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Abstract: In this study, we generalize the well-known formulae of de-Moivre and Euler of hyperbolic numbers to dual-hyperbolic
numbers. Furthermore, we investigate the roots and powers of a dual-hyperbolic number by using these formulae. Consequently,
we give some examples to illustrate the main results in this paper.
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1 Introduction

The number systems of two- dimensional numbers have taken place in literature with a multi-perspective approach. The hyperbolic numbers
were first introduced by J. Cockle [1] and elaborated by I.M. Yaglom [2]. At the end of the 20th century, O. Bodnar, A. Stakhov and I.S.
Tkachenko revealed a hyperbolic function class with gold ratio [3]. In recent years, there have been a great number of studies referring to
hyperbolic numbers [4]-[9]. One of the most important recent studies has been given by A. Harkin and J. Harkin and generalized trigonometry
including complex, hyperbolic and dual numbers were studied [10]. Any hyperbolic number (or split complex number, perplex number, double
number) z = x+ j y is a pair of real numbers (x, y), which consists of the real unit +1 and hyperbolic (unipotent) imaginary unit j satisfying
j2 = 1, j 6= ±1. Therefore, hyperbolic numbers are elements of two-dimensional real algebra

H =
{
z = x+ jy |x, y ∈ R and j2 = 1 (j 6= ±1)

}
which is generated by 1 and j. The module of a hyperbolic number z is defined by

|z| =
{
∓
√
x2 − y2

∓
√
y2 − x2

; |x| ≥ |y|
; |x| ≤ |y|

and its argument is ϕ = arctanh
( y
x

)
and represented by arg (z). Any hyperbolic number z can be given by one of the following forms;

a−) z = r (coshϕ+ j sinhϕ)
b−) z = r (sinhϕ+ j coshϕ) .

The hyperbolic number given in (a) and (b) is called the first and second type hyperbolic number, respectively, see figure 1.
On the other hand, the developments in the number theory present us new number systems including the dual numbers which are expressed

by the real and dual parts similar to hyperbolic numbers. This idea was first introduced by W. K. Clifford to solve some algebraic problems
[11]. Afterwards, E. Study presented different theorems with his studies on kinematics and line geometry [12].

A dual number is a pair of real numbers which consists of the real unit +1 and dual unit ε satisfying ε2 = 0 for ε 6= 0. Therefore, the dual
numbers are elements of two-dimensional real algebra

D =
{
z = x+ εy |x, y ∈ R, ε2 = 0, ε 6= 0

}
which is generated by +1 and ε.

Similar to the hyperbolic numbers, the module of a dual number z is defined by |z| = |x+ εy| = |x| = r and its argument is θ = y
x and

represented by arg (z). The set of all points which satisfy the equation |z| = |x| = r > 0 and which are on the dual plane are the lines x = ±r
[2]. This circle is called the Galilean circle on a dual plane. Let S be a circle centered with O and M be a point on S. If d is the line OM , and
α is the angle δOd, a Galilean circle can be seen in the following figure 2.
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Fig. 1: Representation of hyperbolic numbers at a coordinate plane

So, one can easily see that

cosgα =
|OP |
|OM | = 1 , singα =

|MP |
|OM | =

δOd
1

= α.

Moreover, the exponential representation of a dual number z = x+ εy is in the form of z = xeεα where y
x is dual angle and it is shown as

arg (z) = y
x = α [3]. In addition, from the definitions of Galilean cosine and sine, we realize

cosg (α) = 1 and sing (α) =
y

x
= α.

By considering the exponential rules, we write

cosg (x+ y) = cosg (x) cosg (y)− ε2sing (x) sing (y) ,

sing (x+ y) = sing (x) cosg (y) + cosg (x) sing (y) ,

cosg2 (x) + ε2sing2 (x) = 1

[10].
E. Cho proved that de-Moivre formula for the hyperbolic numbers is admissible for quaternions [13]. Also, Yaylı and Kabadayı gave the

de-Moivre formula for dual quaternions [14]. This formula was also investigated for the case of hyperbolic quaternions in [15]. In this study,
we first introduce dual-hyperbolic numbers and algebraic expressions on dual hyperbolic numbers. We also generalize de-Moivre and Euler
formulae given for hyperbolic and dual numbers to dual-hyperbolic numbers. Then we have found the roots and forces of the dual-hyperbolic
numbers. Finally, the obtained results are supported by examples.

2 Dual-Hyperbolic numbers

A dual-hyperbolic number ω can be written in the form of hyperbolic pair (z1, z2) such that +1 is the real unit and ε is the dual unit. Thus, we
denote dual-hyperbolic numbers set by

Fig. 2: Galilean unit circle
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DH =
{
ω = z1 + εz2 | z1, z2 ∈ H and ε2 = 0, ε 6= 0

}
.

If we consider hyperbolic numbers z1 = x1 + jx2 and z2 = x3 + jx4, we represent a dual-hyperbolic number

ω = x1 + x2j + x3ε+ x4εj.

Here j, ε and εj are unit vectors in three-dimensional vectors space such that j is a hyperbolic unit, ε is a dual unit, and εj is a dual-hyperbolic
unit [16]. So, the multiplication table of dual-hyperbolic numbers’ base elements is given below.

× 1 j ε jε
1 1 j ε jε
j j 1 jε ε
ε ε jε 0 0
jε jε ε 0 0

Table 1 Multiplication Table of Dual-Hyperbolic Numbers

We define addition and multiplication on dual-hyperbolic numbers as follows

ω1 + ω2 = (z1 ± εz2) + (z3 ± εz4) = (z1 ± z3) + ε (z2 ± z4) ,
ω1 × ω2 = (z1 + εz2)× (z3 + εz4) = z1z3 + ε (z1z4 + z2z3)

where ω1 and ω2 are dual-hyperbolic numbers and z1, z2, z3, z4 ∈ H . On the other hand, the division of two dual-hyperbolic numbers is

ω1
ω2

=
z1 + εz2
z3 + εz4

=
z1
z3

+ ε
z2z3 − z1z4

z32
,

where Re (ω2) 6= 0.
Thus, dual-hyperbolic numbers yield a commutative ring whose characteristic is 0. If we consider both algebraic and geometric properties

of dual-hyperbolic numbers, we define five possible conjugations of dual-hyperbolic numbers. These are

ω†1 = z̄1 + εz̄2, (hyperbolic conjugation) ,

ω†2 = z1 − εz2, (dual conjugation) ,

ω†3 = z̄1 − εz̄2, (coupled conjugation) ,

ω†4 = z1

(
1− ε z2z1

)
(ω ∈ DH −A) , (dual− hyperbolic conjugation) ,

ω†5 = z2 − εz1, (anti− dual conjugation) ,

where "-" denotes the standard hyperbolic conjugation and the zero divisors of DH is defined by the set A [17].
In regards to these definitions, we give the following proposition for modules of dual-hyperbolic numbers.

Proposition 1. Let ω = z1 + εz2 be a dual-hyperbolic number. Then we write

|ω|2†1 = ω × ω†1 = |z1|2 + 2εRe (z1z̄2) ∈ D
|ω|2†2 = ω × ω†2 = z21 ∈ H
|ω|2†3 = ω × ω†3 = |z1|2 − 2jεIm (z1z̄2) ∈ DH
|ω|2†4 = ω × ω†4 = |z1|2 ∈ R (ω ∈ DH −A)

|ω|2†5 = ω × ω†5 = z1z2 + ε
(
z22 − z21

)
∈ DH

[17].

3 De-Moivre and Euler formulae for Dual-Hyperbolic number

The exponential representation of a dual-hyperbolic number is ω = z1 e
z2
z1
ε, where ω = z1 + εz2 ∈ DH is a dual-hyperbolic number and

(z1 6= 0). The dual-hyperbolic angle z2
z1

is called the argument of dual-hyperbolic number and it is denoted by argω = z2
z1

= ϕ [17].

Theorem 1. Let ω = z1 + εz2 ∈ DH −A be a dual-hyperbolic number and ϕ be the principal argument of ω. Every dual-hyperbolic number
can be written in the form of

w = z1e
εϕ

= z1 (cosg(ϕ) + εsing(ϕ)) =

{
r (coshϕ+ j sinhϕ) (cosg(ϕ) + εsing(ϕ)) , |x1| > |y1|
r (sinhϕ+ j coshϕ) (cosg(ϕ) + εsing(ϕ)) , |y1| > |x1|

such that cosg(ϕ) = 1 and sing(ϕ) = ϕ.
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Proof: The exponential representation of a dual-hyperbolic number ω = z1 + εz2 ∈ DH −A is ω = z1 e
z2
z1
ε, where dual-hyperbolic number

z2
z1

is the principal argument ϕ. Thus, if we write ω in the form of

ω = z1e
εϕ = z1

(
1 + εϕ+

(εϕ)2

2!
+

(εϕ)3

3!
+ ....................

)

from properties of the dual unit, we see that

ω = z1e
εϕ = z1 (1 + εϕ) = z1 (cosg(ϕ) + εsing(ϕ)) .

Eventually, by considering each case of |x1| > |y1| or |y1| > |x1| if we substitute the hyperbolic number z1 = x1 + j y1 ∈ H into the last
equation we get

ω =

{
r (coshϕ+ j sinhϕ) (cosg(ϕ) + εsing(ϕ)) , |x1| > |y1| ,
r (sinhϕ+ j coshϕ) (cosg(ϕ) + εsing(ϕ)) , |y1| > |x1| .

�

Theorem 2. Let ω = z1 + εz2 ∈ DH −A be a dual-hyperbolic number and argω = z2
z1

= ϕ. Then 1
eεϕ = eε(−ϕ).

Proof: If we use the Euler formula for 1
eεϕ , we have

1
eεϕ = 1(

1+εϕ+
(εϕ)2

2! +
(εϕ)3

3! +....................
)

= 1
cos g(ϕ)+ε sin g(ϕ)

.

If we multiply both the numerator and the denominator of the last fraction by cosg(ϕ)− εsing(ϕ), we get

1
eεϕ = 1

cosg(ϕ)+εsing(ϕ)
(cosg(ϕ)−εsing(ϕ))
(cosg(ϕ)−εsing(ϕ))

=
cosg(ϕ)−εsing(ϕ)

cosg2(ϕ)
.

If we consider equality cosg2(ϕ) = 1, we have

1

eεϕ
= cosg(ϕ)− εsing(ϕ).

This gives us the relation

1

eεϕ
= cosg(ϕ)− εsing(ϕ) = cosg(−ϕ) + εsing(−ϕ).

As a consequence, we get 1
eεϕ = eε(−ϕ). �

Theorem 3. Let ω = z1 + εz2 ∈ DH −A be a dual-hyperbolic number and ω = z1e
εϕ = z1 (cosg(ϕ) + εsing(ϕ)) be its polar represen-

tation. Then, the equation

ωn =
(
z1e

εϕ)n = (z1(cosg(ϕ) + εsing(ϕ))n = z1
n (cosg(nϕ) + εsing(nϕ))

yields for all non-negative integers.

Proof: First, let’s prove that de-Moivre formula is correct for n ∈ N . For this, under consideration the Galilean trigonometric identities, for
n = 2 the dual-hyperbolic number ω = z1e

εϕ ∈ DH −A becomes

(z1e
εϕ)2 = z1 (cosg(ϕ) + εsing(ϕ)) z1 (cosg(ϕ) + εsing(ϕ))

= z1
2
(

cosg2(ϕ) + ε (cosg(ϕ)sing(ϕ) + sing(ϕ)cosg(ϕ))
)

= z1
2 (cosg(2ϕ) + εsing(2ϕ)) .

Suppose that the equality is true for n = k, that is,

(z1(cosg(ϕ) + εsing(ϕ))k = z1
k (cosg(kϕ) + εsing(kϕ)) .

Then for the case n = k + 1, we find

(z1(cosg(ϕ) + εsing(ϕ))k+1 = z1(cosg(ϕ) + εsing(ϕ))k (z1(cosg(ϕ) + εsing(ϕ))

= z1
k (cosg(kϕ) + εsing(kϕ)) z1 (cosg(kϕ) + εsing(kϕ))

= z1
k (cosg(kϕ)cosg(ϕ) + ε (cosg(kϕ)sing(ϕ) + sing(kϕ)cosg(ϕ)))

= z1
k+1 (cosg((k + 1)ϕ) + εsing((k + 1)ϕ)) .
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Here zk1 = rk (cosh (kϕ) + j sinh (kϕ)) for |x1| > |y1| and r = |z1| = ∓
√
x12 − y12. Moreover, zk1 = rk (sinh (kϕ) + j cosh (kϕ)) for

|y1| > |x1| and r = |z1| = ∓
√
y12 − x12. On the other hand, for ω = z1e

εϕ ∈ DH −A and n ∈ N we can write

w−n = z1
−n (cosg(nϕ)− εsing(nϕ))

= z1
−n (cosg(−nϕ) + εsing(−nϕ)) .

Thus, for all n ∈ Z we obtain

ωn =
(
z1e

εϕ)n = (z1(cosg(ϕ) + εsing(ϕ))n = z1
n (cosg(nϕ) + εsing(nϕ)) .

�

Theorem 4. The n-th degree root of ω is

n
√
ω = n

√
z
(

cosg
(ϕ
n

)
+ εsing

(ϕ
n

))
where ω = z1 + εz2 ∈ DH −A is a dual-hyperbolic number.

Proof: Polar representation of ω = z1 + εz2 ∈ DH −A is ω = z1 (cosg(ϕ) + εsing(ϕ)). From Theorem 3, we know that

ωn =
(
z1e

εϕ)n = (z1(cosg(ϕ) + εsing(ϕ))n = z1
n (cosg(nϕ) + εsing(nϕ)) .

So, we get

n
√
ω = ω

1
n = z

1
n
1

(
cosg

(
1
nϕ
)

+ εsing
(
1
nϕ
))

= n
√
z1
(
cosg

(ϕ
n

)
+ εsing

(ϕ
n

))
.

This completes the proof. �
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