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1. Introduction

Soft set theory is an important branch of modern mathematicsbecause it is a tool to han-
dle various types of uncertainties arising from the complicated problems in economics, engi-
neering, environmental sciences, social sciences, medical sciences etc. In Molodtsov (1999)
initiated the theory of soft sets. Also in Molodtsov et al. (2006), he applied successfully
in directions such as smoothness of functions, game theory,operations research, Riemann-
Integration, Perron integration, probability and theory of measurement. Then Maji et al.
(2003) defined operations on soft sets in 2003 and many researchers have studied the na-
ture of soft sets and its applications in various real life problems, see (Abbas et al., 2017;
Acar et al., 2010; Aktaş and Çağman, 2007; Ali et al., 2009; Çağman and Enginoğlu, 2010;
Çağman et al., 2011; Çelik et l., 2011; Feng et al., 2008; Goldar and Ray, 2019; Pei and Miao,
2005; Ray and Goldar, 2017; Shirmohammadi and Rasouli, 2017).

Çağman et al. (2011) introduced soft topology and Shabir and Naz (2011) defined soft topo-
logical spaces. Several authors (Al-Khafaj and Mahmood (2014), Aygünoğlu and Aygün
(2012), Atmaca (2016), Benchalli and Patil (2017), Babithaand John (2010), Çağman et al.
(2015), Georgiou et al. (2013), Georgiou and Megaritis (2014), Goldar and Ray (2017),
Hamza and Saad (2017), Hida (2014), Hosny and Abd El-Latif (2016), Hussain
(2015), Jalil and Reddy (2017), Kandil et al. (2014), Majumdar and Samanta (2010),
Osmanoglu and Tokat (2014), Shabir and Naz (2011), Shah and Shaheen (2014),
Subhashinin and Sekar (2014), Tasbozan et al. (2017) Thakurand Rajput (2018),
Varol and Aygün (2013), Varol et al. (2012), Yang et al. (2015), Zorlutuna et al. (2012))
have extended the idea of soft topology following the definition of soft topology by Shabir, Naz
and Cagman et al. Goldar and Ray (2017) defined the soft topology as a ordinary topology of
soft elements and studied soft topological properties by using of soft elements. To define soft
set we need two non-empty sets one is called universal setX and other set is parametric setA.
There are no restriction onX andA. A soft set is a functionF : A→ P(X) and a soft elementa
of the soft setF is also a functiona : A→ X such thata(t) ∈ F(t) for all t ∈ A. So to exists a
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soft element ofF we need the conditionF(t) 6= φ for all t ∈ A. If F andH are two soft sets
thenH is soft subset ofF if H(t)⊆ F(t) for all t ∈ A. We define soft topology on soft subsets
of F in usual way and study this soft topology in light of soft elements. As soft elements are
functions, the equality of two soft elements is different from classical case. Two soft elements
a andb are equal ifa(t) = b(t) for all t ∈ A and so not equal ifa(t) 6= b(t) for at least one
t. Similar thing arise for the definition of a soft elementa is not belongs to a soft setF. a is
not belongs toF if a(t) /∈ F(t) for somet. Unlike classical case this forces that the statement
a is not a soft element ofF impliesa is a member of compliment ofF is false. And obviously
the soft topology on soft set will be different from classical one and need special attention to
handle it.

In this article, we discuss some interesting relations between soft topology and the topology on
soft elements and proposed a new definition of softTi-space (i = 1,2,3,4), soft Hausdorff space,
soft regular, soft normal space by using soft elements. These new definition are equivalent to
that in literature. The proof of the analogous properties and theorems of softTi-space (i =
1,2,3,4) are much similar if we use these new definitions.

In section 2, we have presented the definitions and preliminary results which are used in the
next sections and studied some soft topological propertiesby using soft elements. In section
3, we have presented a new definition of softTi-space (i = 1,2,3,4), soft Hausdorff space, soft
regular space, soft normal space by using soft elements and these new definition has the advan-
tage that all the analogous elementary ordinary separationaxioms properties follows easily. In
section 4, definition of soft cover and soft compact are givenand some interesting properties
of soft compact spaces are studied. Also in this section, we have studied soft finite intersection
property.

2. Preliminaries

Let X denote universal set andA be the set of parameters. Throughout this paper, we will take
only one parameter setA. The power set ofX is denoted byP(X).

Definition 2.1. Molodtsov (1999) A pair(F,A) is called a soft set over X, where F is a mapping
given by F: A→ P(X). We write F for the soft set(F,A).

Definition 2.2. Ayg̈unŏglu and Ayg̈un (2012),Ray and Goldar (2017) Suppose F be a soft set
such that F(t) 6= φ for all t ∈ A. A function a: A→ X is called soft element of F if a(t)∈ F(t)
for all t ∈ A. In this case we write a∈s F. Axiom of choice is needed to ensure the existence of
soft elements if A is infinite.

Definition 2.3. Ray and Goldar (2017) Let F: A→ P(X) be a soft set. The collection of all soft
elements of F is denoted by SE(F).
That is SE(F) = { f : f : A→ X, f (t) ∈ F(t), ∀ t ∈ A }. Hence SE(F) is defined for those soft
sets F such that F(t) 6= φ for all t ∈ A.

Definition 2.4. Ali et al. (2009),Çăgman and Enginŏglu (2010),Maji et al.
(2003),Pei and Miao (2005) Let F and H be two soft sets over X then H is said to be a
soft subset of F if H(t)⊆ F(t) for all t ∈ A. In this case we denote H⊂s F.

Definition 2.5. Ali et al. (2009),Çăgman and Enginŏglu (2010),Maji et al.
(2003),Pei and Miao (2005) Let F and H be two soft sets then thesoft union F∪sH and the soft



Goldar and Ray /JNRS, 2019, 8(2), 53-66 55

intersection F∩s H are defined by(F ∪s H)(t) = F(t)∪H(t) and (F ∩sH)(t) = F(t)∩H(t)
for all t ∈ A. It can be noted that SE(F ∪s H) ⊃ SE(F) ∪ SE(H), SE(F ∩s H) may not
be defined for(F ∩s H)(t) may be an empty set for some t. However if it be defined then
SE(F ∩sH) = SE(F)∩SE(H).

Definition 2.6. Ray and Goldar (2017) Let{Fi : i ∈ I} be a non-empty family of soft sets then
(i)the intersection∩sFi is a soft set defined by(∩sFi)(t) = ∩Fi(t) for all t ∈ A.
(ii)and the union∪sFi is also a soft set defined by(∪sFi)(t) = ∪Fi(t) for all t ∈ A.

Definition 2.7. Ray and Goldar (2017) For each a∈s F, a singleton soft set{a} is defined by
{a} : A→ P(X) such that{a}(t)= {a(t)}. Clearly a soft set F is singleton if F(t) is a singleton
set for every t. A singleton soft set contains only one soft element.

Definition 2.8. Maji et al. (2003) Two soft sets F and H are said to be soft equalif F (t) = H(t)
for all t ∈ A and it is denoted by F=s H. Also a,b∈s F are said to be soft equal if a(t) = b(t)
for all t ∈ A and a6=s b if ∃ t1 ∈ A such that a(t1) 6= b(t1).

Theorem 2.9.Ray and Goldar (2017) For two soft set F and H, H⊂s F if and only if SE(H)⊂
SE(F).

Definition 2.10. Çağman et al. (2011) Let F: A → P(X) be a soft set and F(t) 6= φ for all
t ∈ A. Letτ be a collection of some soft subsets of F.τ is called soft topology on F if
(1) Φ,F ∈ τ
(2) τ is closed under arbitrary soft union and finite soft intersection.
Note thatΦ : A→ P(X) is a soft set defined byΦ(t) = φ for all t ∈ A.

Definition 2.11. Çağman et al. (2015),Çăgman et al. (2011) Let< F,τ > be a soft topological
space. Every elements ofτ is called soft open sets. A soft set S⊂s F is called soft closed if the
soft complement of S, Sc ∈ τ where Sc(t) = F(t)−S(t) for all t ∈ A.

Theorem 2.12.Shabir and Naz (2011) If< F,τ > is a soft topological space then< F(t),τt >
is a topological space for all t∈ A, whereτt = {H(t) : H ∈ τ}.

Definition 2.13. Goldar and Ray (2017) If T⊂ SE(F) then we can think T as a soft set, T:
A→ P(X) with T(t) = {a(t) : a∈ T}.

Theorem 2.14.Let F be a soft set such that F(t) 6= φ for all t ∈ A. Letτt be a topology in F(t)
for all t ∈ A. Letτ be a collection of soft sets H such that H(t) ∈ τt for all t ∈ A. Thenτ is a
soft topology on F.

Proof. Let {Hi : i ∈ I} ⊂ τ thenHi(t) ∈ τt for all t ∈ A. So by Definition 2.6,(
⋃

i∈I

Hi)(t) =

⋃

i∈I

Hi(t) ∈ τt for all t ∈ A and(H1∩s H2)(t) = H1(t)∩H2(t) ∈ τt for all t ∈ A. The function

Φ : A → P(X), Φ(t) = φ for all t ∈ A, is in τ and alsoF ∈ τ. Hence< F,τ > is a soft
topological space.

Example 2.15. Suppose that A= {t1, t2} is a parameter set, X= {u1,u2,u3,u4} is the
universal set and F= {(t1,{u1,u2,u3}),(t2,{u1,u2,u3})} is a soft set over X. Letτt1 =
{φ ,{u1,u2,u3},{u2},{u2,u3},{u1,u2}} and τt2 = {φ ,{u1,u2,u3},{u1},{u1,u2},{u1,u3}}.
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Then it is clear thatτt1 andτt2 are topologies on F(t1) = {u1,u2,u3}, and F(t2) = {u1,u2,u3},
respectively.
Now by Theorem 2.14,τ = {H ⊂s F : H(t) ∈ τt}. Clearly Φ = {(t1,φ),(t2,φ)} and F =
{(t1,{u1,u2,u3}),(t2,{u1,u2,u3})} belongs toτ. The other members ofτ are
F1 = {(t1,{u1,u2,u3}),(t2,{u1})}
F2 = {(t1,{u1,u2,u3}),(t2,{u1,u2})}
F3 = {(t1,{u1,u2,u3}),(t2,{u1,u3})}
F4 = {(t1,{u2}),(t2,{u1,u2,u3})}
F5 = {(t1,{u2}),(t2,{u1})}
F6 = {(t1,{u2}),(t2,{u1,u2})}
F7 = {(t1,{u2}),(t2,{u1,u3})}
F8 = {(t1,{u2,u3}),(t2,{u1,u2,u3})}
F9 = {(t1,{u2,u3}),(t2,{u1})}
F10= {(t1,{u2,u3}),(t2,{u1,u2})}
F11= {(t1,{u2,u3}),(t2,{u1,u3})}
F12= {(t1,{u1,u2}),(t2,{u1,u2,u3})}
F13= {(t1,{u1,u2}),(t2,{u1})}
F14= {(t1,{u1,u2}),(t2,{u1,u2})}
F15= {(t1,{u1,u2}),(t2,{u1,u3})}
Thusτ = {Φ,F,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,F14,F15} is a soft topology on F.

Note 2.16.By Example 2.15 we see that for two differentτ ’s
(i){Φ,F,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,F14,F15} and
(ii) {Φ,F,F5,F7,F10,F14} there are sameτt1 andτt2. First τ is a soft topology but second one is
not a soft topology on F.

Remark 2.17. From Theorems 2.12 and 2.14 we get two important observations.
(i) If H is soft open then H(t) is open inτt for all t ∈ A, by Theorem 2.12. Conversely if H(t) is
open inτt for all t ∈ A then by Theorem 2.14, H∈ τ.
(ii) If H is soft closed then H(t) is closed inτt for all t ∈ A, by Theorem 2.12. Conversely if
H(t) is closed inτt for all t ∈ A then by Theorem 2.14, H is soft closed inτ.

Theorem 2.18.Goldar and Ray (2017) Let F: A→ P(X) be a soft set and< F,τ > is a soft
topological space. Defineτ∗ = {T ⊆ SE(F) : T(t) is open in(F(t),τt) }. Thenτ∗ is a topology
on SE(F).

Lemma 2.19.Goldar and Ray (2017) For N⊂s F, SE(N)(t) = N(t) for all t ∈ A.

Remark 2.20. Goldar and Ray (2017) If H∈ τ and SE(H) exists then H(t) ∈ τt for all t ∈ A
so SE(H)(t)∈ τt for all t ∈ A, hence SE(H) ∈ τ∗.
Again if F−sH ∈ τ and assuming SE(F−sH) exists then SE(F−sH) = SE(F)−SE(H) ∈ τ∗.
So H is soft open inτ implies SE(H) is open inτ∗ and H is soft closed inτ implies SE(H) is
closed inτ∗.

Definition 2.21. Çağman et al. (2011) Let< F,τ > be a soft topological space and H⊂s F.
Then the collectionτH = {K ∩sH : K ∈ τ} is called soft subspace topology on H.

Proposition 2.22.Let< F,τ > be a soft topological space and H⊂s F. Then< H(t),(τH)t >
is subspace topological space of< F(t),τt > for each t∈ A.
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Proof. Since< H,τH > is a soft topological space then clearly< H(t),(τH)t > is a topological
space for allt ∈ A. As H(t)⊂ F(t) then(τt)

H(t) is subspace topology ofH(t) for all t ∈ A. We
want to show that(τt)

H(t) = (τH)t .
Let α ∈ (τH)t. Sinceα ⊂ H(t) then∃ B∈ τH such thatB(t) = α for all t ∈ A. NowB= K∩sH
whereK ∈ τ which implies thatB(t) = K(t)∩H(t) andK(t) ∈ τt . So α = B(t) ∈ (τt)

H(t).
Therefore(τH)t ⊂ (τt)

H(t).
Conversely, lett0 ∈ A be fixed. Letα ∈ (τt0)

H(t0) thenα = B∩H(t0) whereB ∈ τt0. Define
S: A→ P(X) by

S(t) = B if t = t0
= F(t) if t 6= t0

HenceS∈ τ andα = S(t0)∩H(t0) = (S∩s H)(t0). So S∩s H ∈ τH which implies thatα =
(S∩s H)(t0) ∈ (τH)t0. Sincet0 ∈ A is arbitrary. Thereforeα ∈ (τH)t for all t ∈ A. Hence
(τt)

H(t) ⊂ (τH)t. Thus< H(t),(τH)t > is a subspace of< F(t),τt > for eacht ∈ A.

Proposition 2.23.Let<F,τ > be a soft topological space and H⊂s F. Then<SE(H),(τH)∗>
is subspace topological space of< SE(F),τ∗ >.

Proof. Since< H,τH > is a soft topological space then clearly< SE(H),(τH)∗ > is a topo-
logical space. AsSE(H)⊂ SE(F) then(τ∗)SE(H) is subspace topology ofSE(H). We want to
show that(τ∗)SE(H) = (τH)∗.
Let α ∈ (τH)∗ soα ⊂SE(H) andα(t)∈ (τH)t for all t ∈ A. Clearlyα(t)∈ (τt)

H(t) for all t ∈A.
Thereforeα(t) = H(t)∩Kt for someKt ∈ τt . DefineT : A→ P(X) by T(t) = H(t)∩Kt for all
t ∈ A. SoT(t)∈ τt for all t ∈ A asH is soft open. HenceT ∈ τ∗. Thusα ∈ SE(F), we can write
α = SE(H)∩T (considerT as a collection of soft elements see Definition 2.13). This shows
thatα ∈ (τ∗)SE(H). Thus(τH)∗ ⊂ (τ∗)SE(H).
Conversely, supposeβ ∈ (τ∗)SE(H) so β = SE(H) ∩ T where T ∈ τ∗ which implies that
β (t) = H(t)∩T(t) whereT(t) ∈ τt . Thereforeβ (t) ∈ (τt)

H(t) = (τH)t for all t ∈ A. Hence
β ∈ (τH)∗. Therefore(τ∗)SE(H) ⊂ (τH)∗. This complete the proof.

3. Soft Separation Axioms

Soft separation axioms is defined in (Shabir and Naz, 2011; Cagman et al., 2011). But in this
section, we have presented a new definition of softT0, T1, T2, T3 by using of soft elements and
these new definitions has the advantage that all the analogous elementary classical separation
axioms properties follows easily.

Definition 3.1. Let H and K be two soft sets. Thenα ∈s H ∩sK meansα(t) ∈ (H ∩sK)(t) =
H(t)∩K(t) for all t ∈ A. So H(t)∩K(t) 6= φ for all t ∈ A. Hence H∩sK = Φ means H(t)∩
K(t) = φ for some t∈ A.
Also let a,b be two soft elements then a=s b means a(t) = b(t) for all t ∈ A. So a6=s b means
a(t) 6= b(t) for some t∈ A. Here when we write H∩sK = Φ we are assumingΦ as a soft set.
So no contradiction with Definition 2.8.

Proposition 3.2. Let F be a soft set. a∈s Fc implies that a/∈s F but the converse is not true.

Proof. Let a∈s Fc

⇒ a(t) ∈ Fc(t) = [F(t)]c for all t ∈ A
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⇒ a(t) /∈ F(t) for all t ∈ A
⇒ a /∈s F.
Now leta /∈s F. Then at least onet1 ∈ A such thata(t1) /∈ F(t1) anda(t)∈ F(t) for t 6= t1. Thus
the converse is not true.

Definition 3.3. Let< F,τ > be a soft topological space. Then< F,τ > is called soft T0-space
if for every a,b∈s F with a 6=s b ∃ M,N ∈ τ such that
a∈s M and b/∈s M or b∈s N and a/∈s N.

Proposition 3.4. (i) Let< F,τ > be a soft topological space. If< F,τ > is a soft T0-space then
< F(t),τt > is T0-space for all t∈ A.
(ii) Let < F(t),τt > be a topological space. If< F(t),τt > is T0-space for all t∈A then< F,τ >
is a soft T0-space, whereτ is defined in Theorem 2.14.

Proof. (i) Let < F,τ > is a softT0-space. supposet1 ∈ A is fixed andα,β ∈ F(t1). Leta,b∈s F
be such thata(t) = b(t) for all t ∈ A exceptt = t1 anda(t1) = α, b(t1) = β . Soa 6=s b. Now
since< F,τ > is a softT0-space then there isH ∈ τ such thata ∈s H andb /∈s H. Clearly
a(t)= b(t)∈H(t) for all t ∈A exceptt = t1. Henceb(t1) /∈H(t1). This shows that<F(t1),τt1 >
beT0-space. Sincet1 ∈ A is arbitrary. Therefore< F(t),τt > is T0-space for allt ∈ A.
(ii) Let < F(t),τt > beT0-space. Also leta,b∈s F with a 6=s b. Then at least onet1 ∈ A such
that a(t1) 6= b(t1). Let Mt1,Nt1 ∈ τt such thata(t1) ∈ Mt1 andb(t1) /∈ Mt1 or b(t1) ∈ Nt1 and
a(t1) /∈ Nt1. DefineH,K : A→ P(X) such that

H(t) = Mt1 if t = t1
= F(t) if t 6= t1 and

K(t) = Nt1 if t = t1
= F(t) if t 6= t1

ClearlyH,K are soft sets andH,K ∈ τ by Theorem 2.14. Hencea∈s H andb /∈s H or b∈s K
anda /∈s K. Therefore< F,τ > is a softT0-space.

Example 3.5. Suppose that A= {t1, t2} is a parameter set, X= {u1,u2} is the universal set
and F= {(t1,{u1,u2}),(t2,{u1,u2})} is a soft set over X. Letτ = {Φ,F,F1,F2,F3} be a soft
topology on F, where
Φ = {(t1,φ),(t2,φ)}
F1 = {(t1,{u1,u2}),(t2,{u2})}
F2 = {(t1,{u1}),(t2,{u1,u2})}
F3 = {(t1,{u1}),(t2,{u2})}
Clearly < F,τ > is a soft T0-space. Since a= {(t1,u1),(t2,u1)}, b= {(t1,u1),(t2,u2)}, c =
{(t1,u2),(t2,u1)} and d= {(t1,u2),(t2,u2)} are soft elements of F and for every a,b∈s F with
a 6=s b ∃ M,N ∈ τ such that
a∈s M and b/∈s M or b∈s N and a/∈s N.
Now we haveτt1 = {φ ,{u1,u2},{u1}} and τt2 = {φ ,{u1,u2},{u2}}. Also it is clear that<
F(t),τt > is T0-space for all t∈ A.

Example 3.6.Suppose that A= {t1, t2} is a parameter set, X= {u1,u2,u3} is the universal set
and F= {(t1,{u1,u2}),(t2,{u2,u3})} is a soft set over X. Letτt1 = {φ ,{u1,u2},{u2},{u1}}
andτt2 = {φ ,{u2,u3},{u2},{u3}}. Then it is clear thatτt1 andτt2 are topologies on F(t1) =
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{u1,u2}, and F(t2) = {u2,u3}, respectively. Also< F(t),τt > is T0-space for all t∈ A.
Now by Theorem 2.14,τ = {H ⊂s F : H(t) ∈ τt}. Clearly Φ = {(t1,φ),(t2,φ)} and F =
{(t1,{u1,u2}),(t2,{u2,u3})} belongs toτ. Now the other soft subsets of F which belongs to
τ are
F1 = {(t1,{u1}),(t2,{u3})}
F2 = {(t1,{u1}),(t2,{u2,u3})}
F3 = {(t1,{u1}),(t2,{u2})}
F4 = {(t1,{u2}),(t2,{u2,u3})}
F5 = {(t1,{u2}),(t2,{u3})}
F6 = {(t1,{u2}),(t2,{u2})}
F7 = {(t1,{u1,u2}),(t2,{u2})}
F8 = {(t1,{u1,u2}),(t2,{u3})}
Thusτ = {Φ,F,F1,F2,F3,F4,F5,F6,F7,F8} is a soft topology on F. Now a= {(t1,u1),(t2,u2)},
b = {(t1,u1),(t2,u3)}, c= {(t1,u2),(t2,u2)} and d= {(t1,u2),(t2,u3)} are soft elements of F
and for every a,b∈s F with a 6=s b ∃ M,N ∈ τ such that
a∈s M and b/∈s M or b∈s N and a/∈s N.
Hence< F,τ > is a soft T0-space.

Example 3.7. Let< F,τ > be a soft topological space where F(t) = {0,1} for all t ∈ A and
τt be Sierpinski topology that isτt = {{0,1},{1},φ}. Clearly< F(t),τt > is T0-space for all
t ∈ A. Now we will show that< F,τ > is a soft T0-space whereτ = {H ⊂s F : H(t) ∈ τt}.
Supposeα,β ∈s F with α 6= β . Then∃ t1 ∈ A such thatα(t1) 6= β (t1). Supposeα(t1) = 0 and
β (t1) = 1 (say). Define a soft set H such that

H(t) = {1} if t = t1
= F(t) if t 6= t1

Then clearly H∈ τ and H containsβ but notα. Thus< F,τ > is a soft T0-space.

Example 3.8.Let< F,τ > be a soft topological space where
F(t) = {0,1} with τt = indiscrete topology for all t∈ A except t= t1 and
F(t) = {0,1} with τt = discrete topology for t= t1.Clearly< F(t),τt > is not T0-space for all
t ∈ A. We will show that< F,τ > is not a soft T0-space, whereτt = {E ∈ τ : E(t) ∈ τt}. Let

a(t) = {1} if t = t1
= {0} if t 6= t1

and b(t) = {1} for all t ∈ A. Clearly a6=s b. If a soft open set H contains a then a(t) ∈ H(t)
for all t ∈ A. Now H(t) = {0,1} for all t ∈ A except t= t1. So b(t) ∈ H(t) for t 6= t1 and
a(t1) = b(t1) ∈ H(t1). This shows that< F,τ > is not soft T0-space.

Definition 3.9. Let< F,τ > be a soft topological space. Then< F,τ > is called soft T1-space
if for every a,b∈s F with a 6=s b ∃ M,N ∈ τ such that
a∈s M and b/∈s M and b∈s N and a/∈s N.

Proposition 3.10. (i) Let < F,τ > be a soft topological space. If< F,τ > is a soft T1-space
then< F(t),τt > is T1-space for all t∈ A.
(ii) Let < F(t),τt > be a topological space. If< F(t),τt > is T1-space for all t∈A then< F,τ >
is a soft T1-space, whereτ is defined in Theorem 2.14.
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Proof. (i) < F,τ > is a softT1-space. supposet1 ∈ A is fixed andα,β ∈ F(t1). Let a,b∈s F be
such thata(t) = b(t) for all t ∈ A exceptt = t1 anda(t1) = α, b(t1) = β . Soa 6=s b. Now since
< F,τ > is a softT0-space then there areH,K ∈ τ such thata∈s H andb /∈s H andb∈s K and
a /∈s K. Clearlya(t) = b(t)∈ H(t) for all t ∈ A exceptt = t1. Henceb(t1) /∈ H(t1) and similarly
a(t1) /∈ K(t1). This shows that< F(t1),τt1 > beT1-space. Sincet1 ∈ A is arbitrary. Therefore
< F(t),τt > is T1-space for allt ∈ A.
(ii) Let < F(t),τt > beT1-space. Also leta,b∈s F with a 6=s b. Then at least onet1 ∈ A such
that a(t1) 6= b(t1). Let Mt1,Nt1 ∈ τt such thata(t1) ∈ Mt1 andb(t1) /∈ Mt1 andb(t1) ∈ Nt1 and
a(t1) /∈ Nt1. DefineH,K : A→ P(X) such that

H(t) = Mt1 if t = t1
= F(t) if t 6= t1 and

K(t) = Nt1 if t = t1
= F(t) if t 6= t1

ClearlyH,K are soft sets andH,K ∈ τ by Theorem 2.14. Hencea∈s H andb /∈s H andb∈s K
anda /∈s K. Therefore< F,τ > is a softT1-space.

Theorem 3.11.Let< F,τ > be a soft topological space. Every single point soft set in F is soft
closed if and only if< F,τ > is soft T1-space.

Proof. Let a ∈s F. We know that{a} : A → P(X) is a single point soft set if and only if
{a}(t) = {a(t)} is a single point set for everyt ∈ A. Since< F(t),τt > is a topological space,
every single point set inF(t) is closed if and only if< F(t),τt > is T1-space. Hence from
Remark 2.17 and Proposition 3.10 the theorem is proved.

Definition 3.12. Let< F,τ > be a soft topological space. Then< F,τ > is called soft T2-space
or soft Hausdorff space if for every a,b∈s F with a 6=s b ∃ M,N ∈ τ such that a∈s M, b∈s N
and M∩sN =s Φ.

Proposition 3.13. (i) Let < F,τ > be a soft topological space. If< F,τ > is a soft Hausdorff
space then< F(t),τt > is Hausdorff space for all t∈ A.
(ii) Let < F(t),τt > be a topological space. If< F(t),τt > is Hausdorff space for all t∈ A then
< F,τ > is a soft Hausdorff space, whereτ is defined in Theorem 2.14.

Proof. (i) Let < F,τ > is a soft Hausdorff space. Also lett0 ∈ A be fixed andα,β ∈ F(t0) with
α 6= β . Take a soft elementx of the soft setF. Definea,b : A→ X such that

a(t) = α if t = t0
= x(t) if t 6= t0 and

b(t) = β if t = t0
= x(t) if t 6= t0

Clearlya,b∈s F anda 6=s b. Now since< F,τ > is a soft Hausdorff space then∃ M,N ∈ τ such
thata∈s M, b∈s N andM∩sN =s Φ. This implies thata(to) = α ∈ M(t0), b(t0) = β ∈ N(t0).
Now x(t) ∈ (M∩sN)(t) for t 6= t0 this shows thatM(t)∩N(t) 6= φ for t 6= t0 but M∩sN =s Φ.
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HenceM(t0)∩N(t0) = φ . Sincet0 is arbitrary. Hence< F(t),τt > be Hausdorff space for all
t ∈ A.
(ii)Let < F(t),τt > be Hausdorff space. Also Leta,b ∈s F with a 6=s b. Then∃ t1 ∈ A such
thata(t1) 6= b(t1). Let Mt1,Nt1 be disjoint open sets inτt such thata(t1) ∈ Mt1 andb(t1) ∈ Nt1.
DefineH,K : A→ P(X) such that

H(t) = Mt1 if t = t1
= F(t) if t 6= t1 and

K(t) = Nt1 if t = t1
= F(t) if t 6= t1

Then H ∩s K = Φ. Also by Theorem 2.14M and N are soft open sets containing the soft
elementsa andb respectively. Therefore< F,τ > is a soft Hausdorff space.

Definition 3.14. Let< F,τ > be a soft topological space. Then< F,τ > is called soft regular
space if for every a∈s F and a soft closed set E⊂s F with a /∈s E ∃ M,N ∈ τ such that a∈s M,
E ⊂s N and M∩sN =s Φ.

Proposition 3.15. (i) Let < F,τ > be a soft topological space. If< F,τ > is a soft regular
space then< F(t),τt > is regular space for all t∈ A.
(ii) Let < F(t),τt > be a topological space. If< F(t),τt > is regular space for all t∈ A then
< F,τ > is a soft regular space, whereτ is defined in Theorem 2.14.

Proof. (i) Let < F,τ > be a soft regular space andx∈s F. Let t1 ∈ A be fixed andSbe a closed
set inF(t1) with α ∈ F(t1) such thatα /∈ S. Definea : A→ X andE : A→ P(X) such that

a(t) = α if t = t1
= x(t) if t 6= t1 and

E(t) = S if t = t1
= F(t) if t 6= t1

ThenE is soft closed asE(t) is closed for allt ∈ A. Clearlya /∈s E asa(t1) /∈ E(t1). Hence
∃ M,N ∈ τ such thata∈s M, E ⊂s N andM∩sN =s Φ. Since(M∩sN)(t) = φ for t = t1, we
conclude thatM(t1)∩N(t1) = φ . This completes the proof for first part.
(ii) Let < F(t),τt > be regular space. Also Leta∈s F andE be a soft closed subset ofF with
a /∈s E. So there ist1 ∈ A such thata(t1) /∈ E(t1). Let Mt1,Nt1 be disjoint open sets inτt such
thata(t1) ∈ Mt1 andE(t1)⊂ Nt1. DefineH,K : A→ P(X) such that

H(t) = Mt1 if t = t1
= F(t) if t 6= t1 and

K(t) = Nt1 if t = t1
= F(t) if t 6= t1

ThenH andK are two disjoint soft sets containinga andE respectively. Hence< F,τ > is a
soft regular space.
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Note 3.16.A soft regular space which is also soft T1, is called soft T3-space.

Definition 3.17. Let< F,τ > be a soft topological space. Then< F,τ > is called soft normal
space if for every soft closed sets E1,E2 ⊂s F with E1∩sE2 =s Φ ∃ M,N ∈ τ such that E1 ⊂s M,
E2 ⊂s N and M∩sN =s Φ.

Proposition 3.18.(i) Let< F,τ > be a soft topological space. If< F,τ > is a soft normal space
then< F(t),τt > is normal space for all t∈ A.
(ii) Let < F(t),τt > be a topological space. If< F(t),τt > is normal space for all t∈ A then
< F,τ > is a soft normal space, whereτ is defined in Theorem 2.14.

Proof. Let< F,τ > be a soft normal space. Lett1 ∈ A be fixed andS1, S2 be two closed sets in
F(t1) with S1∩S2 = φ . DefineE1 : A→ P(X) andE2 : A→ P(X) such that

E1(t) = S1 if t = t1
= F(t) if t 6= t1 and

E2(t) = S2 if t = t1
= F(t) if t 6= t1

ThenE1 andE2 is soft closed asE1(t) andE2(t) is closed for allt ∈ A. ClearlyE1∩sE2 =s Φ.
Hence∃ M,N ∈ τ such thatE1 ⊂s M, E2 ⊂s N andM ∩s N =s Φ. Since(M∩s N)(t) = φ for
t = t1, we conclude thatM(t1)∩N(t1) = φ . This completes the proof for first part.

Conversely, let< F(t),τt > be normal space. Also LetE1 andE2 be two soft closed subset of
F with E1∩sE2 =s Φ. So there ist1 ∈ A such thatE1(t1)∩E2(t1) = φ . Let Mt1,Nt1 be disjoint
open sets inτt such thatE1(t1)⊂ Mt1 andE2(t1)⊂ Nt1. DefineH,K : A→ P(X) such that

H(t) = Mt1 if t = t1
= F(t) if t 6= t1 and

K(t) = Nt1 if t = t1
= F(t) if t 6= t1

ThenH andK are two disjoint soft sets containingE1 andE2 respectively. Hence< F,τ > is a
soft normal space.

Note 3.19.A soft normal space which is also soft T1, is called soft T4-space.

Remark 3.20. Soft T4-space⇒ Soft T3-space⇒ Soft T2-space⇒ Soft T1-space⇒ Soft T0-
space.

Proposition 3.21. Let < F,τ > be a soft topological space and H⊂s F. If < F,τ > is soft
Ti-space then< H,τH > is a soft Ti-space for i= 0,1,2,3,4.

Proof. We prove only for softT0 space. The others are similar.
Let< F,τ > be softT0-space andH ⊂s F. Let a,b ∈s H with a 6=s b then∃ soft open sets
M,N ∈ τ such thata∈s M andb /∈s M or b∈s N anda /∈s N. Now a∈s H anda∈s M implies
a∈s H ∩sM ∈ τH whereM ∈ τ.
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Consider,b /∈s M this means thatb(t) /∈ M(t) for somet ∈ A. Thenb(t) /∈ H(t)∩M(t) =
(H ∩s M)(t) for somet ∈ A implies thatb /∈s H ∩s M ∈ τH . Similarly it can be proved that if
b ∈s N anda /∈s N thenb ∈s H ∩s N ∈ τH anda /∈s H ∩s N ∈ τH . Thus< H,τH > is a soft
T0-space.

4. Soft Compactness

Definition 4.1. Ayg̈unŏglu and Ayg̈un (2012),Zorlutuna et al. (2012) Let< F,τ > be a soft
topological space and H⊂s F. A collectionCs of soft subsets of F is said to be a soft cover of
H if H ⊂s∪s{K : K ∈ Cs}.
A soft coverCs of H is said to be a soft open cover of H if every members ofCs is a soft open
set in< F,τ >.

Definition 4.2. Ayg̈unŏglu and Ayg̈un (2012),Zorlutuna et al. (2012) Let< F,τ > be a soft
topological space and H⊂s F. Then H is said to be soft compact in< F,τ > if every soft
open cover of H has a finite soft subcover of H.
If H =s F then F is said to be soft compact space.

Theorem 4.3. Let< F,τ > be a soft topological space and H⊂s F. If H is a soft compact in
< F,τ > then H(t) is compact in< F(t),τt >.

Proof. Let H is soft compact then every soft open cover ofH has a finite soft subcover ofH.
Let t0 ∈ A be fixed. LetCt0 = {B : B∈ τt0} is a open cover ofH(t0). For eachB∈ Ct0 define
KB : A→ P(X) such that

KB(t) = B if t = t0
= F(t) if t 6= t0

Then{KB : B∈ Ct0} is a soft open cover ofH. As H is soft compact there isB1,B2, ....,Bn such
that KB1,KB2, ....,KBn will cover H. Hence{B1,B2, ....,Bn} is a finite subcover ofCt0 which
coversH(t0). Sincet0 ∈ A is arbitrary. Hence the theorem is proved.

Theorem 4.4. Let < F,τ1 > and< F,τ2 > be two soft topological space andτ1 ⊆ τ2. If <
F,τ2 > is a soft compact topological space then< F,τ1 > is also soft compact topological
space.

Proof. SupposeCs = {K : K ⊂s F and K∈ τ1} is a soft open cover in< F,τ1 >. Sinceτ1 ⊆ τ2

soCs is also a soft open cover in< F,τ2 >. Now< F,τ2 > is soft compact then∃ a finite soft
subcoverC

′

s of Cs which is also a finite soft cover in< F,τ1 >. Hence< F,τ1 > is also soft
compact.

Theorem 4.5. Let < F,τ > be a soft topological space and Hi are soft compact subset of F

where i= 1,2, ....,n then
n⋃

i=1

Hi is a soft compact subset of F.

Proof. Let< F,τ > be a soft topological space andH1,H2, ....,Hn are soft compact subset ofF.

AssumeH =s

n⋃

i=1

Hi andC is a soft open cover ofH. For eachi defineCi = {Hi ∩K : K ∈ C }.

So Ci is a soft open cover ofHi . SinceHi is soft compact then there is a finite collection
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{Hi ∩K i
1,Hi ∩K i

2, ......,Hi∩K i
m} which also coverHi . Clearly{K i

j : i = 1,2, ...,n; j = 1,2, ...,m}

is a finite subcover ofC which also coverH. Thus
n⋃

i=1

Hi is a soft compact subset ofF.

Theorem 4.6.Let< F,τ > be a soft topological space and the collectionCs= {K : K is a
so f t compact closed subset o f F} then

⋂

K∈Cs

K is a soft compact subset of F.

Proof. Let< F,τ > be a soft topological space and the collectionCs = {K : K is a
so f t compact closed subset o f F}. Now

⋂

K∈Cs

K is a soft closed subset ofF , since for allK ∈Cs

is soft closed. Again
⋂

K∈Cs

K ⊂s K. Hence
⋂

K∈Cs

K is soft compact subset ofF.

Theorem 4.7.Atmaca (2016) Every soft closed subset of a soft compact space is soft compact.

Theorem 4.8.Let< F,τ > be a soft Hausdorff space, a∈s F and H be soft compact with and
a /∈s H. Then∃ soft open sets U and V such that a∈s U, H ⊂s V and U∩sV = Φ.

Proof. Let< F,τ > be a soft Hausdorff space. LetH be soft compact set anda /∈s H. For each
x∈s H there are soft open setsSx andTx such thatx∈s Sx, a∈s Tx andSx∩sTx =s Φ. The family
{Sx : x∈s H} is a soft open cover ofH. As H is soft compact then there is a finite subcollection

of soft sets{Sx1,Sx2, ....,Sxn} which also coverH. LetU =
n⋂

i=1

Txi andV =
n⋃

i=1

Sxi , thenU andV

are disjoint soft open sets containinga andH respectively andU ∩sV = Φ.

Theorem 4.9. Let< F,τ > be a soft Hausdorff space and H be any soft compact subset of F.
Then H is soft closed set.

Proof. Let < F,τ > be a soft Hausdorff space andH be any soft compact subset ofF. Then
by Theorem 4.8, for anya ∈s Hc ∃ soft open soft setsU andV such thata∈s U , H ⊂s V and
U ∩sV = Φ. In particularU ∩sH = Φ and henceU ⊂s Hc. ThusHc is a soft neighbourhood of
each of its points. SoHc is soft open andH is soft closed.

Theorem 4.10.Every soft compact Housdorff space is soft regular.

Proof. Let < F,τ > be a soft compact Hausdorff space. Then every soft closed subset ofF is
soft compact and so the space< F,τ > is soft regular by Theorem 4.8.

Theorem 4.11.Let< F,τ > be a soft regular space, H be a soft closed subset of F and K be
soft compact subset of F with H∩sK = Φ. Then∃ soft open sets U and V such that H⊂s U,
K ⊂s V and U∩sV = Φ.

Proof. Let < F,τ > be a soft regular space,H a soft closed subset ofF andK be soft compact
subset ofF with H ∩sK = Φ. Let a ∈s K thena /∈s H. By regularity of< F,τ > we get, for
eacha ∈s K there are soft open setsSa andTa such thata ∈s Sa, H ⊂s Ta andSa∩s Ta =s Φ.
The family{Sa : a∈s K} is a soft open cover ofK. As K is soft compact then there is a finite
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subcollection of soft sets{Sa1,Sa2, ....,San} which also coverK. LetU =
n⋂

i=1

Tai andV =
n⋃

i=1

Sai ,

thenU andV are disjoint soft open sets containingH andK respectively andU ∩sV = Φ.

Theorem 4.12.Every soft compact Housdorff space is soft normal.

Proof. The proof of the theorem is follows from Theorems 4.10 and 4.11

Definition 4.13. A familyF of soft subset of F is said to posses finite intersection property (FIP)
if soft intersection of any finite soft subcollection ofF is non-empty.

Theorem 4.14.Let< F,τ > be a soft topological space andF be a family of soft subset of F .
If F has FIP then the collectionFt = {H(t) : H ∈ F} of F(t) has FIP also for all t∈ A.

Proof. Let F has FIP andt0 ∈ A be fixed. Let{Bi : i ∈ I} be a collection of sets ofF(t0) in Ft0.
DefineFi : A→ P(X) by

Fi(t) = Bi if t = t0
= F(t) if t 6= t0.

HenceFi is soft set andFi ∈ F. SinceF has FIP then for every finiteF1,F2, .....,Fn such that
n⋂

i=1

Fi 6=s Φ which implies that(
n⋂

i=1

Fi)(t0) =
n⋂

i=1

Fi(t0) =
n⋂

i=1

Bi 6= Φ(t0) = φ . Sincet0 ∈ A is

arbitrary. Thus the theorem is true for allt ∈ A.

Theorem 4.15.A soft topological space< F,τ > is soft compact if and only if for every family
of soft closed sets having FIP has nonempty soft intersection.

Proof. A soft topological space< F,τ > is soft compact⇔ no finite sub collection of a collec-
tion of soft open setsA coverF thenA does not coverF.
Let Cs = {F −G : G ∈ A }. ThenCs is a collection of soft closed sets andCs has FIP is
equivalent to above statement. This completes the proof.
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