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Abstract
The function ξ (z) is obtained from the logarithmic derivative function σ(z). The elliptic function ℘(z) is also
derived from the ξ (z) function. The function ℘(z) is a function of double periodic and meromorphic function on
lattices region. The function ℘(z) is also double function. The function ϕ(z) meromorphic and univalent function
was obtained by the serial expansion of the function ℘(z). The function ϕ(z) obtained here is shown to be a
convex function.
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1. Introduction
We begin this important paper by introducing some important functions and some important classes.

Definition 1.1. A get the subset of complex numbers C . If A is a group according to the collection process, then A in called a
module defined on the ring of integers Z.

Definition 1.2. If the module A does not have a stack point in the finite plane, then this module A is called a lattice. Lattices
can be divided into three groups as follows.

i. Zero dimensional lattices;

Wm = {mω : m = 0 ∈ Z,ω 6= 0 ∈ C}

ii. One dimensional lattices;

Wm = {mω1 : m 6= 0 ∈ Z,ω 6= 0 ∈ C}

iii. Two dimensional lattices;

Wm,n = {mω1 +nω2 : m 6= 0,n 6= 0 ∈ Z,ω1 6= 0,ω2 6= 0 ∈ C}

Lemma 1.3. The function ξ (z) is absolute and uniform convergence [1].
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.

For all m,n such that |W |> 2 | z | the series under consideration in therefore absolutely and convergent.Thus, function ξ (z) has
a simple pole at point z =W . In that case, ξ (z) is meromorphic. On the other hand it is clear that ξ (z) in the odd function so
ξ (z) =−ξ (−z).

Theorem 1.4. The function ξ (z) has following the power series for point z = 0 .

ξ (z) =
1
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− A2

3
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5
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1
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1
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1
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1
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where Ak+1 = ∑
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.

Coefficients of toms z2k in evidently zero for k=1,2,3, since the functions ξ (z) is an odd function, ie equality is as follows

ξ (z) =
1
z
− A2

3
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5
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1
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Definition 1.5. Weierstrass’s function ℘(z) is defined by the double series as

℘(z) =
1
z2 + ∑

m,n6=(0,0)

[
1

(z−w)2 +
1

W 2

]

− d
dz

ξ (z) =℘(z) equality can be seen here. That is to say ℘(z) is double function [1].

The function ℘(z) is meromorphic function in the complex plan (
∣∣z∣∣ < 1) with second order poles at the lattices points

z =W . It is in double periodic with periods ω1 and ω2 . This mean that ℘(z) satisfies. Considering the following equality

℘(z) =
1
z2 + ∑

k≥2
A2k−2.z2k−2 for

1
z
−∑

k≥2

A2k−2

2k−1
z2k−1 where − d

dz
ξ (z) =℘(z). The funtions ℘(z) is a meromorphic and elliptic

funtion which has z =W second order pole points.

Theorem 1.6. The series ℘(z) is absolutely and uniformly convergent for every z =W .

Proof.

∣∣∣∣∣ 1
(z−W )2 −

1
W 2
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2
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4
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=

10
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2
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1
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W 2 .

The function ℘(z) is meromorphic region
∣∣z∣∣ < 1 whether the function ℘(z) is not analytical region

∣∣z∣∣ < 1. If we get
consecutive derivatives from the equation as

℘(z) =
1
z2 + ∑

k≥2
A2k−2.z2k−2

℘
′(z) =−1.2
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℘
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1.2.3
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℘
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℘
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Theorem 1.7. If αi and βi (i = 1,2, . . . . . . ..,r) be the zeros and poles respectively of an elliptic function f (z) in a cell, then

r

∑
i=1

αi ≡
r

∑
i=1

βi (mod.2ω1,2ω2)

where every zero or pole is counted as many times as the multiplicity indicates.

Proof. We have
r

∑
i=1

αi−
r

∑
i=1

βi =
1

2πi

∫
P

z f ′(z)
f (z)

dz (P is any suitably chosen contour)

=
1

2πi

[ z0+2ω1∫
z0

z f ′(z)
f (z)

dz+

z0+2ω1+2ω2∫
z0+2ω1

z f ′(z)
f (z)

dz+

z0+2ω2∫
z0+2ω1+2ω2

z f ′(z)
f (z)

dz+

z0∫
z0+2ω2

z f ′(z)
f (z)

dz

]

=
1

2πi

[ z0+2ω1∫
z0

(z− (z+2ω2))
f ′(z)
f (z)

dz+

z0+2ω2∫
z0

(z+2ω1− z)
f ′(z)
f (z)

dz

]

=
1

2πi

[
2ω1

z0+2ω2∫
z0

f ′(z)
f (z)

dz−2ω2

z0+2ω1∫
z0

f ′(z)
f (z)

dz

]

=
1

2πi

{
2ω1

[
log f (z)

]z0+2ω2

z0

−2ω2

[
log f (z)

]z0+2ω1

z0

}
=

1
2πi

(4πimω1−4πinω2) = (m2ω1 +2nω2) (n =−n).

Hence we conclude
r

∑
i=1

αi ≡
r

∑
i=1

βi (mod.2ω1,2ω2)[1].

Theorem 1.8. The sum, difference, product and the quotient of any two co-periodic elliptic functions are also elliptic function
of the same period.

Proof. Since fi(z+2ω) = fi(z), where 2ω = 2ω1 and 2ω2 (i = 1,2) therefore

f1(z+2ω)± f2(z+2ω) = f1(z)± f2(z)

f1(z+2ω). f2(z+2ω) = f1(z). f2(z)

f1(z+2ω)/ f2(z+2ω) = f1(z)/ f2(z).

Again since the set of all meromorphic functions forms a field and f1(z)± f2(z), f1(z). f2(z) and f1(z)/ f2(z) are meromor-
phic and periodic with periods 2ω1 and 2ω2. So they are elliptic functions with the same periods [1].

Theorem 1.9. Let f (z) be regular and univalent in the closed disk D :
∣∣z∣∣≤ R. Then f (z) maps D onto a convex domain if and

only if

Re

[
1+

z f ′(z)
f (z)

]
≥ 0, for z on D :

∣∣z∣∣≤ R.

Suppose further that f (0) = 0 . Then f (z) maps D onto a region that is starlike with respect to w = 0 if and only if

Re

[
z f ′(z)
f (z)

]
≥ 0, for z on D :

∣∣z∣∣≤ R.
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We must assume that f (z) is univalent (or replace this with some order condition) or we fall into error. Indeed, suppose that
f (z) = z2. Then the inequality becomes for starlike 2≥ 0 and also for convex domain becomes 2≥ 0 . f (z) = z2 is not really a
convex or starlike domain. The concepts of convexity and starlikeness can be extended to multi-sheeted regions, and indeed
these extensions have been thoroughly explored, but for the present we consider only plane regions. We observe that if f (z) is
univalent in D, then f ′(z) 6= 0 in and hence the expression on the left is a harmonic function in D and takes its minimum on the
boundary D . Thus, if f (z) maps D onto a closed convex curve, then for each r < R, f (z) maps D onto a convex curve, and
hence maps D onto a convex domain. The same type of reasoning can be applied because if f (z) is in S, then the singularity at
z = 0 is a removable singularity [2].

Theorem 1.10. The function ℘(z) and the function ξ (z) have the following equality

℘(2n−1)(z1)

℘(2n−2)(z1)−℘(2n−2)(z2)
= 2ξ (z2− z1)−2n(ξ (z1)−ξ (z2)).

Lemma 1.11. The sum, difference, product and quotient of any co-periodic elliptic functions are also elliptic function of the
same period.

Lemma 1.12. If the elliptic function f (z) has simple pole at and only at the points β1,β2,β3, ...,βn in cell with residues
A1,A2,A3, ...,An, then

℘(z) = A0 +
s

∑
r=1

(z− r).Ar,

where A0 is a constant. It is in the fact that a constant A0 in zero. In that case, the function

℘(2n−1)(z)
℘(2n−2)(z)−℘(2n−2)(z2)

is an elliptical function with poles at z2,−z2. 0 with residues 1, 1, -2n respectively. If the last equation is written in place of z,
then the following equation is found

℘(2n−1)(z)
℘(2n−2)(z)−℘(2n−2)(z2)

= A0 +ξ (z− z2)+ξ (z− z2)−2nξ (z).

If in the above equation z is written instead of (–z) then ℘ is an even function and ξ (z) is an odd function

− ℘(2n−1)(z)
℘(2n−2)(z)−℘(2n−2)(z2)

= A0−ξ (z+ z2)−ξ (z− z2)+2nξ (z).

℘(2n−1)(z)
℘(2n−2)(z)−℘(2n−2)(z2)

=−A0 +ξ (z+ z2)+ξ (z− z2)−2nξ (z)

equations are obtained. If A0 = 0 and z1 are written instead of z then the following equation is continue

℘(2n−1)(z)
℘(2n−2)(z)−℘(2n−2)(z2)

= ξ (z1 + z2)+ξ (z1− z2)−2nξ (z1).

The function ϕ(z) defined as follows

ϕ(z) =℘(z)+
z3−1

z2 = z+ ∑
k≥2

A2k−2.z2k−2 = z+A2z2 +A4z4 + ...

The function ϕ(z) is an analytical function for every z ∈
∣∣z∣∣< 1. Also because of its ϕ(0) = 0 and ϕ ′(0) = 1,this function

is class A.
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2. Main Theorem
Theorem 2.1. The function ϕ(z) is an univalent function.

Proof. If ϕ(z1)−ϕ(z2) = 0, then

ϕ(z1)−ϕ(z2) = z1 + ∑
k≥2

A2k−2.z2k−2
1 − z2−∑

k≥2
A2k−2.z2k−2

2 = 0

(z1− z2)

(
1+ ∑

k≥2
A2k−2(z2k−3

1 − z2k−4
1 z2 + ...+ z2k−3

2 )

)
= 0

1+ ∑
k≥2

A2k−2(z2k−3
1 − z2k−4

1 z2 + ...+ z2k−3
2 ) 6= 0

z1− z2 = 0 be must because 1+ ∑
k≥2

A2k−2(z2k−3
1 − z2k−4

1 z2 + ...+ z2k−3
2 ) 6= 0 for every z ∈

∣∣z∣∣< 1.

Thus, the function ϕ(z) is in class S. The subclass of S consisting of the convex functions is defined by K , and S∗ denotes
the subclass of starlike functions. Thus K ⊂ S∗ ⊂ S [3].

We can do this proof in another way as follows:
∣∣z∣∣< 1 is clear that there is convex region.

Note that ϕ(z1)−ϕ(z2) =
z2∫
z1

ϕ ′(η)dη .

If

η = tz2 +(1− t)z1, 0≤ t0≤ 1, then z1−ϕ(z2) =
1∫
0

ϕ ′(tz2 +(1− t)z1)dη .

Because,
η = (tz2 +(1− t)z1) ∈

∣∣z∣∣< 1 and Reϕ ′(z) = Reϕ ′(tz2 +(1− t)z1)> 0.
Thus
ϕ ′(η) = ϕ ′(tz2 +(1− t)z1) 6= 0. Therefore, if z1− z2 6= 0, then ϕ(z1)−ϕ(z2) 6= 0. This means that ϕ(z) is univalent in∣∣z∣∣< 1 . On the other hand,

Re

(
1+

zϕ ′′(z)
ϕ ′(z)

)
=Re

(
1+4A2z+14A4z3 +36A6z5 + ...

1+2A2z+4A4z3 +6A6z5 +8A8z7 + ...

)
=Re(1+2A2z−4A2A2z2+(10A4+8A2A2A2)z3+ ...)> 0

since for every z ∈
∣∣z∣∣< 1.
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