

International Journal of

Intelligent Systems and

Applications in Engineering

Advanced Technology and Science

ISSN:2147-67992147-6799 www.atscience.org/IJISAE Original Research Paper

This journal is © Advanced Technology & Science 2013 IJISAE, 2014, 2(4), 71–75 | 71

SLAM – Map Building and Navigation via ROS#

Arbnor Pajaziti*1, Petrit Avdullahu2

Received 05th September 2014, Accepted 18th December 2014

DOI: 10.1039/b000000x

Abstract: The presented work describes a ROS based control system of a Turtlebot robot for mapping and navigation in indoor

environments. It presents the navigation of Turtlebot in self-created environment. The mapping process is done by using the GMapping

algorithm, which is an open source algorithm and the localization process is done by using the AMCL pack. There are ROS built functions

used in order to perform navigation of Turtlebot. The SLAM method implemented in ROS has proven a way for robots to do localization

and mapping autonomously. The aim defined in paper to fulfill mapping, localization and navigation of Turtlebot in new and unknown

environment is achieved

Keywords: Map Building, Navigation, ROS, Simulation, Turtlebot.

1. Introduction

Human beings get the information about their surrounding through

vision, hearing the voice through ears, smelling through nose and

they do feel the strength of objects through touching. In general

human beings get information about reality through senses. A

robot cannot explore an unknown environment unless it is provided

with some sensing sources to get information about the

environment. There are different kinds of sensors used to make a

robot capable of sensing a wide range of environments [1]:

Odometers, Laser range finders, Global Position System (GPS),

Inertia Measurement Units (IMU), Sound Navigation and Ranging

(Sonar) and cameras.

The map of environment is a basic need for a robot to perform

actions like moving room to room, picking an object from one

place and taking it to another one. To perform such actions, the

robot should not only know about the environment but while it is

moving it should also be aware of its own location in that

environment.

The robot simulated is Turtlebot, and in absence of real robot the

simulator provided by ROS is used. The aim to achieve is the

navigation of the robot in new and unknown environment by using

the ROS. As it will be presented, the robot builds the map, localizes

itself on the map and performs navigation.

Turtlebot as ROS compatible robot to demonstrate the ROS power

has been selected. Robot operating system (ROS) is designed to

promote code sharing and enable the development of open-source

robotics commons. Sharing code will help the robotics community

to progress faster by letting the researchers in the community

replicate and extend the results of other research groups. ROS

makes it easy to find the software and integrate it into robot

systems [2-5]. The complete TurtleBot includes a Kobuki base,

Microsoft XBOX Kinect, ROS compatible net book, and turtlebot

structure. General description on turtlebot website is “TurtleBot is

a low-cost, personal robot kit with open-source software. With

TurtleBot, you'll be able to build a robot that can drive around your

house, see in 3D, and have enough horsepower to create exciting

applications”. There are numerous abilities that Turtlebot offers,

while there are given part list, assembly instructions and links to

suppliers. There is also a possibility to add other components, or to

substitute similar components.

1.1. Outline

Section 2 starts with an overview of robotics definition and with

an introduction to ROS. There is described a history of ROS

followed by ROS compatible robots and ROS concepts. Section 2

is a description of ROS in general. Section 3 describes the SLAM

concept and as a solution to SLAM problem there is a review of an

algorithm called SLAM with extended Kalman filters. Section 4

starts with an overview of Turtlebot simulation on ROS, and at the

end of section 4 a step-by-step simple solution to navigate the

Turtlebot is brought.

The main reference for section 3 is the book on [6], and the main

reference for section 2 and section 4 is the ROS website referenced

on [7].

2. Introduction to ROS

ROS is meta-operating system for a robot. It provides services that

one would expect from an operating system, including hardware

abstraction, low-level device control, implementation of

commonly-used functionality, message-passing between

processes, and package management. It also provides tools and

libraries for obtaining, building, writing, and running code across

multiple computers. It is named as meta-operating system because

it is something between an operating system and middleware. It

provides not only standard operating system services (like

hardware abstraction), but also high-level functionalities like

asynchronous and synchronous calls, centralized database, a robot

configuration system, etc. ROS can be interpreted also as software

framework for robot software development, providing operating

system [7].

2.1. The general organization of ROS

ROS is a thin, message-based, tool-based system designed for

mobile manipulators. The system is composed of reusable libraries

1 IDEA Teknoloji Çözümleri, Sun plaza BBDO Blok Dereboyu Cd. Bilim

Sk. No:5, 34398, Maslak /İstanbul / Turkey

* Corresponding Author:email:unsal.gokdag@gmail.com

This paper has been presented at the International Conference on

Advanced Technology&Sciences (ICAT'14) held in Antalya (Turkey),

August 12-15, 2014.

72 | IJISAE, 2014, 2(4), 71–75 This journal is © Advanced Technology & Science 2014

that are designed to work independently. The libraries are wrapped

with a thin message-passing layer that enables them to be used by

and make use of other ROS nodes. Messages are passed peer to

peer and are not based on a specific programming language; nodes

can be written in C++, Python, C, LISP, Octave, or any other

language for which someone has written a ROS wrapper. ROS is

based on a Unix-like philosophy of building many small tools that

are designed to work together (more on that in a bit). ROS grows

out of collaboration between industry and academia and is a novel

blend of professional software development practices and the latest

research results [8].

2.2. ROS-compatible robots

There is quite a big list of compatible robots. A few of them are:

1. Aldebaran Nao

2. Willow Garage PR2

3. TurtleBot

4. AscTec Quadrotor

5. Lego NXT

6. Stanford Racing's Junior

The list of ROS-compatible robots grows constantly.

Turtlebot - TurtleBot combines popular off-the-shelf robot

components like the iRobot Create, Yujin Robot's Kobuki and

Microsoft's Kinect into an integrated development platform for

ROS applications. TurtleBot is a low-cost, personal robot kit with

open-source software.

Figure 1. Turtlebot [7].

2.3. Programming with ROS

ROS is language-independent. At this time, three main libraries

have been defined for ROS, making it possible to program ROS in

C++, Python or Lisp. In addition to these three libraries, two

experimental libraries are offered, making it possible to program

ROS in Java or Lua.

There is a project which is still under development named Rosjava.

Rosjava is a pure Java implementation of ROS created and

maintained by Google and Willow Garage. Under Rosjava, the

Rosjava project totally rewrote the ROS core in Java. Google’s

objective is to have a version of ROS that is fully compatible with

Android. Rosjava can be used to control robots for which the

operating system is not Linux, but Android.

ROS software is organized into packages. Before writing any

programs, the first step is to create a workspace that holds the

packages, and then create the package itself. The groovy

distribution of ROS contains some major changes to the way

software is compiled. Older versions used a built system called

rosbuild, but groovy has begun to replace rosbuild with a new

build system called catkin. This is important to mention. An

example of creating a package is:

catkin_create_pkg example1,

which will create package named example1. Created packages

should live in a workspace directory.

3. SLAM – Map Building and Navigation

SLAM is concerned with the problem of building a map of an

unknown environment by a mobile robot while at the same time

navigating the environment using the map. The term SLAM is an

acronym for Simultaneous Localization and Mapping. It was

originally developed by Hugh Durrant-Whyte and John J. Leonard.

SLAM consists of multiple parts; Landmark extraction, data

association, state estimation, state update and landmark update [9].

SLAM is more like a concept than a single algorithm. There are

many steps involved in SLAM and these different steps can be

implemented using a number of different algorithms. SLAM is

applicable for both 2D and 3D motion [9].

3.1. The hardware

The hardware of the robot is quite important. To do SLAM there

is a need for a mobile robot and a range measurement device. The

mobile robots considered are wheeled indoor robots. Some basic

measurement devices commonly used for SLAM on mobile robots

are presented here.

Important parameters to consider are ease of use, odometry

performance and price. The odometry performance measures how

well the robot can estimate its own position, just from the rotation

of the wheels. The robot should not have an error of more than 2

cm per meter moved and 2° per 45° degrees turned. Typical robot

drivers allow the robot to report its (x, y) position in some

Cartesian coordinate system and also to report the robots current

bearing/heading [9].

3.2. The description of SLAM

The SLAM problem is defined as a concurrent localization and

mapping problem, in which a robot seeks to acquire a map of the

environment while simultaneously seeking to localize itself

relative to this map.

From a probabilistic perspective, there are two main forms of the

SLAM problem, which are both of equal practical importance [6]:

1. Online SLAM problem:

 (1)

2.Full SLAM problem:

 (2)

where,

 Xt is the pose at time t,

 m is the map,

 Zt is the measurements, and

 Ut is the controls.

The graphical model of online SLAM problem is shown in figure

2. The goal of online SLAM is to estimate a posterior over the

current robot pose along with the map.

3.3. SLAM with Extended Kalman Filters

),|,(ttt uzmxp

),|,(t:1t:1t:1 uzmxp

This journal is © Advanced Technology & Science 2013 IJISAE, 2014, 2(4), 71–75 | 73

The earliest SLAM algorithm is based on the extended Kalman

filter. In a nutshell, the extended Kalman filter SLAM algorithm

applies the EKF (Extended Kalman Filter) to online SLAM using

maximum likelihood data association. In EKF maps are feature-

based; they are composed of point landmarks. For computational

reason, the number of landmarks is usually smaller than 1000. The

extended Kalman filter tends to work well the less ambiguous the

landmarks are. For this reason EKF SLAM requires significant

engineering of feature detectors [2].

The EKF SLAM algorithm can only process positive sightings of

landmarks. It cannot process negative information that arises

from the absence of landmarks in sensor measurements.

Figure 2. Graphical model of the online SLAM problem [6].

Figure 3. Graphical model of the full SLAM problem [6].

The SLAM algorithm for the case with known correspondence

addresses the continuous portion of the SLAM problem only. In

addition to estimating the robot pose, the EKF algorithm also

estimates the coordinates of all landmarks encountered along the

way. The combined state vector is given by

 (3)

where x, y, and  denotes the robots coordinates at time t

xm ,1 , ym ,1 are the coordinates of the i-th landmark, for i=1…

N, and

Si is its signature.

The dimension of this state vector is 3N+3, where N denotes the

number of landmarks in the map.

Figure 4 illustrates that the EKF SLAM algorithm for an artificial

example.

4. Results and Discussion

Turtlebot in Gazebo with a simulated laser build a map of an

environment with the GMapping algorithm has been setup. It was

assumed that the workspace environment has been created. When

the workspace is created, new packages need to be put in a path

that is in the variable $ROS_PACKAGE_PATH. Echo this

variable and confirm if the package path has been set.

Instructions for ROS Fuerte have been used. All commands used

in this paper are stated on documentation status for ROS Fuerte.

As mentioned earlier, there is a difference between ROS versions.

Figure 4. EKF applied to the online SLAM problem [6].

ROS package called ‘ros’ that depends on these packages has

been created:

o turtlebot_gazebo – this package contains launchers, maps and

world descriptions for the TurtleBot simulation with Gazebo.

o turtlebot_teleop – this package provides launch files for

teleoperation with different input devices.

o gmapping – this package provides laser-based SLAM, as a

ROS node called slam_gmapping.

o amcl – this package provides probabilistic localization system

for a robot moving on 2D. It implements the adaptive Monte

Carlo localization approach, which uses a particle filter to

track the pose of a robot against a known map.

o move_base – this package provides an implementation of an

action.

The roscreate-pkg command-line tool creates a new ROS

package.

roscreate-pkg ros turtlebot_gazebo turtlebot_teleop gmapping

amcl move_base

By executing this command, these files will be created:



 manifest.xml,

 CMakeLists.txt,

 mainpage.dox, and

 Makefile.

In order to simulate a turtlebot in an appointed environment a

launch file has to be created. Simple office space environment

where the turtlebot can move around and navigate are to be

added. Launch file ‘turtlebot_office.launch’ can be created within

the folder launch.

mkdir launch

gedit launch/turtlebot_office.launch

 T
NyNxNyx

t

t SmmSmmyx
m

x
y ,,1,1,1 ...










74 | IJISAE, 2014, 2(4), 71–75 This journal is © Advanced Technology & Science 2014

While gedit command-line is used to create or edit files, in our

case it is used to create turtlebot_office.launch file, and write the

following code into the created file:

<launch>

<param name=”/user_sim_time” value=”true” />

<node name="gazebo" pkg="gazebo" type="gazebo" args="-u

$(find gazebo_worlds)/worlds/simple_office.world" />

<node name="gazebo_gui" pkg="gazebo" type="gui" />

<include file="$(find turtlebot_gazebo)/launch/robot.launch" />

<include file="$(find turtlebot_teleop)/keyboard_teleop.launch"

/>

</launch>

Figure 5. The simulated world with turtlebot in gazebo.

Figure 6. Turtlebot while operating with joystick or keyboard.

This file is used by roslaunch command.

The roslaunch package contains the roslaunch tools which read

the xml format files. The standard format of the roslaunch

command is

roslaunch package-name launch-file-name.

After executing the roslaunch command the simulated robot and

environment appears.

Also there is the turtlebot teleoperating pack (turtlebot_teleop)

included, which means that the turtlebot will move, if joystick or

keyboard is used.

The navigation on given map is depicted in figure 7. First we have

to be sure that Gazebo, map server, amcl and rviz are running [10].

By executing this command in new terminal the turtlebot will be

ready to perform navigation on the given map.

roslaunch ros move_base_turtlebot.launch

From Rviz tool the navigation goal can be set, by clicking the ‘2D

Nav Goal’ button, setting it somewhere in the map, then the robot

will start moving towards the destination [11].

Figure 7. Navigation of Turtlebot.

5. Conclusion

ROS is a very powerful control system. There is an increased

tendency of supporting a larger variety of robots by ROS. ROS

provides Gazebo simulator, and it is used for simulating the robot

and the environment together. For visualizing the data published

from Turtlebot the RVIZ tool is used. The combination of Gazebo

and RVIZ brings the feel of real demonstrations.

Once mapping and localization are successfully done then

navigation can be easily achieved. The ROS navigation stack uses

plugins for local and global planning which makes ROS very

useful and very simple to navigate in undefined environments. In

this paper the move_base package has been used for implementing

path planning, which accomplished autonomous navigation.

References

[1] “The free dictionary”. [Online]. Available at

http://www.thefreedictionary.com

[2] Steve Cousins, Brian Gerkey, Ken Conley, and Willow

Garage: Sharing Software with ROS, IEEE Robotics &

Automation Magazine, June 2010.

[3] Steve Cousins: Is ROS Good for Robotics? IEEE Robotics

& Automation Magazine, June 2012.

[4] Steve Cousins: Welcome to ROS Topics: EEE Robotics &

http://www.thefreedictionary.com/

This journal is © Advanced Technology & Science 2013 IJISAE, 2014, 2(4), 71–75 | 75

Automation Magazine, March 2012.

[5] http://www.willowgarage.com/turtlebot

[6] S. Thrun, B. Wolfram and D. Fox, “Probabilistic robotics”,

Cambridge, MIT Press, 2006.

[7] "ROS.org". [Online]. Available: http://wiki.ros.org/.

[Accessed 19.09.2013].

[8] S. Cousins, "Welcome to ROS Topics", IEEE ROBOTICS

& AUTOMATION MAGAZINE, March 2010.

[9] S. Riisgaard, M. Rufus Blas, “SLAM for Dummies, A

Tutorial Approach to Simultaneous Localization and

Mapping, Massachusetts Institute of Technology”,

[Online], Available:

http://ocw.mit.edu/courses/aeronautics-and-

astronautics/16-412j-cognitive-robotics-spring-

2005/projects/1aslam_blas_repo.pdf

[10] E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey,

and K. Konolige, “The Office Marathon: Robust

Navigation in an Indoor Office Environment”, In

International Conference on Robotics and Automation

(ICRA), Anchorage, AK, USA, 2010.

[11] P. Avdullahu, “Turtlebot control, mapping and localization

via ROS”, Master Thesis, University of Prishtina, Kosovo,

2014.

http://www.willowgarage.com/turtlebot
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf

