded, then u(t) and cDγ
0+
u(t) are both exponentially

bounded, thus their Sadik transform exists.

Proof. Since ϕ(t) is exponentially bounded, there exist two positive constants M,σ and enough large T such
that ‖ϕ(t)‖ ≤Meσt for all t ≥ T . It is easy to see that Eq.(4) is equivalent to the Volterra integral equation

u(t) = u0 +
1

Γ(γ)

∫ t

0
(t− τ)γ−1ϕ(τ)dτ , 0 ≤ t <∞. (7)

For t ≥ T, Eq.(7) can be rewritten as

u(t) = u0 +
1

Γ(γ)

∫ T

0
(t− τ)γ−1ϕ(τ)dτ +

1

Γ(γ)

∫ t

T
(t− τ)γ−1ϕ(τ)dτ.

In view of assumptions, u(t) is unique continuous solution on [0,∞), with u(0) = u0, then ϕ(t) is bounded
on [0, T ], i.e. there exists a constant k > 0 such that ‖ϕ(t)‖ ≤ k. Now, we have

‖u(t)‖ ≤ ‖u0‖+
k

Γ(γ)

∫ T

0
(t− τ)γ−1dτ +

1

Γ(γ)

∫ t

T
(t− τ)γ−1 ‖ϕ(τ)‖ dτ.

Multiply the last inequality by e−σt then from fact that e−σt ≤ e−σT , e−σt ≤ e−στ , and ‖ϕ(t)‖ ≤ Meσt

(t ≥ T ), we obtain

‖u(t)‖ e−σt ≤ ‖u0‖ e−σt +
ke−σt

Γ(γ)

∫ T

0
(t− τ)γ−1dτ +

e−σt

Γ(γ)

∫ t

T
(t− τ)γ−1 ‖ϕ(τ)‖ dτ

≤ ‖u0‖ e−σT +
ke−σT

Γ(γ + 1)
[(t)γ − (t− T )γ ] +

M

Γ(γ)

∫ t

0
(t− τ)γ−1eσ(τ−t)dτ

≤ ‖u0‖ e−σT +
ke−σT

Γ(γ + 1)
T γ +

M

Γ(γ)

∫ t

0
sγ−1e−σsds

≤ ‖u0‖ e−σT +
ke−σT

Γ(γ + 1)
T γ +

M

Γ(γ)

∫ ∞
0

sγ−1e−σsds

≤ ‖u0‖ e−σT +
ke−σT

Γ(γ + 1)
T γ +

M

σγ
.

Denote

A = ‖u0‖ e−σT +
ke−σT

Γ(γ + 1)
T γ +

M

σγ
,

we get
‖u(t)‖ ≤ Aeσt, t ≥ T.

From Eq.(4) and hypothesis of ϕ, we conclude that∥∥cDγ
0+
u(t)

∥∥ = ‖ϕ(t)‖ ≤Meσt t ≥ T.

Applying Sadik transform on both sides of Eq.(4) and using Theorem 3.4, we have

vαγU(v, α, β)− v(γ−1)α−βu(0) = Φ(v, α, β).
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Since u(0) = u0, it follows

U(v, α, β) = u0
1

vα+β
+

Φ(v, α, β)

vαγ
.

Take the inverse of Sadik transform to both sides of the above equation, and using property 1, and Lemma
2.7, we get

u(t) = u0S−1

[
1

vα+β

]
+ S−1

[
1

vαγ
Φ(v, α, β)

]
= u0 + S−1

[
vβ

1

vαγ+β
Φ(v, α, β)

]
= u0 + S−1

[
vβ

1

v(γ−1)α+α+β
Φ(v, α, β)

]
= u0 + (ϕ1 ∗ ϕ)(t). (8)

Put Φ1(v, α, β) := 1
v(γ−1)α+α+β , such that S−1 [Φ1(v, α, β)] = ϕ1(t) and S−1[Φ(v, α, β)] = ϕ(t). Applying

the inverse Sadik transform of Φ1(v, α, β), with using property 2, we find that

S−1 [Φ1(v, α, β)] = S−1

[
1

v(γ−1)α+α+β

]
=
tγ−1

Γ(γ)
= ϕ1(t).

Therefore Eq.(8) becomes as follows

u(t) = u0 + (ϕ1 ∗ ϕ)(t)

= u0 +
1

Γ(γ)

∫ t

0
(t− τ)γ−1ϕ(τ)dτ.

Theorem 3.6. (Time Delay) Let Φ(v, α, β) = S[ϕ(t)]. Then Sadik transform of time delay is given by

S [ϕ(t− a) · η(t− a)] = e−av
α
Φ(v, α, β),

where

η(t− a) =

{
0, t < a
1, t ≥ a . (9)

Proof. We prove by going back to the original definition of the Sadik transform

S [ϕ(t− a) · η(t− a)] =
1

vβ

∫ ∞
0

e−tv
α

[ϕ(t− a) · η(t− a)] dt,

Changing the lower limit of the integral from 0 to a and drop the step function gives

S [ϕ(t− a) · η(t− a)] =
1

vβ

∫ a

0
e−tv

α
[ϕ(t− a) · η(t− a)] dt

+
1

vβ

∫ ∞
a

e−tv
α

[ϕ(t− a) · η(t− a)] dt

=
1

vβ

∫ ∞
a

e−tv
α
ϕ(t− a)dt.

By change of variable u = t− a, it follows

S [ϕ(t− a) · η(t− a)] =
1

vβ

∫ ∞
0

e−(u+a)vαϕ(u)du

= e−av
α
Φ(v, α, β).
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Example 3.7. The Sadik transform of η(t− a) is e−av
α

vα+β
. Indeed, from the definition of Sadik transform and

the relation Eq.(9), we have

S[η(t− a)] =
1

vβ

∫ a

0
e−tv

α
η(t− a)dt+

1

vβ

∫ ∞
a

e−tv
α
η(t− a)dt =

e−av
α

vα+β
.

Setting ϕ(t− a) = 1. Then

S [ϕ(t− a) · η(t− a)] = S [η(t− a)] =
e−av

α

vα+β
= e−av

α
Φ(v, α, β).

This satisfies Theorem 3.6.

Example 3.8. Let ϕ(t− a) = t− a. Then, from Lemma 2.8, we have

S[tϕ(t)] = −
(

1

αvα−1

d

dv
+

β

αvα

)
Φ(v, α, β).

Hence, with using Example 3.7, we get

S [ϕ(t− a).η(t− a)]

= −
(

1

αvα−1

d

dv
+

β

αvα

)
e−av

α

vα+β
− ae

−avα

vα+β

= − 1

αvα−1

[
(−aαvα−1 − (α+ β) v−1)e−av

α

vα+β

]
+
β

α

e−av
α

v2α+β
− ae

−avα

vα+β

=
1

v2α+β
e−av

α

= e−av
α
Φ(v, α, β).

Theorem 3.9. (Initial Value Theorem) Let Φ(v, α, β) = S[ϕ(t)]. Then the sadik transform of initial value
given by

lim
vα→∞

[vαΦ(v, α, β)] = v−βϕ(0+).

Proof. We first start with the derivative rule:

S
[
dϕ(t)

dt

]
= vαΦ(v, α, β)− v−βϕ(0−).

From the definition of Sadik transform, with splitting the integral into two parts:

vαΦ(v, α, β)− v−βϕ(0−) =
1

vβ

∫ ∞
0−

dϕ(t)

dt
e−tv

α
dt =

1

vβ

∫ ∞
0−

ϕ′(t)e−tv
α
dt

=
1

vβ

∫ 0+

0−
ϕ′(t)e−tv

α
dt+

1

vβ

∫ ∞
0+

ϕ′(t)e−tv
α
dt.

Take the limit as vα →∞,

lim
vα→∞

[
vαΦ(v, α, β)− v−βϕ(0−)

]
= lim

vα→∞

[
1

vβ

∫ 0+

0−
ϕ′(t)e−tv

α
dt+

1

vβ

∫ ∞
0+

ϕ′(t)e−tv
α
dt

]
.

Several facilitations are as follows:
In the expression

lim
vα→∞

[
vαΦ(v, α, β)− v−βϕ(0−)

]
,
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we can take the second term out of the limit, since it doesn’t depend on vα.
In the expression

lim
vα→∞

[
1

vβ

∫ 0+

0−
ϕ′(t)e−tv

α
dt+

1

vβ

∫ ∞
0+

ϕ′(t)e−tv
α
dt

]
,

we can take the first term out of the limit for the same reason, and when vα → ∞ the exponential term in
the second term goes to zero. Hence(

lim
vα→∞

[vαΦ(v, α, β)]
)
− v−βϕ(0−) =

1

vβ

∫ 0+

0−
ϕ′(t)dt+

1

vβ

∫ ∞
0+

ϕ′(t)(0)dt

=
1

vβ

∫ 0+

0−
ϕ′(t)dt

= v−βϕ(0+)− v−βϕ(0−).

This gives
lim

vα→∞
[vαΦ(v, α, β)] = v−βϕ(0+).

Remark 3.10. Theorem 3.9 is true only if ϕ(t) is a strictly proper fraction in which the numerator order is
lower than the denominator order.

Theorem 3.11. (Final Value Theorem) Let Φ(v, α, β) = S[ϕ(t)]. Then the sadik transform of final value
given by

lim
vα→0

[vαΦ(v, α, β)] = lim
t→∞

[
v−βϕ(t)

]
.

Proof. We start as we did for the initial value theorem, with the Sadik transform of the derivative

S
[
dϕ(t)

dt

]
=

1

vβ

∫ ∞
0−

dϕ(t)

dt
e−tv

α
dt = vαΦ(v, α, β)− v−βϕ(0−).

Take the limit on both sides as vα → 0, we have

lim
vα→0

[
1

vβ

∫ ∞
0−

dϕ(t)

dt
e−tv

α
dt

]
= lim

vα→0

[
vαΦ(v, α, β)− v−βϕ(0−)

]
.

As vα → 0, e−tv
αvanishes from the integral. Also, the term v−βϕ(0−) in the right side we can take it out

of the limit since it independent of vα. Hence, by the theory of fundamental calculus, we have

lim
vα→0

(
1

vβ
ϕ(∞)− 1

vβ
ϕ(0−)

)
= lim

vα→0

[
1

vβ

∫ ∞
0−

dϕ(t)

dt
dt

]
=

(
lim
vα→0

[vαΦ(v, α, β)]
)
− v−βϕ(0−).

Since the term on the left doesn’t depend on vα, thus

1

vβ
ϕ(∞)− 1

vβ
ϕ(0−) =

(
lim
vα→0

[vαΦ(v, α, β)]
)
− v−βϕ(0−).

That is
lim
t→∞

[
v−βϕ(t)

]
= lim

vα→0
[vαΦ(v, α, β)] .

Remark 3.12. Theorem 3.11 is satisfied for all functions except the increasing functions and oscillating
functions such as sine and cosine that don’t have a final value.



S.S. Redhwan, S.L. Shaikh, M.S. Abdo, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 51–66. 61

Table 1: Plot of y(t) versus t (h=0.2) in Example 3.13

t 0 0.2000 0.4000 0.6000 0.8000 1.0000
y(t) -1.1284 -0.2012 -0.0649 0.0479 0.1743 0

Example 3.13. Let 0 < γ < 1 and b ∈ R. Then the problem
cDγ

0y(t)− by(t) = 0 (10)

with the initial condition y(0) = y0 has a solution given by

y(t) = y0

∞∑
k=0

(btγ)k

Γ(γk + 1)
= y0Eγ,1(btγ).

Applying the Sadik transform on both sides of Eq.(10), together with the Theorem 3.4, we can conclude that

Y (v, α, β) =
vαγ−β−1

(vαγ − b)
y0,

by using the lemma 3.2 we get

y(t) = y0

∞∑
k=0

(btγ)k

Γ(γk + 1)
= y0Eγ,1(btγ)

Example 3.14. Let ϕ(t) = et. Then Φ(v, α, β) = v−β

vα−1 and the initial value of this function given as follows

lim
vα→∞

[vαϕ(v, α, β, )] = lim
vα→∞

[
vα

v−β

vα − 1

]
= v−β = v−βϕ(0+),

where ϕ(0+) = 1. Therefore, Theorem (3.9) is satisfied.

Example 3.15. Let ϕ(t) = sin(at). Then Φ(v, α, β, ) = av−β

v2α+a2
, and the initial value of this function given

as follows

lim
vα→∞

[vαϕ(v, α, β, )] = lim
vα→∞

[
vα

av−β

v2α + a2

]
= 0 = v−βϕ(0+),

where ϕ(0+) = 0. This means that Theorem (3.9) holds.

Example 3.16. If we have ϕ(t) = 1, then Φ(v, α, β, ) = 1
vα+β

and

lim
vα→0

[vαϕ(v, α, β, )] = lim
vα→0

[
vα

vα+β

]
= v−β = v−β lim

t→∞
ϕ(t),

where limt→∞ ϕ(t) = 1. By using the Theorem (3.11), we get the final value of ϕ(t) that is v−β.

Example 3.17. Consider the Dirac delta function

δ(t) =

{
∞, t = 0,
0, t 6= 0.

Then Φ(v, α, β, ) = S[δ(t)] =1. In view of Theorem (3.11), the final value of this function is

lim
vα→0

[vαϕ(v, α, β, )] = lim
vα→0

[vα] = 0

and

lim
t→∞

v−βδ(t) = v−β lim
t→∞

{
∞, t = 0
0, t 6= 0

= 0.

So our results are satisfied.
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Figure 1: Plot of y(t) = y0Eγ,1(bt
γ) for the Caputo fractional problem and the initial condition y(0) = 1, b = 3 with diferent

values of γ in Example 3.13.
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4. Application

4.1. Fractional-order dynamical systems in control theory.
Modern and effective techniques for the time-domain analysis of dynamical systems involving fractional-

order are wanted to solving systems of control theory. As a modern generalization of the ordinary PID-
controller, the idea of PIλDµ-controller, including fractional-order integrator and fractional-order differen-
tiator, has been lead to be a more efficient control dynamical systems of fractional-order. In his series of
papers and books (see references of Podlubny’s book [12]), successfully applied the fractional-order controller
to improve the so-called CRONE-controller (Commande Robuste d’Ordre Non-En-trier controller) which is
an enjoyable example of the application of fractional derivatives in control theory. He proves the advantage of
the CRONE-controller compared to the classical PID-controller and also showed that the PIλDµ-controller
has a better rendering record when applied for the control of fractional-order systems than the classical
PID-controller. In the time domain, he described a dynamical system by the fractional-order differential
equation (FDE) [

n∑
k=0

rn−k
cD

γn−k
0+

]
ϕ(t) = f(t), (11)

where γn−k > γn−k−1 , (k = 0, 1, 2, ..., n) are arbitrary real numbers, rn−k are arbitrary constants, and cD
γn−k
0+

is the standard Caputo fractional derivative of order γn−k. Now, by the Sadik transform, we get[
n∑
k=0

rn−k v
(γn−k)α

]
φ(v, α, β) = F (v, α, β)

The transfer function of fractional differential equation Eq.(11) is given by

Kn(v, α, β) =
F (v, α, β)

φ(v, α, β)
=

[
n∑
k=0

rn−k v
(γn−k)α

]−1

.

The unit-impulse response ϕi(t) of the system is defined by the inverse Sadik transform of Kn(v, α, β) so
that

ϕi(t) = S−1 [Kn(v, α, β)] = kn(t),

and the unit-step response function is given by the integral of kn(t) so that

ϕs(t) = I1
0+kn(t).

We give a simple example to illustrate the above system

Example 4.1. We consider a simple fractional-order transfer function

K2(v, α, β) = (r (vα)γ + d)−1, γ > 0, (12)

where r and d are arbitrary constants. The fractional differential equation in the time domain identical to
the transfer function (12) is

r cDγ
0+
ϕ(t) + dϕ(t) = f(t),

with the initial conditions
ϕ(0) = 0.

The unit-impulse response ϕi(t) to the system is given by

ϕi(t) = S−1 [K2(v, α, β)] = k2(t),
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Figure 2: Plot of unit-impulse response ϕi(t) in Example 4.1
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.

Figure 3: Plot of unit-step response ϕs(t) in Example 4.1

where
k2(t) = S−1

[
1

r (vα)γ + d

]
=

1

r

[
tγ−1Eγ,γ(−d

r
tγ)

]
,

and the unit-step response to the system is

ϕs(t) = cD−1
0+
k2(t) = I1

0+

(
1

r

[
tγ−1Eγ,γ(−d

r
tγ)

])
=

1

r
tγEγ,γ+1(−d

r
tγ).

conclusion

There are a lot of the integral transforms of exponential type kernels, the Sadik transform is new and
very powerful among them and there are many problems in engineering and applied sciences can be solved
by Sadik transform. So we have provided Sadik transform of Caputo fractional derivative, and we also gave
a sufficient condition to guarantee the rationality of solving Caputo fractional differential equations by the
Sadik transform method. Moreover, The Sadik transform of time delay, initial value theorem, and final value
theorem are obtained. Some numerical examples to justify our results are presented. An application of
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fractional-order dynamical systems in control theory by Sadik transform is used. Finally, we obtained some
illustrative figures with the help of the Matlab software.
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