Fuzzy Parameterized Intuitionistic Fuzzy Soft Sets and Their Application to a Performance-Based Value Assignment Problem

Emre Sulukan ${ }^{1}$, Naim Çağman ${ }^{2}$, Tuğçe Aydın ${ }^{3}$

Article History

Received: 02.08.2019
Accepted: 06.12.2019
Published: 30.12.2019
Original Article

Abstract

Soft sets have been successfully applied to many different fields to cope with uncertainties. Recently, to increase the success of the applications, these sets have been combined with other theories, such as fuzzy sets and intuitionistic fuzzy sets. In this study, we propose the concept of fuzzy parameterized intuitionistic fuzzy soft sets (fpifs-sets). We then apply these sets to a performance-based value assignment (PVA) problem. Finally, we give suggestions for further research.

Keywords - Fuzzy sets, intuitionistic fuzzy sets, soft sets, intuitionistic fuzzy soft sets, fpifs-sets

1. Introduction

Researchers in many scientific fields make an effort to model problems containing uncertain data. However, the classical methods are not always successful in describing uncertainties. In 1965, therefore, fuzzy sets were developed by Zadeh [1] to overcome the uncertainties. In 1986, these sets have been generalised to intuitionistic fuzzy sets (if-sets) by Atanassov [2]. In 1999, Molodtsov [3] proposed the concept of soft sets as a general mathematical tool to model the problems with uncertainties.

So far, many novel concepts based on the soft sets, fuzzy sets, and $i f$-sets have been propounded. These concepts can be classified as follows:

- Fuzzy soft sets [4],
- Intuitionistic fuzzy soft sets [5],
- Fuzzy parameterized soft sets [6],
- Fuzzy parameterized fuzzy soft set [7],
- Fuzzy parameterized intuitionistic fuzzy soft sets [In this study],
- Intuitionistic fuzzy parameterized soft sets [8],
- Intuitionistic fuzzy parameterized fuzzy soft sets [9],
- Intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets [10],

In the present paper, as it is pointed out above, we define parameterized intuitionistic fuzzy soft sets (fpifs-sets) by using fuzzy sets and $i f$-sets. We then apply this concept to a decision-making problem. Finally, we discuss f pifs-sets and give suggestions for their further research.

[^0]
2. Preliminaries

This section presents some of the basic definitions of soft sets [3], fuzzy sets [1], and $i f$-sets [2].

2.1. Soft Sets

In this subsection, we introduce some of the basic definitions and properties of soft sets provided in $[3,11,12]$.

Definition 2.1. Let U be a universal set, $P(U)$ be the power set of U, and X be a set of parameters. Then, a soft set S over U is defined as a set of ordered pairs

$$
S=\{(x, s(x)): x \in X\} \text { where } s: X \rightarrow P(U)
$$

Here, s is called approximate function of the soft set S and the elements (x, \emptyset) is not displayed in S.
Hereafter, the soft sets are denoted by S, S_{1}, S_{2}, \ldots and their approximate functions by s, s_{1}, s_{2}, \ldots, respectively. The set of all soft sets over U is denoted by \mathbb{S}.

Definition 2.2. Let $S \in \mathbb{S}$. Then,
S is called empty soft set, denoted by S_{\emptyset}, if $s(x)=\emptyset$ for all $x \in X$, and S is called universal soft set, denoted by S_{U}, if $s(x)=U$ for all $x \in X$.

Example 2.3. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ be a universal set and $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be a set of parameters. If $s\left(x_{1}\right)=\left\{u_{1}, u_{2}, u_{4}, u_{6}\right\}, s\left(x_{2}\right)=\emptyset, s\left(x_{3}\right)=\left\{u_{1}, u_{3}, u_{5}\right\}$, and $s\left(x_{4}\right)=U$, then the soft set S is written by

$$
S=\left\{\left(x_{1},\left\{u_{1}, u_{2}, u_{4}, u_{6}\right\}\right),\left(x_{3},\left\{u_{1}, u_{3}, u_{5}\right\}\right),\left(x_{4}, U\right)\right\}
$$

Definition 2.4. Let $S_{1}, S_{2} \in \mathbb{S}$. Then,
S_{1} and S_{2} are called equal, denoted by $S_{1}=S_{2}$, if $s_{1}(x)=s_{2}(x)$ for all $x \in X$, and
S_{1} is called soft subset of soft set S_{2}, denoted by $S_{1} \subseteq S_{2}$, if $s_{1}(x) \subseteq s_{2}(x)$ for all $x \in X$.
Definition 2.5. Let $S, S_{1}, S_{2} \in \mathbb{S}$. Then, the complement of S is defined by $S^{c}=\{(x, U \backslash s(x)): x \in X\}$, the union of S_{1} and S_{2} is defined by $S_{1} \cup S_{2}=\left\{\left(x, s_{1}(x) \cup s_{2}(x)\right): x \in X\right\}$, and the intersection of S_{1} and S_{2} is defined by $S_{1} \cap S_{2}=\left\{\left(x, s_{1}(x) \cap s_{2}(x)\right): x \in X\right\}$.
Proposition 2.6. If $S \in \mathbb{S}$, then
i) $S \cup S=S$
iii) $S \cup S_{\emptyset}=S$
v) $S \cup S_{U}=S_{U}$
ii) $S \cap S=S$
iv) $S \cap S_{\emptyset}=S_{\emptyset}$
vi) $S \cap S_{U}=S$

Proposition 2.7. If $S_{1}, S_{2}, S_{3} \in \mathbb{S}$, then
i) $S_{1} \cup S_{2}=S_{2} \cup S_{1}$
v) $S_{1} \cup\left(S_{2} \cup S_{3}\right)=\left(S_{1} \cup S_{2}\right) \cup S_{3}$
ii) $S_{1} \cap S_{2}=S_{2} \cap S_{1}$
vi) $S_{1} \cap\left(S_{2} \cap S_{3}\right)=\left(S_{1} \cap S_{2}\right) \cap S_{3}$
iii) $\left(S_{1} \cup S_{2}\right)^{c}=S_{1}^{c} \cap S_{2}^{c}$
vii) $S_{1} \cup\left(S_{2} \cap S_{3}\right)=\left(S_{1} \cup S_{2}\right) \cap\left(S_{1} \cup S_{3}\right)$
iv) $\left(S_{1} \cap S_{2}\right)^{c}=S_{1}^{c} \cup S_{2}^{c}$
viii) $S_{1} \cap\left(S_{2} \cup S_{3}\right)=\left(S_{1} \cap S_{2}\right) \cup\left(S_{1} \cap S_{3}\right)$

2.2. Fuzzy Sets

This subsection provides some of the basic definitions and properties of fuzzy sets presented in [1]. For more details, see [13-15].
Definition 2.8. Let X be a universal set. Then, a fuzzy set F over X is defined by

$$
F=\left\{x^{f(x)}: x \in X\right\} \text { where } f: X \rightarrow[0,1]
$$

Here f is called the membership function of F, the elements x^{0} is not displayed in F, and the elements x^{1} is displayed as x in F. Moreover, the value $f(x)$ is called the degree of membership of $x \in X$ and represents the degree of belonging of x to the fuzzy set F.

From now on, the fuzzy sets are denoted by F, F_{1}, F_{2}, \ldots and their membership functions by f, f_{1}, f_{2}, \ldots respectively. The set of all fuzzy sets over X is denoted by \mathbb{F}.

Definition 2.9. Let $F \in \mathbb{F}$. Then,
F is called empty fuzzy set, denoted by F_{\emptyset}, if $f(x)=0$ for all $x \in X$.
F is called universal fuzzy set, denoted by F_{X}, if $f(x)=1$ for all $x \in X$.
Example 2.10. Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}, f\left(x_{1}\right)=0.7, f\left(x_{2}\right)=0.5, f\left(x_{3}\right)=0.2, f\left(x_{4}\right)=0$, $f\left(x_{5}\right)=0.7$, and $f\left(x_{6}\right)=1$, then the fuzzy set F is as follows:

$$
F=\left\{x_{1}^{0.7}, x_{2}^{0.5}, x_{3}^{0.2}, x_{5}^{0.7}, x_{6}\right\}
$$

Definition 2.11. Let $F_{1}, F_{2} \in \mathbb{F}$. Then,
F_{1} and F_{2} are called equal, denoted by $F_{1}=F_{2}$, if $f_{1}(x)=f_{2}(x)$ for all $x \in X$, and F_{1} is called fuzzy subset of F_{2}, denoted by $F_{1} \subseteq F_{2}$, if $f_{1}(x) \leq f_{2}(x)$ for all $x \in X$.

Definition 2.12. Let $F, F_{1}, F_{2} \in \mathbb{F}$. Then,
the complement of F is defined by $F^{c}=\left\{x^{1-f(x)}: x \in X\right\}$, the union of F_{1} and F_{2} is defined by $F_{1} \cup F_{2}=\left\{x^{\max \left\{f_{1}(x), f_{2}(x)\right\}}: x \in X\right\}$, and the intersection of F_{1} and F_{2} is defined by $F_{1} \cap F_{2}=\left\{x^{\min \left\{f_{1}(x), f_{2}(x)\right\}}: x \in X\right\}$.

Proposition 2.13. If $F \in \mathbb{F}$, then
i) $F \cup F=F$
iii) $F \cup F_{\emptyset}=F$
v) $F \cup F_{X}=F_{X}$
ii) $F \cap F=F$
iv) $F \cap F_{\emptyset}=F_{\emptyset}$
vi) $F \cap F_{X}=F$

Proposition 2.14. If $F_{1}, F_{2}, F_{3} \in \mathbb{F}$, then
i) $F_{1} \cup F_{2}=F_{2} \cup F_{1}$
v) $F_{1} \cup\left(F_{2} \cup F_{3}\right)=\left(F_{1} \cup F_{2}\right) \cup F_{3}$
ii) $F_{1} \cap F_{2}=F_{2} \cap F_{1}$
vi) $F_{1} \cap\left(F_{2} \cap F_{3}\right)=\left(F_{1} \cap F_{2}\right) \cap F_{3}$
iii) $\left(F_{1} \cup F_{2}\right)^{c}=F_{1}^{c} \cap F_{2}^{c}$
vii) $F_{1} \cup\left(F_{2} \cap F_{3}\right)=\left(F_{1} \cup F_{2}\right) \cap\left(F_{1} \cup F_{3}\right)$
iv) $\left(F_{1} \cap F_{2}\right)^{c}=F_{1}^{c} \cup F_{2}^{c}$
viii) $F_{1} \cap\left(F_{2} \cup F_{3}\right)=\left(F_{1} \cap F_{2}\right) \cup\left(F_{1} \cap F_{3}\right)$

2.3. Intuitionistic Fuzzy Sets

This subsection features some of the basic definitions and properties of if-sets provided in [2]. For more details, see $[16,17]$.
Definition 2.15. Let U be a universal set. An intuitionistic fuzzy set ($i f$-set) I over U is defined by

$$
I=\left\{u^{\mu(u) ; \nu(u)}: u \in U\right\}
$$

where $\mu: U \rightarrow[0,1]$ and $\nu: U \rightarrow[0,1]$ such that $0 \leq \mu(u)+\nu(u) \leq 1$ for all $u \in U$. Here, μ and ν are called membership and non-membership function of I and the elements $u^{0 ; 1}$ is not displayed in I. Moreover, the values $\mu(u)$ and $\nu(u)$ denote the membership degree and non-membership degree of the $u \in U$, respectively.

Hereafter, the $i f$-sets are denoted by I, I_{1}, I_{2}, \ldots and their membership and non-membership functions by $\mu, \mu_{1}, \mu_{2}, \ldots$ and $\nu, \nu_{1}, \nu_{2}, \ldots$, respectively. The set of all $i f$-sets over U is denoted by \mathbb{I}.

Definition 2.16. Let $I \in \mathbb{I}$. Then,
I is called empty if-set, denoted by I_{\square}, if $\mu(u)=0$ and $\nu(u)=1$ for all $u \in U$, and I is called universal $i f$-set, denoted by I_{U}, if $\mu(u)=1$ and $\nu(u)=0$ for all $u \in U$.

Example 2.17. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a universal set, $\mu\left(u_{1}\right)=0.7, \nu\left(u_{1}\right)=0.2, \mu\left(u_{2}\right)=0$, $\nu\left(u_{2}\right)=1, \mu\left(u_{3}\right)=0.2, \nu\left(u_{3}\right)=0.6, \mu\left(u_{4}\right)=0.3$, and $\nu\left(u_{4}\right)=0.7$. Then, the $i f$-set I is written by

$$
I=\left\{u_{1}^{0.7 ; 0.2}, u_{3}^{0.2 ; 0.6}, u_{4}^{0.3 ; 0.7}\right\}
$$

Definition 2.18. Let $I_{1}, I_{2} \in \mathbb{I}$. Then,
I_{1} and I_{2} is called equal, denoted by $I_{1}=I_{2}$, if $\mu_{1}(u)=\mu_{2}(u)$ and $\nu_{1}(u)=\nu_{2}(u)$ for all $u \in U$, and I_{1} is called $i f$-subset of I_{2}, denoted by $I_{1} \subseteq I_{2}$, if $\mu_{1}(u) \leq \mu_{2}(u)$ and $\nu_{2}(u) \leq \nu_{1}(u)$ for all $u \in U$.

Definition 2.19. Let $I, I_{1}, I_{2} \in \mathbb{I}$. Then,
the complement of I is defined by $I^{c}=\left\{u^{\nu(u) ; \mu(u)}: u \in U\right\}$,
the union of I_{1} and I_{2} is defined by $I_{1} \cup I_{2}=\left\{u^{\max \left\{\mu_{1}(u), \mu_{2}(u)\right\} ; \min \left\{\nu_{1}(u), \nu_{2}(u)\right\}}: u \in U\right\}$, and the intersection of I_{1} and I_{2} is defined by $I_{1} \cap I_{2}=\left\{u^{\min \left\{\mu_{1}(u), \mu_{2}(u)\right\} ; \max \left\{\nu_{1}(u), \nu_{2}(u)\right\}}: u \in U\right\}$.

Proposition 2.20. If $I \in \mathbb{I}$, then
i) $I \cup I=I$
iii) $I \cup I_{\emptyset}=I$
v) $I \cup I_{U}=I_{U}$
ii) $I \cap I=I$
iv) $I \cap I_{\emptyset}=I_{\emptyset}$
vi) $I \cap I_{U}=I$

Proposition 2.21. If $I_{1}, I_{2}, I_{3} \in \mathbb{I}$, then
i) $I_{1} \cup I_{2}=I_{2} \cup I_{1}$
v) $I_{1} \cup\left(I_{2} \cup I_{3}\right)=\left(I_{1} \cup I_{2}\right) \cup I_{3}$
ii) $I_{1} \cap I_{2}=I_{2} \cap I_{1}$
vi) $I_{1} \cap\left(I_{2} \cap I_{3}\right)=\left(I_{1} \cap I_{2}\right) \cap I_{3}$
iii) $\left(I_{1} \cup I_{2}\right)^{c}=I_{1}^{c} \cap I_{2}^{c}$
vii) $I_{1} \cup\left(I_{2} \cap I_{3}\right)=\left(I_{1} \cup I_{2}\right) \cap\left(I_{1} \cup I_{3}\right)$
iv) $\left(I_{1} \cap I_{2}\right)^{c}=I_{1}^{c} \cup I_{2}^{c}$
viii) $I_{1} \cap\left(I_{2} \cup I_{3}\right)=\left(I_{1} \cap I_{2}\right) \cup\left(I_{1} \cap I_{3}\right)$

3. Fuzzy Parameterized Intuitionistic Fuzzy Soft Sets

In this section, we define fuzzy parameterized intuitionistic fuzzy soft sets (fpifs-sets) as a new concept of the soft sets. We then present some of their basic properties.

Definition 3.1. Let U be a universal set and X be a set of parameters. If $F=\left\{x^{f(x)}: x \in X\right\}$ is a fuzzy set over X and $p: X \rightarrow \mathbb{I}, p(x)=\left\{u^{\mu_{x}(u) ; \nu_{x}(u)}: u \in U\right\}$ is an $i f$-set over U for $x \in X$, then

$$
P=\left\{\left(x^{f(x)}, p(x)\right): x \in X\right\}
$$

is called an $f p i f s$-set over U. Here, p is called approximate function of P and the elements $\left(x^{0}, I_{\emptyset}\right)$ is not displayed in P.

Throughout this paper, the fpifs-sets are denoted by P, P_{1}, P_{2}, \ldots and their approximate functions by p, p_{1}, p_{2}, \ldots, respectively. The set of all fpifs-sets over U is denoted by \mathbb{P}.

Definition 3.2. Let $P \in \mathbb{P}$. Then,
P is called empty fpifs-sets, denoted by P_{\emptyset}, if $f(x)=0$ and $p(x)=I_{\emptyset}$ for all $x \in X$, and P is called universal if-set, denoted by P_{U}, if $f(x)=1$ and $p(x)=I_{U}$ for all $x \in X$.

Example 3.3. Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}, X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, F=\left\{x_{1}^{0.7}, x_{2}^{0.4}, x_{4}^{0.5}\right\}$, and

$$
\begin{aligned}
p\left(x_{1}\right) & =\left\{u_{1}^{0.7 ; 0.2}, u_{3}^{0.5 ; 0.2}\right\} \\
p\left(x_{2}\right) & =\left\{u_{2}^{0.5 ; 0.3}, u_{3}^{0.8 ; 0.1}\right\} \\
p\left(x_{3}\right) & =I_{\varnothing} \\
p\left(x_{4}\right) & =\left\{u_{1}^{0.6 ; 0.2}, u_{2}^{0.5 ; 0.3}, u_{3}^{0.8 ; 0.1}\right\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
P & =\left\{\left(x_{1}^{0.7}, p\left(x_{1}\right)\right),\left(x_{2}^{0.4}, p\left(x_{2}\right)\right),\left(x_{4}^{0.5}, p\left(x_{4}\right)\right)\right\} \\
& =\left\{\left(x_{1}^{0.7},\left\{u_{1}^{0.7 ; 0.2}, u_{3}^{0.5 ; 0.2}\right\}\right),\left(x_{2}^{0.4},\left\{u_{2}^{0.5 ; 0.3}, u_{3}^{0.8 ; 0.1}\right\}\right),\left(x_{4}^{0.5},\left\{u_{1}^{0.6 ; 0.2}, u_{2}^{0.5 ; 0.3}, u_{3}^{0.8 ; 0.1}\right\}\right)\right\}
\end{aligned}
$$

is an $f p i f s$-set over U.

Definition 3.4. Let $P_{1}, P_{2} \in \mathbb{P}$. Then, P_{1} and P_{2} are called equal, denoted by $P_{1}=P_{2}$, if $f_{1}(x)=$ $f_{2}(x)$ and $p_{1}(x)=p_{2}(x)$ for all $x \in X$.

Definition 3.5. Let $P_{1}, P_{2} \in \mathbb{P}$. Then, P_{1} is called fpifs-subset of P_{2}, denoted by $P_{1} \subseteq P_{2}$, if $f_{1}(x) \leq f_{2}(x)$ and $p_{1}(x) \subseteq p_{2}(x)$ for all $x \in X$.

Definition 3.6. Let $P_{1}, P_{2} \in \mathbb{P}$. Then, the union of P_{1} and P_{2} is defined by

$$
P_{1} \cup P_{2}:=\left\{\left(x^{\max \left\{f_{1}(x), f_{2}(x)\right\}}, p_{1}(x) \cup p_{2}(x)\right): x \in X\right\}
$$

Definition 3.7. Let $P_{1}, P_{2} \in \mathbb{P}$. Then, the intersection of P_{1} and P_{2} is defined by

$$
P_{1} \cap P_{2}:=\left\{\left(x^{\min \left\{f_{1}(x), f_{2}(x)\right\}}, p_{1}(x) \cap p_{2}(x)\right): x \in X\right\}
$$

Definition 3.8. Let $P \in \mathbb{P}$. Then, the complement of P is defined by

$$
P^{c}:=\left\{\left(x^{1-f(x)}, p^{c}(x)\right): x \in X\right\}
$$

Proposition 3.9. If $P \in \mathbb{P}$, then
i) $P \cup P=P$
iii) $P \cup P_{\emptyset}=P$
v) $P \cup P_{U}=P_{U}$
ii) $P \cap P=P$
iv) $P \cap P_{\emptyset}=P_{\emptyset}$
vi) $P \cap P_{U}=P$

Proof. Let $P=\left\{\left(x^{f(x)}, p(x)\right): x \in X\right\}$ be an $f p i f s$-set over U. Then,
i) $P \cup P=\left\{\left(x^{\max \{f(x), f(x)\}}, p(x) \cup p(x)\right): x \in X\right\}=\left\{\left(x^{f(x)}, p(x)\right): x \in X\right\}=P$
ii) $P \cap P=\left\{\left(x^{\min \{f(x), f(x)\}}, p(x) \cap p(x)\right): x \in X\right\}=\left\{\left(x^{f(x)}, p(x)\right): x \in X\right\}=P$
iii) $P \cup P_{\emptyset}=\left\{\left(x^{\max \{f(x), 0\}}, p(x) \cup I_{\emptyset}\right): x \in X\right\}=\left\{\left(x^{f(x)}, p(x)\right): x \in X\right\}=P$
iv) $P \cap P_{\emptyset}=\left\{\left(x^{\min \{f(x), 0\}}, p(x) \cap I_{\emptyset}\right): x \in X\right\}=\left\{\left(x^{0}, I_{\emptyset}\right): x \in X\right\}=P_{\emptyset}$
v) $P \cup P_{U}=\left\{\left(x^{\max \{f(x), 1\}}, p(x) \cup I_{U}\right): x \in X\right\}=\left\{\left(x^{1}, I_{U}\right): x \in X\right\}=P_{U}$
vi) $P \cap P_{U}=\left\{\left(x^{\min \{f(x), 1\}}, p(x) \cap I_{U}\right): x \in X\right\}=\left\{\left(x^{f(x)}, p(x)\right): x \in X\right\}=P$

Proposition 3.10. If $P_{1}, P_{2}, P_{3} \in \mathbb{P}$, then
i) $P_{1} \cup P_{2}=P_{2} \cup P_{1}$
v) $P_{1} \cup\left(P_{2} \cup P_{3}\right)=\left(P_{1} \cup P_{2}\right) \cup P_{3}$
ii) $P_{1} \cap P_{2}=P_{2} \cap P_{1}$
vi) $P_{1} \cap\left(P_{2} \cap P_{3}\right)=\left(P_{1} \cap P_{2}\right) \cap P_{3}$
iii) $\left(P_{1} \cup P_{2}\right)^{c}=P_{1}^{c} \cap P_{2}^{c}$
vii) $P_{1} \cup\left(P_{2} \cap P_{3}\right)=\left(P_{1} \cup P_{2}\right) \cap\left(P_{1} \cup P_{3}\right)$
iv) $\left(P_{1} \cap P_{2}\right)^{c}=P_{1}^{c} \cup P_{2}^{c}$
viii) $P_{1} \cap\left(P_{2} \cup P_{3}\right)=\left(P_{1} \cap P_{2}\right) \cup\left(P_{1} \cap P_{3}\right)$

Proof. Let $P_{1}=\left\{\left(x^{f_{1}(x)}, p_{1}(x)\right): x \in X\right\}, P_{2}=\left\{\left(x^{f_{2}(x)}, p_{2}(x)\right): x \in X\right\}$ and $P_{3}=\left\{\left(x^{f_{3}(x)}, p_{3}(x)\right): x \in X\right\}$ be three fpifs-sets over U. Then,
i) $P_{1} \cup P_{2}=\left\{\left(x^{\max \left\{f_{1}(x), f_{2}(x)\right\}}, p_{1}(x) \cup p_{2}(x)\right): x \in X\right\}$,

$$
=\left\{\left(x^{\max \left\{f_{2}(x), f_{1}(x)\right\}}, p_{2}(x) \cup p_{1}(x)\right): x \in X\right\},
$$

$$
=\quad P_{2} \cup P_{1}
$$

ii) $P_{1} \cap P_{2}=\left\{\left(x^{\min \left\{f_{1}(x), f_{2}(x)\right\}}, p_{1}(x) \cap p_{2}(x)\right): x \in X\right\}$,

$$
\begin{aligned}
& =\left\{\left(x^{\min \left\{f_{2}(x), f_{1}(x)\right\}}, p_{2}(x) \cap p_{1}(x)\right): x \in X\right\} \\
& =P_{2} \cap P_{1}
\end{aligned}
$$

```
iii) \(\left(P_{1} \cup P_{2}\right)^{c}=\left\{\left(x^{1-\max \left\{f_{1}(x), f_{2}(x)\right\}},\left(p_{1}(x) \cup p_{1}(x)\right)^{c}\right): x \in X\right\}\),
    \(=\left\{\left(x^{\min \left\{1-f_{1}(x), 1-f_{2}(x)\right\}}, p_{1}^{c}(x) \cap p_{2}^{c}(x)\right): x \in X\right\}\),
    \(=P_{1}^{c} \cap P_{2}^{c}\)
iv) \(\left(P_{1} \cap P_{2}\right)^{c}=\left\{\left(x^{1-\min \left\{f_{1}(x), f_{2}(x)\right\}},\left(p_{1}(x) \cap p_{2}(x)\right)^{c}\right): x \in X\right\}\),
    \(=\left\{\left(x^{\max \left\{1-f_{1}(x), 1-f_{2}(x)\right\}}, p_{1}^{c}(x) \cup p_{2}^{c}(x)\right): x \in X\right\}\),
    \(=P_{1}^{c} \cup P_{2}^{c}\)
v) \(P_{1} \cup\left(P_{2} \cup P_{3}\right)=\left\{\left(x^{\max \left\{f_{1}(x), \max \left\{f_{2}(x), f_{3}(x)\right\}\right\}}, p_{1}(x) \cup\left(p_{2}(x) \cup p_{3}(x)\right)\right): x \in X\right\}\)
    \(=\left\{\left(x^{\max \left\{\max \left\{f_{1}(x), f_{2}(x)\right\}, f_{3}(x)\right\}},\left(p_{1}(x) \cup p_{2}(x)\right) \cup p_{3}(x)\right): x \in X\right\}\)
    \(=\left(P_{1} \cup P_{2}\right) \cup P_{3}\)
vi) \(P_{1} \cap\left(P_{2} \cap P_{3}\right)=\left\{\left(x^{\min \left\{f_{1}(x), \min \left\{f_{2}(x), f_{3}(x)\right\}\right\}}, p_{1}(x) \cap\left(p_{2}(x) \cap p_{3}(x)\right)\right): x \in X\right\}\)
    \(=\left\{\left(x^{\min \left\{\min \left\{f_{1}(x), f_{2}(x)\right\}, f_{3}(x)\right\}},\left(p_{1}(x) \cap p_{2}(x)\right) \cap p_{3}(x)\right): x \in X\right\}\)
    \(=\quad\left(P_{1} \cap P_{2}\right) \cap P_{3}\)
vii) \(P_{1} \cup\left(P_{2} \cap P_{3}\right)=\left\{\left(x^{\max \left\{f_{1}(x), \min \left\{f_{2}(x), f_{3}(x)\right\}\right\}}, p_{1}(x) \cup\left(p_{2}(x) \cap p_{3}(x)\right)\right): x \in X\right\}\)
    \(=\left\{\left(x^{\min \left\{\max \left\{f_{1}(x), f_{2}(x)\right\}, \max \left\{f_{1}(x), f_{3}(x)\right\}\right\}},\left(p_{1}(x) \cup p_{2}(x)\right) \cap\left(p_{1}(x) \cup p_{3}(x)\right)\right): x \in X\right\}\)
    \(=\left(P_{1} \cup P_{2}\right) \cap\left(P_{1} \cup P_{3}\right)\)
viii) \(P_{1} \cap\left(P_{2} \cup P_{3}\right)=\left\{\left(x^{\min \left\{f_{1}(x), \max \left\{f_{2}(x), f_{3}(x)\right\}\right\}}, p_{1}(x) \cap\left(p_{2}(x) \cup p_{2}(x)\right)\right): x \in X\right\}\)
    \(=\left\{\left(x^{\max \left\{\min \left\{f_{1}(x), f_{2}(x)\right\}, \min \left\{f_{1}(x), f_{3}(x)\right\}\right\}},\left(p_{1}(x) \cap p_{2}(x)\right) \cup\left(p_{1}(x) \cap p_{3}(x)\right)\right): x \in X\right\}\)
    \(=\left(P_{1} \cap P_{2}\right) \cup\left(P_{1} \cap P_{3}\right)\)
```


4. A Soft Decision-Making Method Proposed on fpifs-sets

In this section, we suggest a soft decision-making method that assigns a performance-based value to the alternatives via fpifs-sets. Thus, we can choose the optimal elements among the alternatives.

The Proposed Algorithm Steps
Step 1. Construct an fpifs-set P such that $P=\left\{\left(x^{f(x)},\left\{u^{\mu_{x}(u) ; \nu_{x}(u)}: u \in U\right\}\right): x \in X\right\}$
Step 2. Obtain the values $\omega(u)=\frac{1}{|E|} \sum_{x \in X} f(x)\left(\mu_{x}(u)-\nu_{x}(u)\right)$, for all $u \in U$
Step 3. Obtain the decision set $\left\{u_{k}^{d\left(u_{k}\right)} \mid u_{k} \in U\right\}$ such that $d\left(u_{k}\right)=\frac{\omega\left(u_{k}\right)+\left|\min _{i} \omega\left(u_{i}\right)\right|}{\max _{i} \omega\left(u_{i}\right)+\left|\min _{i} \omega\left(u_{i}\right)\right|}$

5. An Application of the Proposed Method to a Performance-Based Value Assignment Problem

In this section, we apply the proposed method to the performance-based value assignment (PVA) problem for seven filters used in image denoising, namely Decision Based Algorithm (DBA) [18], Modified Decision Based Unsymmetrical Trimmed Median Filter (MDBUTMF) [19], Based on Pixel Density Filter (BPDF) [20], Noise Adaptive Fuzzy Switching Median Filter (NAFSMF) [21], A New Adaptive Weighted Mean Filter (AWMF) [22], Different Applied Median Filter (DAMF) [23], and Adaptive Riesz Mean Filter (ARmF) [24]. Hereafter, let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}$ be the set of the alternatives such that

$$
\begin{aligned}
u_{1}=" \mathrm{DBA}^{\prime}, u_{2}=" M D B U T M F ", & u_{3}= \\
& " \mathrm{BPDF} ", u_{4}=" \mathrm{NAFSMF} ", u_{5}=" \mathrm{AWMF} ", u_{6}=" \mathrm{DAMF"}, \\
& \text { and } u_{7}=" \mathrm{ARmF} "
\end{aligned}
$$

Moreover, let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$ be a parameter set determined by a decision-maker such that
$x_{1}=" n o i s e ~ d e n s i t y ~ 10 \% ", x_{2}=$ "noise density $20 \% ", x_{3}=$ "noise density $30 \% "$,
$x_{4}=" n o i s e ~ d e n s i t y ~ 40 \% ", x_{5}=" n o i s e ~ d e n s i t y ~ 50 \% ", ~ x_{6}=" n o i s e ~ d e n s i t y ~ 60 \% ", ~$
$x_{7}=" n o i s e ~ d e n s i t y ~ 70 \% ", x_{8}=" n o i s e ~ d e n s i t y ~ 80 \% ", ~ a n d ~ x_{9}=" n o i s e ~ d e n s i t y ~ 90 \% "$.

Further, let bold numbers in a table point out the best scores therein.

We first present the results of the filters in [24] by Structural Similarity (SSIM) [25] for the image Cameraman in Table 1. Hereinafter, let $\mu_{x}(u)$ corresponds to the SSIM/MSSIM results of the image/images for filter u and noise density x. Moreover, let $\nu_{x}(u)=1-\mu_{x}(u)$, for all $x \in X$ and $u \in U$.

Table 1. The SSIM results of the filters for the Cameraman image.

Filters	$\mathbf{1 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{3 0 \%}$	$\mathbf{4 0 \%}$	$\mathbf{5 0 \%}$	$\mathbf{6 0 \%}$	$\mathbf{7 0 \%}$	$\mathbf{8 0 \%}$	$\mathbf{9 0 \%}$
DBA	0.9938	0.9847	0.9710	0.9520	0.9222	0.8843	0.8283	0.7584	0.6645
MDBUTMF	0.9897	0.9278	0.7945	0.7964	0.8844	0.9158	0.8962	0.8056	0.4451
BPDF	0.9910	0.9783	0.9588	0.9306	0.8934	0.8406	0.7700	0.6665	0.4990
NAFSMF	0.9798	0.9636	0.9484	0.9329	0.9164	0.8954	0.8696	0.8335	0.7288
AWMF	0.9872	0.9839	0.9798	0.9748	0.9667	0.9541	0.9345	0.9015	0.8346
DAMF	0.9960	0.9906	0.9833	0.9749	0.9638	0.9492	0.9293	0.8973	0.8294
ARmF	$\mathbf{0 . 9 9 6 9}$	$\mathbf{0 . 9 9 3 3}$	$\mathbf{0 . 9 8 8 5}$	$\mathbf{0 . 9 8 2 4}$	$\mathbf{0 . 9 7 3 5}$	$\mathbf{0 . 9 6 0 0}$	$\mathbf{0 . 9 3 9 5}$	$\mathbf{0 . 9 0 5 9}$	$\mathbf{0 . 8 3 7 6}$

The application of the soft decision-making method proposed in Section 4 is as follows:
Step 1. Suppose that the success at high noise densities is more important than in the presence of other densities. In this case, the values in Table 1 can be represented with fpifs-set as follows:

$$
\begin{aligned}
& P_{1}=\left\{\left(x_{1}{ }^{0.1},\left\{u_{1}^{0.9938 ; 0.0062}, u_{2}{ }^{0.9897 ; 0.0103}, u_{3}{ }^{0.9910 ; 0.0090}, u_{4}{ }^{0.9798 ; 0.0202}, u_{5}{ }^{0.9872 ; 0.0128}, u_{6}{ }^{0.9960 ; 0.0040},\right.\right.\right. \\
& \left.\left.u_{7}{ }^{0.9969 ; 0.0031}\right\}\right),\left(x_{2}{ }^{0.2},\left\{u_{1}^{0.9847 ; 0.0153}, u_{2}^{0.9278 ; 0.0722}, u_{3}{ }^{0.9783 ; 0.0217}, u_{4}{ }^{0.9636 ; 0.0364}, u_{5}^{0.9839 ; 0.0161},\right.\right. \\
& \left.\left.u_{6}{ }^{0.9906 ; 0.0094}, u_{7}{ }^{0.9933 ; 0.0067}\right\}\right),\left(x_{3}{ }^{0.3},\left\{u_{1}^{0.9710 ; 0.0290}, u_{2}{ }^{0.7945 ; 0.2055}, u_{3}{ }^{0.9588 ; 0.0412}, u_{4}^{0.9484 ; 0.0516}\right. \text {, }\right. \\
& \left.\left.u_{5}{ }^{0.9798 ; 0.0202}, u_{6}{ }^{0.9833 ; 0.0167}, u_{7}{ }^{0.9885 ; 0.0115}\right\}\right),\left(x_{4}^{0.4},\left\{u_{1}^{0.9520 ; 0.0480}, u_{2}{ }^{0.7964 ; 0.2036}, u_{3}^{0.9306 ; 0.0694}\right. \text {, }\right. \\
& \left.\left.u_{4}{ }^{0.9329 ; 0.0671}, u_{5}{ }^{0.9748 ; 0.0252}, u_{6}{ }^{0.9749 ; 0.0251}, u_{7}{ }^{0.9824 ; 0.0176}\right\}\right),\left(x_{5}{ }^{0.5},\left\{u_{1}^{0.9222 ; 0.0778}, u_{2}{ }^{0.8844 ; 0.1156},\right.\right. \\
& \left.\left.u_{3}{ }^{0.8934 ; 0.1066}, u_{4}{ }^{0.9164 ; 0.0836}, u_{5}{ }^{0.9667 ; 0.0333}, u_{6}{ }^{0.9638 ; 0.0362}, u_{7}{ }^{0.9735 ; 0.0265}\right\}\right),\left(x_{6}{ }^{0.6},\left\{u_{1}^{0.8843 ; 0.1157}\right. \text {, }\right. \\
& \left.\left.u_{2}{ }^{0.9158 ; 0.0842}, u_{3}{ }^{0.8406 ; 0.1594}, u_{4}{ }^{0.8954 ; 0.1046}, u_{5}{ }^{0.9541 ; 0.0459}, u_{6}^{0.9492 ; 0.0508}, u_{7}^{0.9600 ; 0.0400}\right\}\right),\left(x_{7}{ }^{0.7},\right. \\
& \left.\left\{u_{1}{ }^{0.8283 ; 0.1717}, u_{2}{ }^{0.8962 ; 0.1038}, u_{3}^{0.7700 ; 0.2300}, u_{4}{ }^{0.8696 ; 0.1304}, u_{5}^{0.9345 ; 0.0655}, u_{6}^{0.9293 ; 0.0707}, u_{7}^{0.9395 ; 0.0605}\right\}\right) \text {, } \\
& \left(x_{8}{ }^{0.8},\left\{u_{1}{ }^{0.7584 ; 0.2416}, u_{2}{ }^{0.8056 ; 0.1944}, u_{3}{ }^{0.6665 ; 0.3335}, u_{4}{ }^{0.8335 ; 0.1665}, u_{5}^{0.9015 ; 0.0985}, u_{6}{ }^{0.8973 ; 0.1027}\right. \text {, }\right. \\
& \left.\left.u_{7}{ }^{0.9059 ; 0.0941}\right\}\right),\left(x_{9}{ }^{0.9},\left\{u_{1}^{0.6645 ; 0.3355}, u_{2}^{0.4451 ; 0.5549}, u_{3}^{0.4990 ; 0.5010}, u_{4}^{0.7288 ; 0.2712}, u_{5}^{0.8346 ; 0.1654},\right.\right. \\
& \left.\left.\left.u_{6}{ }^{0.8294 ; 0.1706}, u_{7}{ }^{0.8376 ; 0.1624}\right\}\right)\right\}
\end{aligned}
$$

Step 2. The values $\omega(u)$ are as follows:
$\omega\left(u_{1}\right)=0.3322, \omega\left(u_{2}\right)=0.2790, \omega\left(u_{3}\right)=0.2616, \omega\left(u_{4}\right)=0.3612, \omega\left(u_{5}\right)=0.4248, \omega\left(u_{6}\right)=0.4220$, and $\omega\left(u_{7}\right)=0.4304$
Step 3. The decision set is as follows:

$$
\left\{\mathrm{DBA}^{0.8580}, \mathrm{MDBUTMF}^{0.7812}, \mathrm{BPDF}^{0.7560}, \mathrm{NAFSMF}^{0.8999}, \mathrm{AWMF}^{0.9919}, \mathrm{DAMF}^{0.9878}, \mathrm{ARmF}^{1}\right\}
$$

The results show that ARmF outperforms the others and the ranking order BPDF \prec MDBUTMF \prec DBA \prec NAFSMF \prec DAMF \prec AWMF \prec ARmF is valid. Moreover, the results confirm the expert's view.

The visual performances of the filters are provided in Fig. 1. The performances of the filters can not be discriminated in consideration of Fig. 1. Moreover, when a large number of data come into question, it is impossible to do so. Therefore, the proposed method has an essential role in dealing with PVA problems.

Fig. 1. [24] SSIM results for "Cameraman" of 512×512 with a SPN ratio of 30 . (a) Noisy image 0.0550 , (b) DBA 0.9710, (c) MDBUTMF 0.7945, (d) BPDF 0.9588, (e) NAFSMF 0.9484, (f) AWMF 0.9798, (g) DAMF 0.9833, and (h) ARmF 0.9885

Secondly, to better establish the success of the proposed method, we present the results of the filters in [24] by Mean Structural Similarity (MSSIM) for the 20 traditional images in Table 2.

Table 2. The MSSIM results of the filters for the 20 traditional images.

Filters	$\mathbf{1 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{3 0 \%}$	$\mathbf{4 0 \%}$	$\mathbf{5 0 \%}$	$\mathbf{6 0 \%}$	$\mathbf{7 0 \%}$	$\mathbf{8 0 \%}$	$\mathbf{9 0 \%}$
DBA	0.9796	0.9584	0.9315	0.8968	0.8520	0.7949	0.7213	0.6265	0.4966
MDBUTMF	0.9774	0.9197	0.8117	0.7973	0.8399	0.8410	0.8025	0.7023	0.3566
BPDF	0.9783	0.9536	0.9229	0.8838	0.8323	0.7634	0.6680	0.5096	0.2585
NAFSMF	0.9748	0.9504	0.9248	0.8973	0.8666	0.8320	0.7910	0.7357	0.6190
AWMF	0.9728	0.9622	0.9484	0.9315	0.9098	0.8816	0.8437	0.7904	0.7028
DAMF	0.9854	0.9699	0.9516	0.9303	0.9051	0.8748	0.8368	0.7846	0.6964
ARmF	$\mathbf{0 . 9 8 6 8}$	$\mathbf{0 . 9 7 3 5}$	$\mathbf{0 . 9 5 8 1}$	$\mathbf{0 . 9 4 0 0}$	$\mathbf{0 . 9 1 7 3}$	$\mathbf{0 . 8 8 8 0}$	$\mathbf{0 . 8 4 9 1}$	$\mathbf{0 . 7 9 4 7}$	$\mathbf{0 . 7 0 5 6}$

Similarly, the values in Table 2 can be represented with fpifs-set as follows:

$$
\begin{aligned}
P_{2}= & \left\{\left(x_{1}^{0.1},\left\{u_{1}^{0.9796 ; 0.0204}, u_{2}{ }^{0.9774 ; 0.0226}, u_{3} 0.9783 ; 0.0217, u_{4}^{0.9748 ; 0.0252}, u_{5}^{0.9728 ; 0.0272}, u_{6}^{0.9854 ; 0.0146}\right.\right.\right. \\
& \left.\left.u_{7}^{0.9868 ; 0.0132}\right\}\right),\left(x_{2}{ }^{0.2},\left\{u_{1}^{0.9584 ; 0.0416}, u_{2}{ }^{0.9197 ; 0.0803}, u_{3}^{0.9536 ; 0.0464}, u_{4}^{0.9504 ; 0.0496}, u_{5}^{0.9622 ; 0.0378}\right.\right. \\
& \left.\left.u_{6}^{0.9699 ; 0.0301}, u_{7}^{0.9735 ; 0.0265}\right\}\right),\left(x_{3}^{0.3},\left\{u_{1}^{0.9315 ; 0.0685}, u_{2}^{0.8117 ; 0.1183}, u_{3}^{0.9229 ; 0.0771}, u_{4}^{0.9248 ; 0.0752}\right.\right. \\
& \left.\left.u_{5}^{0.9484 ; 0.0516}, u_{6}^{0.9516 ; 0.0484}, u_{7}^{0.9581 ; 0.0419}\right\}\right),\left(x_{4}^{0.4},\left\{u_{1}^{0.8968 ; 0.1032}, u_{2}^{0.7973 ; 0.2027}, u_{3}^{0.8838 ; 0.1162}\right.\right. \\
& \left.\left.u_{4}^{0.8973 ; 0.1027}, u_{5}^{0.9315 ; 0.0685}, u_{6}^{0.9303 ; 0.0697}, u_{7}^{0.9400 ; 0.0600}\right\}\right),\left(x_{5}^{0.5},\left\{u_{1}^{0.8520 ; 0.1480}, u_{2}^{0.8399 ; 0.1601}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.u_{3}^{0.8323 ; 0.1677}, u_{4}{ }^{0.8666 ; 0.1334}, u_{5}{ }^{0.9098 ; 0.0902}, u_{6}^{0.9051 ; 0.0949}, u_{7}^{0.9173 ; 0.0827}\right\}\right),\left(x_{6}^{0.6},\left\{u_{1}^{0.7949 ; 0.02051}\right.\right. \\
& \left.\left.u_{2}^{0.8410 ; 0.1590}, u_{3}{ }^{0.7634 ; 0.2366}, u_{4}{ }^{0.8320 ; 0.1680}, u_{5}{ }^{0.8816 ; 0.1184}, u_{6}{ }^{0.8748 ; 0.1252}, u_{7}{ }^{0.8880 ; 0.1120}\right\}\right),\left(x_{7}{ }^{0.7}\right. \\
& \left.\left\{u_{1}{ }^{0.7213 ; 0.2787}, u_{2}{ }^{0.8025 ; 0.1975}, u_{3}{ }^{0.6680 ; 0.3320}, u_{4}{ }^{0.7910 ; 0.2090}, u_{5}{ }^{0.8437 ; 0.1563}, u_{6}^{0.8368 ; 0.1632}, u_{7}^{0.8491 ; 0.1509}\right\}\right) \\
& \left(x_{8}^{0.8},\left\{u_{1}^{0.6265 ; 0.3735}, u_{2}^{0.7023 ; 0.2977}, u_{3}^{0.5096 ; 0.4904}, u_{4}^{0.7357 ; 0.2643}, u_{5}^{0.7904 ; 0.2096}, u_{6}^{0.7846 ; 0.2154}\right.\right. \\
& \left.\left.u_{7}^{0.7947 ; 0.2053}\right\}\right),\left(x_{9}^{0.9},\left\{u_{1}^{0.4966 ; 0.5034}, u_{2}^{0.3566 ; 0.6434}, u_{3}^{0.2585 ; 0.7415}, u_{4}^{0.6190 ; 0.3810}, u_{5}^{0.7028 ; 0.2972}\right.\right. \\
& \left.\left.\left.u_{6}^{0.6964 ; 0.3036}, u_{7}^{0.7056 ; 0.2944}\right\}\right)\right\}
\end{aligned}
$$

If we apply the proposed method to the fpifs-set P_{2}, then the decision set is as follows:
$\left\{\right.$ DBA $^{0.7608}$, MDBUTMF $^{0.7289}$, BPDF $^{0.5880}$, NAFSMF $^{0.8837}$, AWMF $^{0.9877}$, DAMF $^{0.9794}$, ARmF $\left.^{1}\right\}$
The results show that ARmF outperforms the others and the following ranking order is valid.

$$
\text { BPDF } \prec \text { MDBUTMF } \prec \text { DBA } \prec \text { NAFSMF } \prec \text { DAMF } \prec \text { AWMF } \prec \text { ARmF }
$$

Moreover, performance ranking order of filters obtained with the SSIM results of the filters only for the Cameraman image is the same therein. Therefore, the proposed method has been successfully applied to the PVA problem.

6. Conclusion

To deal with uncertainties, the soft set theory has been applied to many theoretical and practical fields. Recently, soft sets, using other theories, have been prominent. In this work, we defined fuzzy parameterized intuitionistic fuzzy soft sets (fpifs-sets) by using fuzzy sets, intuitionistic fuzzy sets, and soft sets. We then proposed a soft decision-making method and successfully applied it to a decisionmaking problem. We think that this study will be beneficial for future studies on soft sets and their applications, particularly in decision-making.

References

[1] L. A. Zadeh, Fuzzy Sets, Information and Control 8(3) (1965) 338-353.
[2] K. T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems 20(1) (1986) 87-96.
[3] D. A. Molodtsov, Soft Set Theory-First Results, Computers and Mathematics with Applications 37(4-5) (1999) 19-31.
[4] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy Soft Sets, Journal of Fuzzy Mathematics 9(3) (2001) 589-602.
[5] P. K. Maji, R. Biswas, A. R. Roy, Intuitionistic Fuzzy Soft Sets, The Journal of Fuzzy Mathematics 9(3) (2001) 677-692.
[6] N. Çağman, F. Çıtak, S. Enginoğlu, FP-Soft Set Theory and Its Applications, Annals of Fuzzy Mathematics and Informatics 2(2) (2011) 219-226.
[7] N. Çağman, F. Çitak, S. Enginoglu, Fuzzy Parameterized Fuzzy Soft Set Theory and Its Applications, Turkish Journal of Fuzzy Systems 1(1) (2010) 21-35.
[8] İ. Deli, N. Çağman, Intuitionistic Fuzzy Parameterized Soft Set Theory and Its Decision Making, Applied Soft Computing 28 (2015) 109-113.
[9] E. El-Yagubi, A. R. Salleh, Intuitionistic Fuzzy Parameterised Fuzzy Soft Set, Journal of Quality Measurement and Analysis 9(2) (2013) 73-81.
[10] F. Karaaslan, Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Sets with Applications in Decision Making, Annals of Fuzzy Mathematics and Informatics 11(4) (2016) 607-619.
[11] N. Çağman, S. Enginoğlu, Soft Set Theory and uni-int Decision Making, European Journal of Operational Research 207(2) (2010) 848-855.
[12] P. K. Maji, R. Biswas, A. R. Roy, Soft Set Theory, Computers and Mathematics with Applications 45(4-5) (2003) 555-562.
[13] D. Dubois, H. Prade, Fuzzy Set and Systems: Theory and Applications, Academic Press, New York, 1980.
[14] G. J. Klir, T. A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice-Hall, 1988.
[15] H. J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer, 1991.
[16] K. T. Atanassov, Intuitionistic Fuzzy Sets Theory and Applications, Physica-Verlag Heidelberg, 1999.
[17] Q. Lei, Z. Xu, Intuitionistic Fuzzy Calculus, Springer, 2017.
[18] A. Pattnaik, S. Agarwal, S. Chand, A New and Efficient Method for Removal of High Density Salt and Pepper Noise through Cascade Decision Based Filtering Algorithm, Procedia Technology 6 (2012) 108-117.
[19] S. Esakkirajan, T. Veerakumar, A. N. Subramanyam, C. H. PremChand, Removal of High Density Salt and Pepper Noise Through Modified Decision Based Unsymmetric Trimmed Median Filter, IEEE Signal Processing Letters 18(5) (2011) 287-290.
[20] U. Erkan, L. Gökrem, A New Method Based on Pixel Density in Salt and Pepper Noise Removal, Turkish Journal of Electrical Engineering and Computer Sciences 26(1) (2018) 162-171.
[21] K. K. V. Toh, N. A. M. Isa, Noise Adaptive Fuzzy Switching Median Filter for Salt-and-Pepper Noise Reduction, IEEE Signal Processing Letters 17(3) (2010) 281-284.
[22] Z. Tang, K. Yang, K. Liu, Z. Pei, A New Adaptive Weighted Mean Filter for Removing High Density Impulse Noise, SPIE Proceedings, Eighth International Conference on Digital Image Processing (ICDIP 2016), International Society for Optics and Photonics 10033 (2016) 1003353/1-5.
[23] U. Erkan, L. Gökrem, S. Enginoğlu, Different Applied Median Filter in Salt and Pepper Noise, Computers and Electrical Engineering 70 (2018) 789-798.
[24] S. Enginoğlu, U. Erkan, S. Memiş,Pixel Similarity-Based Adaptive Riesz Mean Filter for Salt-andPepper Noise Removal, Multimedia Tools and Applications 78 (2019) 35401-35418.
[25] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing 13(4) (2004) 600-612.

[^0]: ${ }^{1}$ esulukan60@gmail.com (Corresponding Author); ${ }^{2}$ naim.cagman@gop.edu.tr; ${ }^{3}$ aydinttugce@gmail.com
 ${ }^{1,2}$ Department of Mathematics, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa University, Tokat, Turkey
 ${ }^{3}$ Department of Mathematics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey

