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Abstract
In this paper, we investigate the existence and uniqueness of the coincidence points with the CF -simulation
function for two nonlinear operators on the b-metric space. Our results improve and generalize some of the
results available in the literature.
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1. Introduction
From a theoretical standpoint, there are many different ways to solve the problems encountered in mathematics and related
sciences. In the recent years, the most remarkable theory is the fixed point theory which is used in many areas. The most known
theory is the Banach contraction principle [1] and this theory has numerous applications in important areas (see [2], [3]).

Recently, Khojasteh et al. [4] introduced the concept of simulation function. Then, they introduced the non-linear Z-
contraction of the simulation class of functions. The well known Banach contraction principle ensures the existence and
uniqueness of fixed point of a contraction on a complete metric space. After this interesting principle, several authors generalized
this principle by introducing the various contractions on metric spaces (see [4],[5]).

Now, we give some concepts and results from the literature used throughout the study.

Definition 1.1. [6] Let X be a non-empty set and let d : X×X −→ [0,∞) be a function satisfying the following conditions:

(i) d(x,y) = 0⇐⇒ x = y, for all x,y ∈ X ,

(ii) d(x,y) = d(y,x), for all x,y ∈ X,

(iii) d(x,y)≤ s[d(x,y)+d(y,z)], for some real s≥ 1, for all x,y,z ∈ X.

Then, d is called a b-metric on X and (X ,d) is called a b-metric space.

Lemma 1.2. [7] Let (X ,d) be a metric space and {xn} be a sequence in X such that

lim
n→∞

d(xn,xn+1) = 0.
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If {xn} is not a Cauchy sequence in (X ,d), then there exist an ε > 0 and sequences of positive integers {mk} and {nk} with
nk > mk ≥ k such that d(xmk ,xnk)≥ ε . For all k > 0, corresponding to mk, we can choose nk to be the smallest positive integer
such that d(xmk ,xnk)≥ ε , d(xmk ,xnk−1)< ε and

(1) lim
k→∞

d(xnk−1,xmk+1) = ε ,

(2) lim
k→∞

d(xmk−1,xnk) = ε ,

(3) lim
k→∞

d(xnk ,xmk) = ε ,

(4) lim
k→∞

d(xnk ,xmk+1) = ε .

Lemma 1.3. [8] Let (X ,d) be a b-metric space for some real s≥ 1 and {xn} be a sequence in X such that

lim
n→∞

d(xn,xn+1) = 0.

If {xn} is not a b-Cauchy sequence in (X ,d), then there exist an ε > 0 and sequences of positive integers {mk} and {nk} with
nk > mk ≥ k such that d(xmk ,xnk)≥ ε , d(xmk ,xnk−1)< ε and

(1) ε ≤ liminf
k→∞

d(xmk ,xnk)≤ limsup
k→∞

d(xmk ,xnk)≤ sε ,

(2) ε

s ≤ liminf
k→∞

d(xmk+1,xnk)≤ limsup
k→∞

d(xmk+1,xnk)≤ s2ε ,

(3) ε

s ≤ liminf
k→∞

d(xmk ,xnk+1)≤ limsup
k→∞

d(xmk ,xnk+1)≤ s2ε ,

(4) ε

s2 ≤ liminf
k→∞

d(xmk+1,xnk+1)≤ limsup
k→∞

d(xmk+1,xnk+1)≤ s3ε .

Definition 1.4. [9] Let X be a nonempty set and T,g : X −→ X be mappings.

(1) A point x ∈ X is called a fixed point of the mapping T if T x = x.

(2) A point x ∈ X is called a coincidence point of the mappings T and g if T x = gx.

(3) A point x ∈ X is called a common fixed point of the mappings T and g if T x = gx = x.

Definition 1.5. [9] Let T,g : X −→ X be mappings on a b-metric space (X ,d). If

lim
n→∞

d(T gxn,gT xn) = 0,

for all {xn} ⊆ X such that the {gxn} and {T xn} sequences are convergent and have the same limit points, then T and g are
called compatible.

Remark 1.6. [10] If T and g commuting (that is, T gx = gT x for all x ∈ X), then T and g are compatible.

Definition 1.7. [4] Let T,g : X −→ X be functions and {xn} ⊆ X. The sequence {xn} is a Picard-Jungck sequence with a pair
of (T,g) if gxn+1 = T x, for each n≥ 0

Definition 1.8. [11] Let F : [0,∞)× [0,∞)−→ R be a continuous function and satisfy the following conditions:

(a) F(s, t)≤ s;

(b) F(s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0,∞).

Then, F is called a C-class function.

We denote C-class functions as {.

Definition 1.9. [4] Let F : [0,∞)× [0,∞)−→ R be a function. There exists a CF ≥ 0 such that
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(a) F(s, t)>CF ⇒ s > t;

(b) F(t, t)≤CF , ∀s, t ∈ [0,∞).

Then, F has property CF .

Definition 1.10. [5] Let ζ : [0,∞)× [0,∞)−→ R be a function satisfying the following conditions:

(ζ a) ζ (0,0) = 0;

(ζ b) ζ (t,s)< F(t,s), for all s, t > 0; the function F : [0,∞)× [0,∞)−→ R is the element of { with property CF .

(ζ c) If {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0 and tn < sn, then limsup
n→∞

ζ (tn,sn)<CF .

Then, it is called a CF -simulation function.

We denote the class of all CF -simulation functions as ZF .

Definition 1.11. Let (X ,d) be a b-metric space for some real s ≥ 1 and f ,g : X −→ X be mappings. ζ is an element of ZF
such that

ζ (s4d(T x,Ty),(gx,gy))≥CF , (1.1)

for all x,y ∈ X with gx 6= gy. Then, T is called a (ZF,b,g)-contraction.

2. Main results
In this section, we introduce our main results.

Remark 2.1.

(1) By axiom (ζb), it is clear that a simulation function must verify ζ (r,s4r)<CF for all r > 0.

(2) Furthermore, ζ is the elements of ZF such that

d(T x,Ty)≤ s4d(T x,Ty)< d(gx,gy), (2.1)

for all x,y ∈ X with gx 6= gy. T is a (ZF,b,g)-contraction.

To prove, assume that gx 6= gy. Then, d(gx,gy) > 0. If T x = Ty, then 0 = d(T x,Ty) = s4d(T x,Ty) < d(gx,gy). On the
contrary case, if T x 6= Ty, then 0 < d(T x,Ty) , by property (ζb) and (1.1), we have that

CF ≤ ζ (s4d(T x,Ty),d(gx,gy))< F(d(gx,gy),s4d(T x,Ty))

so (2.1) holds. In other words d(T x,Ty)≤ s4d(T x,Ty)< d(gx,gy) is obtained.

Lemma 2.2. If T is a (ZF,b,g)-contraction in a b-metric space (X ,d) and x,y ∈ X are coincidence points of T and g, then
T x = gx = gy = Ty. In particular, the following conditions hold.

(1) If T (or g) is injective within the entire set of coincidence points of T and g, then T and g have a single coincidence point
at most.

(2) If T and g have a common fixed point, it is unique.

Proof. To prove, assume that gx 6= gy. Then, d(gx,gy)> 0. Using (1.1) the following is obtained

CF ≤ ζ (s4d(T x,Ty),d(gx,gy)) = ζ (s4d(gx,gy),d(gx,gy)).

Due to the item (1) of Remark 2.1, contradiction is obtained. In this case, our assumption is incorrect. Therefore, if x and y are
coincidence points of T and g, then T x = gx = gy = Ty. The proof is completed.
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Theorem 2.3. Let T be a (ZF,b,g)-contraction in b-metrik space (X ,d). Suppose that there is a Picard-Jungck sequence {xn}
of (T,g). In addition, at least one of the following conditions holds.

(a) (g(X),d) (or (T (X),d)) is complete.

(b) (X ,d) is complete, T and g are b-continuous and compatible.

(c) (X ,d) is complete, T and g are b-continuous and commuting.

T and g have at least one coincidence point. Furthermore, either the sequence {gxn} contains a coincidence point of T and
g, or at least one of the following conditions holds.

In case (a), the sequence {gxn} converges to u ∈ g(X) and any point of v ∈ X is a coincident point of T and g such that
gv = u.

In cases (b) and (c), the sequence {gxn} is convergent to a coincidence point of T and g.
In addition, if x,y ∈ X are the coincidence points of T and g, then T x = gx = gy = Ty. If T (or g) is injective within the

entire set of coincidence points of T and g, then T and g have a single coincidence point at most.

Proof. The proof is completed if {xn} contains a coincidence point of T and g. Suppose that {xn} does not contain any
coincidence points of T and g, for all n≥ 0; that is,

gxn 6= T xn = gxn+1.

In this case, we have

d(gxn,gxn+1)> 0 (2.2)

for all n≥ 0.
Now, the evidence will be examined in three cases.
Step 1. Using (ζ b) and (1.1), s≥ 1 and for all n≥ 0,

CF ≤ ζ (s4(d(T xn,T xn+1)),d(gxn,gxn+1)) (2.3)

= ζ (s4d(gxn+1,gxn+2),d(gxn,gxn+1))

< F(d(gxn,gxn+1),s4d(gxn+1,gxn+2)),

for all n ≤ 0, 0 < d(gxn+1,gxn+2) ≤ s4d(gxn+1,gxn+2) < d(gxn,gxn+1). Similarly, we can prove that d(gxn+2,gxn+3) <
d(gxn+1,gxn+2). Therefore, {d(gxn,gxn+1)} is sub-zero, non-increasing and convergent.

Let r > 0 and lim
n→∞

d(gxn,gxn+1) = r. Using axiom (ζ c) to the sequences {tn = d(gxn+1,gxn+2)} and {sn = d(gxn,gxn+1)}
with tn < sn,

CF ≤ limsup
n→∞

ζ (s4d(gxn+1,gxn+2),d(gxn,gxn+1) = limsup
n→∞

ζ (s4tn,sn)<CF .

Due to the with (2.3),

CF ≤ limsup
n→∞

ζ (s4d(gxn+1,gxn+2),d(gxn,gxn+1)),

for all n≥ 0, a contradiction is obtained. In this case, our assumption is incorrect. Therefore, we have r = 0; that is,

lim
n→∞

d(gxn,gxn+1) = 0,

holds.
Step 2. Suppose that the sequence {gxn} is not a b-Cauchy sequence in (X ,d). Then, there exits an ε > 0 and sequences of

positive integers
{

gxn(k)
}

and
{

gxm(k)
}

with n(k)> m(k)≥ k such that d(gxm(k),gxn(k))> ε , d(gxm(k),gxn(k)−1)< ε . T , using
(ζ b) axiom and (ZF,b,g) contraction,we have

CF ≤ ζ (s4(d(T xm(k),T xn(k))),d(gxm(k),gxn(k)))

= ζ (s4d(gxm(k)+1,gxn(k)+1),d(gxm(k),gxn(k)))

< F(d(gxm(k),gxn(k)),s
4d(gxm(k)+1,gxn(k)+1)).
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It now consists of two different situations.
Case (i): s = 1.
In this case, (X ,d) is a metric space. By Lemma 1.2 there exits ε > 0 and sequence of positive integers

{
gxn(k)

}
and{

gxm(k)
}

such that n(k)> m(k)≥ k with d(gxm(k),gxn(k))> ε , d(gxm(k),gxn(k−1))< ε and satisfying (1)-(4) of Lemma 1.2 and
using (ζ c),

{
tn = d(gxm(k)+1,gxn(k)+1)

}
and

{
sn = d(gxm(k),gxn(k))

}
, we have

CF ≤ limsup
n→∞

ζ (d(gxm(k)+1,gxn(k)+1),d(gxm(k),gxn(k)))

< F(d(gxm(k),gxn(k)),d(gxm(k)+1,gxn(k)+1))

<CF

which is a contradiction.
Case (ii): s > 1.
In this case, (X ,d) is a b-metric space. By Lemma 1.3 there exist ε > 0 and sequences of positive integers

{
gxn(k)

}
and{

gxm(k)
}

such that n(k)> m(k)≥ k with d(gxm(k),gxn(k))> ε , d(gxm(k),gxn(k−1))< ε and satisfying (1)-(4) of Lemma 1.3, we
have

CF ≤ limsup
n→∞

ζ (s4d(gxm(k)+1,gxn(k)+1),d(gxm(k),gxn(k)))

< F(d(gxm(k),gxn(k)),s
4d(gxm(k)+1,gxn(k)+1))

<CF

which is a contradiction.
Consequently, by (i) and (ii), we have {gxn}, is a b-Cauchy sequence in (X ,d).
Step 3. By assumptions (a), (b), (c), we will prove that T and g have a coincidence point.
Case (a): Suppose that (g(X)) (or (T (X),d)) is complete. We also found that the sequence {gxn} is a b-Cauchy sequence.

In case for all n≥ 0, gxn+1 = T xn ∈ T (X)⊆ g(X), taking into account these, u ∈ g(X), that is,

lim
n→∞

d(gxn,u) = 0.

Since T xn = gxn+1, for all n we have,

lim
n→∞

d(T xn,u) = 0. (2.4)

Let v ∈ X be any point such that gv = u. Suppose that v is not a coincidence point of T and g, then gv = u 6= T v. In
this case, we have δ = d(T v,gv) > 0. Using (2.4), n0 ∈ N be such that d(gxn,gv) < δ for all n ≥ n0. This means that
d(gxn,gv)< δ = d(T v,gv), for all n≥ n0.

In particular, gxn 6= T v for all n≥ n0, then

d(T xn,T v) = d(gxn+1,gv)> 0, for all n≥ n0. (2.5)

On the other hand, if gxn = gv for all n≥ n1, it contradicts the condition (2.2) for ∃ n1 ∈ N.
Therefore, the sequence {gxn} has a subsequence

{
gxδ (n)

}
with

gxδ (n) 6= gv. (2.6)

Now, let n2 ∈ N such that δ (n2)≥ n0. Therefore, for all n≥ n2, by (2.5) and (2.6), d(gxδ (n),gv)> 0 and d(T xδ (n),T v)> 0.
Using(ζ b),

CF ≤ ζ (s4d(T xδ (n),T v),d(gxδ (n),gv)))

< F(d(gxδ (n),gv),s4d(T xδ (n),T v))

this means that;

0≤ d(T xδ (n),T v)≤ s4d(T xδ (n),T v)< d(gxδ (n),gv) = d(gxδ (n),u).
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By lim
n→∞

d(gxδ (n),u) = 0, lim
n→∞

d(T xδ (n),T v) = 0. However,
{

T xδ (n)
}
=
{

gxδ (n)+1
}

is a supsequence of {gxn} and converges
to gv. Due to the uniqueness of the limit, we have gv = T v. This contradicts our assumption. Then, u = gv = T v. In other
words, v is a coincidence point of T and g.

Case (b): Suppose that (X ,d) is complete. T and g are continuous and compatible. In this case the sequence {gxn} is
{gxn} −→ u ∈ X , since (X ,d) is a b-Cauchy sequence on the complete b-metric space. Since T is continuous, {ggxn} −→ gu.
Since g is continuous, {T gxn} −→ Tu. Moreover, T and g are compatible, {T xn = gxn+1} and {gxn} have the same limit
points, we deduce that

d(Tu,gu) = lim
n→∞

d(T gxn,ggxn+1) = lim
n→∞

d(T gxn,gT xn) = 0.

Therefore, u is a coincidence point of T and g.
Case (c): Suppose that (X ,d) is complete and T and g are continuous and commuting. In this case, if T and g are commuting,

then T and g will be compatible which is the same with case (b).

Example 2.4. Let X = [0,1] and d : X×X −→ [0,∞) be defined as

d(x,y) =

{
0, x = y,
(x− y)2, x 6= y,

Then, d is a b-metric with coefficient s = 2 but it is not a metric. Consider the mappings T,g : X −→ X defined by T x = x+3
and gx = 5x+1 for all x ∈ X. In order to solve the non-linear equation

x+3 = 5x+1

Theorem 2.3 can be applied using the simulation function ζ (t,s) = s− t.

ζ (s4d(T x,Ty),d(gx,gy)) = d(gx,gy)− s4d(T x,Ty)

= (5x+1−5y−1)2−24.(x+3− y−3)2

= 25(x− y)2−16(x− y)2

= 9(x− y)2

≥ 0.
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[4] F. Khojasteh, S. Shukla, S.Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat,

29(6) (2015), 1189-1194.
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