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Abstract

The function &(z) is obtained from the logarithmic derivative function o(z). The elliptic function @(z) is also
derived from the £ (z) function. The function (z) is a function of double periodic and meromorphic function on
lattices region. The function &(z) is also double function. The function ¢(z) meromorphic and univalent function
was obtained by the serial expansion of the function #&(z). The function ¢(z) obtained here is shown to be a
convex function.
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1. Introduction

We begin this important paper by introducing some important functions and some important classes.

Definition 1.1. A get the subset of complex numbers C . If A is a group according to the collection process, then A in called a
module defined on the ring of integers 7.

Definition 1.2. If the module A does not have a stack point in the finite plane, then this module A is called a lattice. Lattices
can be divided into three groups as follows.
i. Zero dimensional lattices;
Wp={mo:m=0€Z,0+#0ecC}
ii. One dimensional lattices;
Wyp={mw, :m#0cZ,0+#0¢eC}
iii. Two dimensional lattices;

Wi ={mo) +nwy:m#0,n#0€Z, 0 #0,m, #0c C}

Lemma 1.3. The function &(z) is absolute and uniform convergence [1].
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For all m,n such that | W |> 2 | z | the series under consideration in therefore absolutely and convergent.Thus, function & (z) has
a simple pole at point z = W. In that case, £(z) is meromorphic. On the other hand it is clear that &(z) in the odd function so

£(x) = —¢(-2). O

Theorem 1.4. The function &(z) has following the power series for point 7 =0 .
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Coefficients of toms z%* in evidently zero for k=1,2,3, since the functions &(z) is an odd function, ie equality is as follows
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Definition 1.5. Weierstrass’s function 2(z) is defined by the double series as

po=5+ ¥ [‘ﬁv;z]

< m,n#(0,0) (Z o W)
d . . . .
_Zé (z) = #(z) equality can be seen here. That is to say §(z) is double function [1].
Z

The function #(z) is meromorphic function in the complex plan (’z’ < 1) with second order poles at the lattices points
z=W . Itis in double periodic with periods @; and @, . This mean that #(z) satisfies. Considering the following equality
1 1 Aoi— d
P() ==+ ZAZk,z.ZZk’Z for — — Z 222 21 where ——& (z) = #(2). The funtions (z) is a meromorphic and elliptic
Fal z k222k -1 dz
funtion which has z = W second order pole points.

Theorem 1.6. The series (z) is absolutely and uniformly convergent for every z =W .

Proof.
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The function (z) is meromorphic region ’z’ < 1 whether the function (z) is not analytical region ’z’ < 1. If we get
consecutive derivatives from the equation as

1 _
P(z) = 2 + Y Ay a2

k>2
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T >
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In that case
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g2 = Ut Y (2k—2).(2k—3)...(2k — (20— 1)).Agy_p.22~ (0= 1)
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Theorem 1.7. Ifo; and B; (i=1,2,........ ,7) be the zeros and poles respectively of an elliptic function f(z) in a cell, then

r r
Z(Xl' = ZB’ (mod.2w1,2a)2)
i=1 i=1

where every zero or pole is counted as many times as the multiplicity indicates.

Proof. We have
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Hence we conclude

ia,-z iﬁ, (mod 2m,,20,)[1].
i=1 i=1

O

Theorem 1.8. The sum, difference, product and the quotient of any two co-periodic elliptic functions are also elliptic function
of the same period.

Proof. Since f;(z+20) = f;(z), where 20 = 2@, and 2@, (i = 1,2) therefore

filz+20) £ fr(z+20) = fi(2) £ f2(2)
fi(z420).£(z+20) = fi(2)-f2(2)

fiz+20)/f(2+20) = fi1(2)/ 2(2).

Again since the set of all meromorphic functions forms a field and f1(z) + f2(z), f1(2)-f2(z) and f1(z)/ f>(z) are meromor-

phic and periodic with periods 2®; and 2@,. So they are elliptic functions with the same periods [1]. O
Theorem 1.9. Let f(z) be regular and univalent in the closed disk D : |z| < R. Then f(z) maps D onto a convex domain if and
only if
i !
Re 1+Zf(z) >0, forzon D:|z|§R.
)

Suppose further that f(0) = 0. Then f(z) maps D onto a region that is starlike with respect to w = 0 if and only if

[ 2f'(2)

e | f(2)

] >0, forzon D:|z|§R.
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We must assume that f(z) is univalent (or replace this with some order condition) or we fall into error. Indeed, suppose that
f(z) = 7%. Then the inequality becomes for starlike 2 > 0 and also for convex domain becomes 2 > 0. f(z) = z? is not really a
convex or starlike domain. The concepts of convexity and starlikeness can be extended to multi-sheeted regions, and indeed
these extensions have been thoroughly explored, but for the present we consider only plane regions. We observe that if f(z) is
univalent in D, then f’(z) # 0 in and hence the expression on the left is a harmonic function in D and takes its minimum on the
boundary D . Thus, if f(z) maps D onto a closed convex curve, then for each r < R, f(z) maps D onto a convex curve, and
hence maps D onto a convex domain. The same type of reasoning can be applied because if f(z) is in S, then the singularity at
z = 0is a removable singularity [2].

Theorem 1.10. The function f(z) and the function &(z) have the following equality

W(anl) (Zl )
W(Zn—Z) (Zl ) _ p(2n—2) (ZZ)

=28 (22 —z1) —2n(&(21) — & (22)).

Lemma 1.11. The sum, difference, product and quotient of any co-periodic elliptic functions are also elliptic function of the
same period.

Lemma 1.12. [f the elliptic function f(z) has simple pole at and only at the points By,B2,Bs, ..., B in cell with residues
A1,A2,A3, ..., Ay, then

#2(z) =Ao+ i (z—1).A,
r=1

where Ay is a constant. It is in the fact that a constant Ay in zero. In that case, the function

P (z)
p(2n—2) (Z) _ p(2n—2) (Zz)

is an elliptical function with poles at 7o,—zp. 0 with residues 1, 1, -2n respectively. If the last equation is written in place of z,
then the following equation is found

P2 (2)
p(2n—2) (Z) _ p(2n—2) (Zz)

=Ao+&E(z—22) +&(z—22) —2n&(2).

If in the above equation z is written instead of (=z) then @ is an even function and &(2) is an odd function

(2n—1)
_ W(ZH)K(OZ - ({0((22) o A Eer) L)+ 28

2V (z)
p(Zn—Z) (Z) _ p(Zn—Z) (ZZ)

=—Ao+E(z+2)+E(z—2) —2nE(2)

equations are obtained. If Ay = 0 and 71 are written instead of 7 then the following equation is continue

it
W(Zn—Z) (Z) _ p(Zn—Z) (Zz)

The function ¢(z) defined as follows

=&(z1+22)+E(z1 —22) — 208 (z1).

—1
0(z) = p(2) + a- =t Y An 2 T =2+ A+ At +
>2
The function ¢(z) is an analytical function for every 7 € ‘z‘ < 1. Also because of its ¢(0) = 0 and ¢'(0) = 1,this function
is class A.
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2. Main Theorem

Theorem 2.1. The function ¢(z) is an univalent function.

Proof. If ¢(z1) — ¢(z2) = 0, then

¢(z1) —9(z2) =21+ ZAzkfz-Z%kfz —2— ZAzkfz-zgkfz =0
k=2 =2

(@ _Z2)<1+ ZAZk—2(Z%k3—Z%k4zz+...+z%k3)> —0
k>2

1+ Y Ay (g =+ 430 #0
k=2

71 — 22 = 0 be must because 1 + ZAzk—z(Z%IFS 7Z%k7422 T Jrzgkfg) £ 0 for every 7 € |Z| <1
k>2

Thus, the function ¢(z) is in class S. The subclass of S consisting of the convex functions is defined by K , and S* denotes
the subclass of starlike functions. Thus K C $* C S [3].

We can do this proof in another way as follows: ‘z| < 1 is clear that there is convex region.

ko)
Note that @(z;) — @(z2) = [ ¢'(n)dn.
E4|

If
1
N=tzn+(1-1)z1,0<t0<1,thenz; —@(z2) = [ ¢'(tzo+ (1 —1)z1)dn.
0
Because,
N =(tz2+(1—1)z1) € |z] < 1 and Req’'(z) = Req'(1z2 + (1 —1)z1) > 0.
Thus

©'(n) = @' (tz2+ (1 —1)z1) # 0. Therefore, if z; —z2 # 0, then @(z1) — @(z2) # 0. This means that @(z) is univalent in
‘Z‘ < 1. On the other hand,

20" (2) 1+4A0z+ 144423 + 36462 + ...
Re| 1+— =Re 3 5 7
0'(2) 1+2A27+4A47% +6Agz° +8Agz + ...

> =Re(l +2A22—4A2A222 + (10A4+8A2A2A2)Z3 +..)>0

since for every z € |Z| < 1.
O
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