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ABSTRACT 
 
In many industries process capability studies are conducted in order to determine the capability of the process to produce 

acceptable products and it is one of the important activities of statistical process control. In order to express the capability of a 
process, process capability indices are frequently used. However, they are usually computed under the assumption that the 
process data follow a normal distribution. Normality assumption may be violated and the use of these traditional capability 
indices may cause misleading interpretation about the capability of the process. One of the most widely discussed methods to 
handle non-normality is Clements’ method which was proposed in 1989. Clements’ method uses the Pearson family of curves 
for calculating capability indices for any shape of distribution. It requires the estimation of the mean, standard deviation, 
skewness and kurtosis and makes use of the classical estimators of skewness and kurtosis. In this study, we discussed the use 
of more robust estimators of skewness and kurtosis in the calculation of process capability index by Clements’ method. For 
this purpose, capability indices with the use of these robust estimators are computed by simulation and the mean square errors 

of them are reported. The comparison is done through simulating Weibull and lognormal data with several different parameter 
values. Finally, a real life application to oil pump manufacturing in automotive industry is presented. 
 
Keywords: Process Capability Index, Non-normality, Statistical Process Control, Skewed Population, Robust Estimator 
 

 

1. INTRODUCTION 
 

Process capability analysis is the activity of analyzing process variability relative to product 
specifications and it helps manufacturing in decreasing variability and improving quality. Process 

capability indices (PCIs) are frequently used to quantify the capability of the process in producing items 

within the specifications. The most widely used indices in industry; Cp and Cpk were defined as 
 

Cp =
USL−LSL

6σ
       (1) 

 

Cpk = min{Cpu, Cpl} = min {
USL−μ

3σ
,

μ−LSL

3σ
}    (2) 

 
where LSL and USL denote the lower and upper specification limits, respectively. Since the process 

mean µ and variance 𝜎2 are unknown they are estimated from the sample. 
 

The traditional PCIs are usually computed and interpreted under the assumption that the process data 
follow a normal distribution. However, normality assumption may be violated and the use of these 

indices may cause misleading interpretation about the capability of the process.  
 

Several studies are available in literature that account for non-normality of the process data. There are 
usually two ways to handle a non-normal process data. The one is to transform non normal data to normal 

data and to use standard PCIs given in (1) and (2). Numerous normalizing transformations were proposed 

in the literature to use for this purpose. (see, for example, Box and Cox [1], Johnson and Kotz [2], Ryan 
[3], Ryan and Schwertman [4], Niaki and Abbasi [5]). The other is to use PCIs defined directly for non-

normal data. Clements [6] used the Pearson family of curves for calculating capability indices for any 
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shape of distribution. Liu and Chen [7] have modified Clements’ method using the Burr XII distribution. 
Wu et al. [8] proposed weighted variance PCIs which are based on the semivariance approximation of 

Choobineh and Branting [9]. Chang et.al.[10] computed PCIs which are based on weighted standard 

deviation method. In addition, there are also several comparative studies for the proposed methods of PCI 
calculation.(see, for example, Tang and Than [11], Kovarik and Sarga [12], Sennaroglu and Senvar [13], 

Hosseinifard et al. [14]). Authors may also benefit from the review papers by Kotz and Johnson [15], Anis 

[16], Wu et al. [17]. 
 

In this study, we considered Clements’ method [6] which is the most widely discussed methods to handle 

non-normality in capability index calculations. It requires the estimation of the mean, standard deviation, 

skewness and kurtosis and makes use of the classical measures of skewness and kurtosis.  We modified 

the Clements’ method by using the alternative measures of skewness and kurtosis some of which are 

more robust than the classical measures. These are Bowley coefficient of skewness (𝑠𝑘2), Groeneveld 

and Meeden coefficient of skewness (𝑠𝑘3), Pearson coefficient of skewness (𝑠𝑘4), Moors coefficient of 

kurtosis (𝑘𝑟2), the centered Hogg coefficient of kurtosis (𝑘𝑟3), and the centered coefficient of kurtosis 

suggested by Crow and Siddiqui [18] (𝑘𝑟4). They are briefly discussed in Section 3. The robustness of 
these measures was studied by Kim and White [19]. They investigated the robustness of the measures 

by adding a single outlier to the generated data and also by considering mixture distribution. We use the 

measures which are available in Kim and White [19] in the context of Clements’ method. For 
comparative purposes, Weibull and lognormal data with several different parameter values were 

generated and mean square errors (MSEs) of the estimators of capability indices were simulated. These 

distributions were considered since they are frequently encountered in industrial processes when the 
process is not symmetric and they are the most discussed asymmetric distributions in process capability 

studies.  
 

This article is organized as follows. In Section 2, the datails of the Clements’ method is explained. In 
Section 3, the measures of skewness and kurtosis which are used in this study are discussed. In Section 

4, the simulation procedure is explained and the MSEs are reported. In Section 5, a real life application 

to oil pump manufacturing in automotive industry is presented and some concluding remarks are given 

in Section 6. 
 

2. CLEMENTS’ METHOD 

 
Clements [6] used the Pearson family of curves for calculating capability indices for any shape of 

distribution. In the Clements’ method 6𝝈 in (1) was replaced by 𝐔𝐩 − 𝐋𝐩, giving  

 

𝐂𝐩 =
𝐔𝐒𝐋−𝐋𝐒𝐋

𝐔𝐩−𝐋𝐩
         (3) 

 

 where 𝐔𝐩 and 𝐋𝐩 denote 99.865 and 0.135 percentiles, respectively. The process mean µ in (2) was 

estimated by the median M, and 3𝝈 was replaced by 𝐔𝐩 − 𝐌 for finding 𝐂𝐩𝐮 and by 𝐌 − 𝐋𝐩 for finding 

𝐂𝐩𝐥, giving 

 

Cpu =
USL−M

Up−M
        (4) 

 

Cpl =
M−LSL

M−Lp
         (5) 

 

Cpk is defined as the minimum of Cpu and Cpl as follows: 

 

Cpk = min {
USL−M

Up−M
,

M−LSL

M−Lp
}       (6) 
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2.1. Procedure for Calculating PCIs by Clements’ Method 
 

In the calculation of PCIs by Clements’ method, estimates of the mean, standard deviation, skewness 

and kurtosis of the process data are required, and they should be calculated from a stable, in control 

process. USL and LSL are usually given externally by the design engineers according to the design 
requirements of the product. 
 

The following steps give the procedure for calculating PCIs by Clements’ Method. 
 

1. LSL and USL are known values since they are determined by the design engineers. 

2. The process mean and standard deviation are estimated by 𝑿̅ and S, respectively. 

3. Skewness (sk) and kurtosis (kr) are estimated by the traditional method which is based on the 

third and the fourth central moments. (Detailed formulas are given in section 3) 

4. Standardized values of 𝐋𝐩, 𝐔𝐩 and M (denoted by 𝐋𝐩
′ , 𝐔𝐩

′  and 𝐌′) are obtained from the tables 

provided by [6]. 

5. 𝐋𝐩, 𝐔𝐩 and M are estimated as follows 

 

𝐋𝐩 = 𝐱̅ − 𝐬𝐋𝐩
′  , 𝐔𝐩 = 𝐱̅ + 𝐬𝐔𝐩

′  , 𝐌 = 𝐱̅ + 𝐬𝐌′ 

 

6. PCIs are calculated from equations (3)-(6). 
 

As mentioned before, the given procedure for calculating PCIs employs traditional estimators of 

skewness and kurtosis. In this study, the use of more robust estimators of skewness and kurtosis in the 

calculation of PCIs are considered and an extensive simulation work is conducted for comparison. 
Skewness and kurtosis measures used in this study are explained in detail in section 3. 
 

3. SKEWNESS AND KURTOSIS MEASURES 
 

Suppose that observations are obtained from a stable process and they are denoted by {yi}, i=1,2,..,n. 

Moreover, yi’s are identically, independently distributed and have the cumulative distribution function 

of F, and F−1 stands for the inverse of the cumulative distribution function. The traditional coefficients 

of skewness and kurtosis for yi are given by 

sk1 = E (
yi−μ

σ
)

3

         (7) 

kr1 = E (
yi−μ

σ
)

4

− 3       (8) 

where μ = E(yi) and σ = E(yi − μ)2. The following estimators are usually used in order to estimate 

sk1 and kr1. 

sk̂1 = n−1 ∑ (
yi−μ̂

σ̂
)

3
n
i=1        (9) 

kr̂1 = n−1 ∑ (
yi−μ̂

σ̂
)

4
n
i=1 − 3       (10) 

where μ̂ = n−1 ∑ yi
n
i=1  and σ̂ = n−1 ∑ (yi − μ̂)2n

i=1 .   

sk̂1 and kr̂1 become arbitrarily large when there are one or more large outliers in the data. Therefore, 

some other measures of skewness and kurtosis that are less sensitive to the outliers were proposed in the 

literature. For example, Bowley [20] proposed a coefficient of skewness based on quantiles 

sk2 =
Q3+Q1−2Q2

Q3−Q1
         (11) 
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where Qk is the kth quartile of yi; that is, Q1 = F−1(0.25), Q2 = F−1(0.5), and Q3 = F−1(0.75). The 

estimator of sk2 is given by 

sk̂2 =
Q̂3+Q̂1−2Q̂2

Q̂3−Q̂1
        (12) 

where Q̂k is the kth sample quartile. 

The Bowley coefficient of skewness has been generalized by Hinkley [21], 

sk3(α) =
F−1(1−α)+F−1(α)−2Q2

F−1(1−α)−F−1(α)
      (13) 

for any α between 0 and 0.5. 

In order to remove the dependence of this measure on the value of α, Groeneveld and Meeden [22] 

integrated out α as: 

sk3 =
∫ {F−1(1−α)+F−1(α)−2Q2}dα

0.5
0

∫ {F−1(1−α)−F−1(α)}dα
0.5

0

=
μ−Q2

E|yt−Q2|
     (14) 

and this coefficient of skewness is estimated by 

sk̂3 =
μ̂−Q̂2

n−1 ∑ |yi−Q̂2|n
i=1

        (15) 

The final measure of skewness used in this study is the Pearson coefficient [23], and it was obtained by 

replacing the denominator in sk3 with the standard deviation. 

sk4 =
μ−Q2

σ
         (16) 

The following is the estimator of sk4. 

sk̂4 =
μ̂−Q̂2

σ̂
         (17) 

Moors [24] proposed an alternative measure of kurtosis which was given by 

kr2
′ =

(E7−E5)+(E3−E1)

E6−E2
       (18) 

where Ek is the kth octile, i.e. Ek = F−1(𝑘 8⁄ ) for k=1, 2,…,7.  

Moors coefficient of kurtosis is centered at the value for the standard normal distribution which is equal 

to 1.23 [19]. Therefore, the centered coefficient was given by 

kr2 =
(E7−E5)+(E3−E1)

E6−E2
− 1.23      (19) 

and the estimator of kr2 is 

kr̂2 =
(Ê7−Ê5)+(Ê3−Ê1)

Ê6−Ê2
− 1.23      (20) 

where Êk is the kth sample octile. 

Hogg [25, 26] suggested another measure of kurtosis which is given by  
Uα−Lα

Uβ−Lβ
 where Uα(Lα) is the 

average of the upper(lower) α quantiles defined as: 

Uα = ∫ F−1(y)dy
1

1−α
,  Lα = ∫ F−1(y)dy

α

0
,  for α ϵ (0,1) 
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According to Hogg’s simulation experiments, α = 0.05 and 𝛽 = 0.5 gave the most satisfactory results. 

Adopting these values for α and 𝛽, Hogg coefficient was calculated as 2.59 for standard normal 

distribution [19]. Hence, the centered Hogg coefficient was given by 

kr3 =
U0.05−L0.05

U0.5−L0.5
− 2.59       (21) 

The estimator of kr3 is 

kr̂3 =
Û0.05−L̂0.05

Û0.5−L̂0.5
− 2.59       (22) 

where 

Ûα =
1

nu(α)
∑ yiyi>P̂1−α

,  L̂α =
1

nl(α)
∑ yiyi<P̂α

,  for α ϵ (0,1) 

P̂α: αth sample percentile 

nu(α): Number of cases satisfying the condition yi > P̂1−α 

nl(α): Number of cases satisfying the condition yi < P̂α 

The last measure of kurtosis, which is based on the quantiles was suggested by Crow and Siddiqui [18] 

and given as follows: 

F−1(1 − α) − F−1(α)

F−1(1 − β) − F−1(β)
     for α, β ϵ (0,1).  

Their suggestion for α and β are 0.025 and 0.25, respectively. For standard normal distribution the value 

of the coefficient was calculated as 2.91 [19] and the centered coefficient was given by 

kr4 =
F−1(0.975)−F−1(0.025)

F−1(0.75)−F−1(0.25)
− 2.91     (23) 

The following estimator is used for kr4. 

kr̂4 =
P̂0.975−P̂0.025

P̂0.75−P̂0.25
− 2.91      (24) 

where P̂α is the αth sample percentile. 
 

4. SIMULATION STUDY 
 

In the simulation study, one sided tolerance limit for PCI is used and Cpu is computed as a comparison 

measure. In Rivera et. al.[27], USLs of the non-normal distributions are determined in such a way that 
fraction of non-conforming parts will give the same fraction of non-conforming parts under normality 

that corresponds to target PCI value. In this study, similar approach is used to compute USL 

corresponding to the target Cpu. As in Hosseinifard et.al. [14], USL is obtained by equation (25). 
 

𝐔𝐒𝐋 = 𝐅−𝟏 (𝚽(𝟑𝐂𝐩𝐮))       (25) 

where F is the cumulative distribution function of the non-normal data and 𝚽 is the cumulative normal 
density function. 
 

Target Cpu values are taken as 0.5, 1.0, and 1.5. Weibull and lognormal distributions are considered and 

Cpu values are estimated in order to compare with the target values. Estimation of Cpu is based on 10000 
samples of size n=100. For comparative purposes, MSEs are computed and presented in Table 1 and 

Table 2 when different skewness and kurtosis estimators are used in the implementation of Clements’ 

method. Table 1 and Table 2 are representing the simulation results for the Weibull distribution and log-
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normal distribution, respectively, with different parameter values. In these tables minimum MSEs are 
given in bold. In order to carry out these simulations a program was written in Matlab. 

 
Table1. MSE of the estimator of Cpu for Weibull distribution with different shape parameters when different pairs of skewness 

and kurtosis estimators are used in the estimation of Cpu by Clements’ method. 

 Cpu  𝒌𝒓̂𝟏 𝒌𝒓̂𝟐 𝒌𝒓̂𝟑 𝒌𝒓̂𝟒 

wbl(scale=1, shape=3) 0.5 𝒔𝒌̂𝟏 0.01367 0.00463 0.00560 0.00848 

sk = 0.1681    kr =  -0.2705   𝒔𝒌̂𝟐 0.01638 0.00481 0.00625 0.00991 

    𝒔𝒌̂𝟑 0.01430 0.00386 0.00499 0.00859 

    𝒔𝒌̂𝟒 0.01364 0.00370 0.00480 0.00829 

  1 𝒔𝒌̂𝟏 0.04777 0.01429 0.01610 0.02839 

    𝒔𝒌̂𝟐 0.05561 0.01377 0.01897 0.03239 

    𝒔𝒌̂𝟑 0.04625 0.01115 0.01398 0.02724 

    𝒔𝒌̂𝟒 0.04526 0.01005 0.01288 0.02658 

  1.5 𝒔𝒌̂𝟏 0.09074 0.03205 0.03336 0.05688 

    𝒔𝒌̂𝟐 0.10032 0.02554 0.03218 0.05849 

    𝒔𝒌̂𝟑 0.08248 0.02121 0.02306 0.04811 

    𝒔𝒌̂𝟒 0.08212 0.01920 0.02133 0.04516 

wbl(scale=1, shape=2) 0.5 𝒔𝒌̂𝟏 0.01257 0.01094 0.01772 0.03313 

sk = 0.6311   kr = 0.2451   𝒔𝒌̂𝟐 0.01565 0.00761 0.00990 0.01463 

    𝒔𝒌̂𝟑 0.01340 0.00587 0.00761 0.01175 

    𝒔𝒌̂𝟒 0.01327 0.00591 0.00771 0.01257 

  1 𝒔𝒌̂𝟏 0.07126 0.17374 0.25984 0.13685 

    𝒔𝒌̂𝟐 0.11450 0.06544 0.08599 0.11582 

    𝒔𝒌̂𝟑 0.09667 0.04915 0.06610 0.09368 

    𝒔𝒌̂𝟒 0.09387 0.05156 0.06968 0.10018 

  1.5 𝒔𝒌̂𝟏 0.22558 0.42159 0.36326 0.58543 

    𝒔𝒌̂𝟐 0.35355 0.21913 0.28607 0.37376 

    𝒔𝒌̂𝟑 0.29608 0.17496 0.22567 0.29965 

    𝒔𝒌̂𝟒 0.30450 0.18332 0.23408 0.32226 

wbl(scale=1, shape=1.5) 0.5 𝒔𝒌̂𝟏 0.01874 * * * 

sk = 1.0720    kr = 1.3904   𝒔𝒌̂𝟐 0.01644 0.01003 0.01222 0.01686 

  

  

  

  

  

  

  

  

  

  

  𝒔𝒌̂𝟑 0.01211 0.00765 0.00910 0.01345 

  𝒔𝒌̂𝟒 0.01174 0.00822 0.00982 0.01485 

1 𝒔𝒌̂𝟏 0.10922 * * * 

  𝒔𝒌̂𝟐 0.13769 0.19074 0.22086 0.25982 

  𝒔𝒌̂𝟑 0.12543 0.14987 0.17429 0.22243 

  𝒔𝒌̂𝟒 0.12849 0.16295 0.18806 0.22984 

1.5 𝒔𝒌̂𝟏 0.55984 * * * 

  𝒔𝒌̂𝟐 0.65436 0.91485 1.02458 1.17467 

  𝒔𝒌̂𝟑 0.56473 0.76900 0.85416 1.01083 

  𝒔𝒌̂𝟒 0.59813 0.82026 0.90437 1.04805 

* : represents very large number 

 

According to Table 1, for small values of skewness and kurtosis, using traditional estimators (𝐬𝐤̂𝟏-𝐤𝐫̂𝟏) 

in the estimation of Cpu results in larger MSE as compared to the use of other estimators of skewness 

and kurtosis. Especially, using 𝐬𝐤̂𝟑 or 𝐬𝐤̂𝟒 in combination with 𝐤𝐫̂𝟐 in the estimation of Cpu by Clements’ 

method might be preferred by the practitioners since their corresponding MSE is considerably less than 

the MSE of 𝐂̂𝐩𝐮 which is obtained by traditional estimators.  

 
Table2. MSE of the estimator of Cpu for lognormal distribution with different shape parameters  when different pairs of 

skewness and kurtosis estimators are used in the estimation of Cpu by Clements’ method. 
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 Cpu  𝒌𝒓̂𝟏 𝒌𝒓̂𝟐 𝒌𝒓̂𝟑 𝒌𝒓̂𝟒 

logn(µ = 0, σ = 0.05) 0.5 𝒔𝒌̂𝟏 0.01147 0.00657 0.00696 0.00922 

sk = 0.1502    kr =  0.0401   𝒔𝒌̂𝟐 0.01008 0.00458 0.00491 0.00761 

    𝒔𝒌̂𝟑 0.00869 0.00400 0.00437 0.00651 

    𝒔𝒌̂𝟒 0.00825 0.00376 0.00412 0.00639 

  1 𝒔𝒌̂𝟏 0.05194 0.02982 0.02930 0.04254 

    𝒔𝒌̂𝟐 0.04835 0.02234 0.02565 0.03728 

    𝒔𝒌̂𝟑 0.04316 0.01758 0.02007 0.03042 

    𝒔𝒌̂𝟒 0.04161 0.01675 0.01959 0.03072 

  1.5 𝒔𝒌̂𝟏 0.15072 0.07758 0.09156 0.11947 

    𝒔𝒌̂𝟐 0.15308 0.07619 0.08393 0.11682 

    𝒔𝒌̂𝟑 0.12955 0.06264 0.06938 0.09911 

    𝒔𝒌̂𝟒 0.12515 0.05946 0.06873 0.09347 

logn(µ = 0, σ = 0.10) 0.5 𝒔𝒌̂𝟏 0.01176 0.00609 0.00711 0.00878 

sk = 0.3018    kr =  0.1623   𝒔𝒌̂𝟐 0.01034 0.00510 0.00582 0.00834 

    𝒔𝒌̂𝟑 0.00949 0.00455 0.00487 0.00705 

    𝒔𝒌̂𝟒 0.00928 0.00441 0.00471 0.00720 

  1 𝒔𝒌̂𝟏 0.05992 0.15722 0.03642 0.16736 

    𝒔𝒌̂𝟐 0.07135 0.04122 0.04437 0.05788 

    𝒔𝒌̂𝟑 0.06320 0.03246 0.03645 0.04850 

    𝒔𝒌̂𝟒 0.06066 0.03203 0.03637 0.04821 

  1.5 𝒔𝒌̂𝟏 0.22658 0.35713 0.14682 0.29173 

    𝒔𝒌̂𝟐 0.28444 0.18628 0.20959 0.24481 

    𝒔𝒌̂𝟑 0.25196 0.16206 0.17658 0.20935 

    𝒔𝒌̂𝟒 0.25053 0.15857 0.17863 0.21191 

logn(µ = 0, σ = 0.40) 0.5 𝒔𝒌̂𝟏 0.02719 * * * 

sk = 1.3219    kr =  3.26   𝒔𝒌̂𝟐 0.01466 0.00984 0.01022 0.01201 

  

  

  

  

  

  

  

  

  

  

  𝒔𝒌̂𝟑 0.02935 0.00847 0.00927 0.01155 

  𝒔𝒌̂𝟒 0.01634 0.00844 0.00949 0.01132 

1 𝒔𝒌̂𝟏 0.17716 * * * 

  𝒔𝒌̂𝟐 0.28336 0.42216 0.41290 0.41566 

  𝒔𝒌̂𝟑 0.27426 0.36440 0.34663 0.35257 

  𝒔𝒌̂𝟒 0.22575 0.38488 0.36941 0.37907 

1.5 𝒔𝒌̂𝟏 2.37022 * * * 

  𝒔𝒌̂𝟐 3.29255 4.60860 4.44679 4.40649 

  𝒔𝒌̂𝟑 2.75485 4.08871 3.97120 3.95354 

  𝒔𝒌̂𝟒 3.98982 4.29578 4.16337 4.09141 

* : represents very large number 
 

As the skewness and kurtosis of the process data increase, using traditional estimators of them results in 

smaller MSE of 𝐂̂𝐩𝐮. Unless Cpu is very small, it is better to use traditional estimators (𝐬𝐤̂𝟏-𝐤𝐫̂𝟏) in the 

estimation of Cpu. 
 

For large values of skewness and kurtosis, the use of 𝐤𝐫̂𝟐, 𝐤𝐫̂𝟑 and 𝐤𝐫̂𝟒 with 𝐬𝐤̂𝟏 gives very large MSE values 

of 𝐂̂𝐩𝐮. Therefore, 𝐬𝐤̂𝟏-𝐤𝐫̂𝟐, 𝐬𝐤̂𝟏-𝐤𝐫̂𝟑 and 𝐬𝐤̂𝟏-𝐤𝐫̂𝟒 pairs should not be preferred in the estimation of Cpu. 

 

When we examine Table 2, for small values of skewness and kurtosis, generally using 𝐬𝐤̂𝟒 and 𝐤𝐫̂𝟐 pair 

in the estimation of Cpu by Clement’s method results in smaller MSE as compared to the use of other 

estimators of skewness and kurtosis. As skewness and kurtosis of the data get larger MSE values become 

very large, especially when 𝐬𝐤̂𝟏-𝐤𝐫̂𝟐 , 𝐬𝐤̂𝟏-𝐤𝐫̂𝟑, and 𝐬𝐤̂𝟏-𝐤𝐫̂𝟒 pairs are used in the estimation of Cpu. 

Therefore, if the data has large skewness and kurtosis, instead of these pairs, traditional estimators of 
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skewness and kurtosis, 𝐬𝐤̂𝟏 and 𝐤𝐫̂𝟏, should be preferred for estimation of Cpu. However, if the skewness 

and kurtosis of the data are not so large one can prefer to use 𝐬𝐤̂𝟒 - 𝐤𝐫̂𝟐 pair in the estimation of Cpu by 

Clement’s method. 
 

5. A REAL LIFE APPLICATION TO OIL PUMP MANUFACTURING 
 

In an engine oil pump, there are several important quality characteristics that have to conform to product 

specifications determined by the design engineers so that the oil pump performs as expected. It is quite 

significant that those quality characteristics are individually monitored to their tolerance limits and 
effects of tolerance stack-up due to those limits, which can simply be expressed as the accumulation of 

dimensional errors, are kept under control. Highly accurate and precise CMMs (Coordinate Measuring 

Machine) are used to measure those quality characteristics knowing that any dimensional non-
conformity may negatively influence product performance or even lead to total product failure causing 

drastic car engine break. Measurement results are then used to perform process capability inspections to 

ensure that the process is under control. A correct evaluation of process capability requires proper 

analysis of the available data, determination of the type of statistical distribution and then computation 
of the process capability indices. Distributions of the most of the quality characteristics in oil pump 

manufacturing process do not fit to normal distribution contrary to expectations. Therefore, standard 

PCI’s may cause misleading interpretations.    
 

This study aims investigation and interpretation of machining process capability for body part pocket 

bottom surface flatness which has considerable effect on product performance. Any undetected non-

conformity of this characteristic has major potential consequences such as insufficient engine cooling 
and thus low engine performance, rapid wear on engine components thus shorter engine life and in the 

worst case, complete engine burn out during end customer use. 
 

In the present application, tolerance limit of the pocket bottom surface flatness was defined as 30 

microns by the technical drawing. Measurements were carried out on one single CMM. Parts were 
located on fixtures using three support surfaces of the body part. After measurement datums were set by 

CMM, 1500 different coordinate measurements were made for each part from pre-defined scattered 

positions representing the whole surface as a point cloud. By the help of those measurements, a virtual 
flat surface was fit by CMM software using Least-Squares Fitting Algorithms based on orthogonal 

distance regression. The orthogonal distance between the upper and lower peak points of the point cloud 

along the normal of the fit flat surface gave the flatness value. 
 

Totally 233 pcs were inspected in this study in order to correctly calculate the capability indices and 
thus make proper interpretation of the whole flatness data. 
 

Initially the histogram and normal probability plot for the flatness data are obtained and given in Figure 1. 
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Figure 1. (a) Histogram of pocket bottom flatness data (b) Normal probability plot of pocket bottom flatness data 
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When the histogram and the normal probability plot are examined one can easily conclude that the 
flatness data is not distributed as Normal (p value < 0.005). Therefore, it is not appropriate to use 

standard PCIs in the capability analysis and the application of Clements’ method with the possible 

different estimators of skewness and kurtosis given in section 3 is presented in this section.    
 

The procedure for calculating PCIs by Clements’ method given in section 2 is conducted for the pocket 

bottom flatness data.  
 

1. Note that the LSL and USL were 0.00 and 0.03 mm, respectively. However, since flatness can 
not take a negative value, this process characteristic can be considered as having just USL = 

0.03 mm. 

 

2. The process mean and the standard deviation are estimated.  

𝑥̅ = 0.014962, s = 0.003414 

 

3. Skewness and kurtosis of the flatness data are estimated by both traditional estimators and by 
the other robust estimators given in section 3. The obtained estimates are given in Table 3. 
 

Table 3. Skewness and kurtosis estimates of pocket bottom flatness data. 

 

𝒔𝒌̂𝟏 0.6832 𝒌𝒓̂𝟏 0.1794 

𝒔𝒌̂𝟐 0.1460 𝒌𝒓̂𝟐 0.0903 

𝒔𝒌̂𝟑 0.2096 𝒌𝒓̂𝟑 -0.1704 

𝒔𝒌̂𝟒 0.1663 𝒌𝒓̂𝟒 -0.1314 

 

4. Standardized values of Lp, Up and M (denoted by Lp
′ , Up

′  and M′) are obtained from the tables 

in [6] and given in Table 4. 

 
Table 4. Standardized values of Lp, Up and M obtained for different estimates of skewness and kurtosis of pocket bottom 

flatness data. 

  𝒌𝒓̂𝟏 = 0.1794 𝒌𝒓̂𝟐 = 0.0903 𝒌𝒓̂𝟑 = -0.1704 𝒌𝒓̂𝟒 = -0.1314 

𝒔𝒌̂𝟏 = 0.6832 

 𝑳𝒑
′  1.7526 1.6858 1.4929 1.5216 

 𝑼𝒑
′  3.5287 3.4408 3.1541 3.1993 

 𝑴′ 0.1689 0.1620 0.1790 0.1831 

𝒔𝒌̂𝟐 =  0.1460 

 𝑳𝒑
′  2.9020 2.8410 2.6383 2.6705 

 𝑼𝒑
′  3.2941 3.2322 3.0307 3.0624 

 𝑴′ 0.0266 0.0257 0.0270 0.0274 

𝒔𝒌̂𝟑 = 0.2096 

 𝑳𝒑
′  2.8016 2.7367 2.5282 2.5609 

 𝑼𝒑
′  3.3575 3.2950 3.0914 3.1235 

 𝑴′ 0.0378 0.0368 0.0395 0.0401 

𝒔𝒌̂𝟒 = 0.1663 

 𝑳𝒑
′  2.8708 2.8085 2.6039 2.6362 

 𝑼𝒑
′  3.3149 3.2529 3.0508 3.0827 

 𝑴′ 0.0301 0.0292 0.0309 0.0314 

 

 

5. 𝐋𝐩, 𝐔𝐩 and M are estimated as described in section 2 and they are given in Table 5. 
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Table 5. Calculated values of Lp, Up and M for pocket bottom flatness data. 

 

  𝒌𝒓̂𝟏 = 0.1794 𝒌𝒓̂𝟐 = 0.0903 𝒌𝒓̂𝟑 = -0.1704 𝒌𝒓̂𝟒 = -0.1314 

𝒔𝒌̂𝟏 = 0.6832 

𝑳𝒑 0.0090 0.0092 0.0099 0.0098 

𝑼𝒑 0.0270 0.0267 0.0257 0.0259 

M 0.0155 0.0155 0.0156 0.0156 

𝒔𝒌̂𝟐 =  0.1460 

𝑳𝒑 0.0051 0.0053 0.0060 0.0058 

𝑼𝒑 0.0262 0.0260 0.0253 0.0254 

M 0.0151 0.0150 0.0151 0.0151 

𝒔𝒌̂𝟑 = 0.2096 

𝑳𝒑 0.0054 0.0056 0.0063 0.0062 

𝑼𝒑 0.0264 0.0262 0.0255 0.0256 

M 0.0151 0.0151 0.0151 0.0151 

𝒔𝒌̂𝟒 = 0.1663 

𝑳𝒑 0.0052 0.0054 0.0061 0.0060 

𝑼𝒑 0.0263 0.0261 0.0254 0.0255 

M 0.0151 0.0151 0.0151 0.0151 

 
6. For the flatness data there is just USL given by the design engineers. Therefore, Cpu values are 

estimated by using equation (4) in order to assess the capability of the process and they are given 

in Table 6. 

 
Table 6. Estimated Cpu values for pocket bottom flatness data. 

 

 𝒌𝒓̂𝟏 = 0.1794 𝒌𝒓̂𝟐 = 0.0903 𝒌𝒓̂𝟑 = -0.1704 𝒌𝒓̂𝟒 = -0.1314 

𝒔𝒌̂𝟏 = 0.6832 1.26 1.29 1.42 1.40 

𝒔𝒌̂𝟐 =  0.1460 1.34 1.37 1.46 1.44 

𝒔𝒌̂𝟑 = 0.2096 1.32 1.34 1.43 1.42 

𝒔𝒌̂𝟒 = 0.1663 1.33 1.36 1.45 1.43 

 

In Table 6, Cpu is estimated by using all possible estimators of skewness and kurtosis given in this study. 
When the histogram and the estimates of skewness and kurtosis of pocket bottom flatness data are 

examined, we see that the skewness of the flatness data is not so large and the kurtosis estimates fluctuate 

around 0. In the previous section, simulation results showed us that if the skewness and kurtosis are not 

so large, instead of using traditional estimators of them it is better to use 𝑠𝑘̂3 - 𝑘𝑟̂2 or 𝑠𝑘̂4 - 𝑘𝑟̂2 pair in 

the estimation of Cpu. Therefore, Cpu values that are estimated by using these pairs are given in bold in 

Table 6. Assessing the process capability with the Cpu values estimated by the use of the traditional 

estimators (𝑠𝑘̂1-𝑘𝑟̂1) may mislead the practitioner about the capability of the process. Cpu for the flatness 

data which is estimated by the traditional estimators of skewness and kurtosis is smaller than the Cpu 

estimated by using 𝑠𝑘̂3 - 𝑘𝑟̂2 or 𝑠𝑘̂4 - 𝑘𝑟̂2 pair, and smaller Cpu is the indication of less capable process. 

In that case a practitioner may take an action although it is not actually needed.  

 

6. CONCLUSION 

 

When probability distribution of a process characteristic is non-normal, PCIs calculated using the 

traditional methods often causes misleading interpretation of process capability. Several methods were 
proposed in the literature in order to analyze the capability of process when the process characteristic is 

non-normal. One of the most widely discussed methods to handle non-normality is Clements’ method. 

In this study, Clements’ method was modified by changing the estimators of skewness and kurtosis used 
in the estimation procedure of PCIs. Instead of using traditional estimators of skewness and kurtosis, 

more robust estimators proposed in the literature were used in the estimation of PCIs by Clements’ 

method. For comparison purposes, simulation study was conducted and results were obtained when a 

process characteristic has Weibull or log-normal distribution. Simulation results showed that if the 
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distribution of the process characteristic is not so much skewed and its kurtosis is not large then instead 

of using the traditional estimators of skewness and kurtosis it is better to use 𝑠𝑘̂3 - 𝑘𝑟̂2 or 𝑠𝑘̂4 - 𝑘𝑟̂2 pair 

in the estimation of Cpu by Clements’ method. A real life example regarding an oil pump manufacturing 

process was provided in section 5, and pocket bottom flatness characteristic in the engine oil pump was 

analyzed by estimating the Cpu index in order to make interpretations about the capability of the process. 
Several Cpu values were estimated by using different estimators of skewness and kurtosis. However, the 

use of Ĉpu which utilizes 𝑠𝑘̂3 - 𝑘𝑟̂2 or 𝑠𝑘̂4 - 𝑘𝑟̂2 pair in the estimation procedure was suggested relying 

on the simulation results presented in section 4.    

 

REFERENCES 

 

[1] Box GEP, Cox DR. An analysis of transformations. J Roy Statist Soc B 1964; 26: 211-243. 

 
[2] Johnson NL, Kotz S. Discrete Distributions. New York, NY, USA: John Wiley, 1969. 

 
[3] Ryan TP. Statistical Methods for Quality Improvement. New York, NY, USA: John Wiley, 1989. 
 

[4] Ryan TP, Schwertman NC. Optimal limits for attributes control charts. J Qual Technol 1997; 29: 

86–96. 

 
[5] Niaki STA, Abbasi B. Skewness reduction approach in multi-attribute process monitoring. Commun 

Stat - Theory Methods 2007; 36:12, 2313-2325. 
 

[6] Clements JA. Process capability indices for non-normal calculations. Qual Prog 1989; 22: 49-55. 

 
[7] Liu PH, Chen FL. Process capability analysis of non-normal process data using the Burr XII 

distribution. Int J Adv Manuf Technol 2006; 27: 975-984. 

 
[8] Wu HH, Swain JJ, Farrington PA, Messimer SH. A weighted variance capability index for general 

non-normal processes. Qual Reliab Engng Int 1999; 15: 397-402. 

 
[9] Choobineh F, Branting D. A simple approximation for semivariance. Eur J Oper Res 1986; 27: 364-

370. 

 
[10] Chang YS, Choi IS, Bai DS. Process capability indices for skewed populations. Qual Reliab Engng 

Int 2002; 18: 383-393. 

 
[11] Tang LC, Than SE. Computing process capability indices for non-normal data: a review and 

comparative study. Qual Reliab Engng Int 1999; 15: 339-353. 

 
[12] Kovarik M, Sarga L. Process capability indices for non-normal data. Wseas Transactions on 

Business and Economics 2014; 11: 419-429. 

 
[13] Sennaroglu B, Senvar O. Performance comparison of  Box-Cox transformation and weighted 

variance methods with Weibull distribution. Journal of Aeronautics and Space Technologies 2015; 

8: 49-55. 

 
[14] Hosseinifard SZ, Abbasi B, Ahmad S, Abdollahian M. A transformation technique to estimate the 

process capability index for non-normal processes. Int J Adv Manuf Technol 2009; 40: 512-517. 

 
[15] Kotz S, Johnson NL. Process capability indices-a review, 1992-2000 (with discussions). J Qual 

Technol 2002; 34: 2-53. 



Aytaçoğlu and Genç / Eskişehir Tech. Univ. J. of Sci. and Technology A – Appl. Sci. and Eng. 20 (4) – 2019 

 

457 

 
[16] Anis MZ. Basic process capability indices: an expository review. Int Stat Rev 2008; 76:3, 347-367. 

 
[17] Wu CW, Pearn WL, Kotz S. An overview of theory and practice on process capability indices for 

quality assurance. Int J Prod Econ 2009; 117: 338–359. 

 
[18] Crow EL, M.M. Siddiqui MM. Robust estimation of location. J Am Stat Assoc 1967, 62: 353–389. 

 
[19] Kim T, White H. On more robust estimation of skewness and kurtosis. Financ Res Lett 2004; 1: 

65–70. 

 
[20] Bowley AL. Elements of Statistics. Scribner’s, New York, 1920. 

 
[21] Hinkley DV. On power transformations to symmetry. Biometrika 1975; 62: 101–111. 

 

[22] Groeneveld RA, Meeden G. Measuring skewness and kurtosis. The Statistician 1984; 33: 391–399. 

 
[23] Kendall MG, Stuart A. The Advanced Theory of Statistics. Griffin, London, 1977. 
 

[24] Moors JJA. A quantile alternative for kurtosis. The Statistician 1988; 37: 25–32. 

 

[25] Hogg RV. More light on the kurtosis and related statistics. J Am Stat Assoc 1972, 67: 422-424. 
 

[26] Hogg RV. Adaptive robust procedures: A partial review and some suggestions for future 

applications and theory. J Am Stat Assoc 1974, 69: 909–923. 

 
[27] Rivera LAR, Hubele NF, Lawrence FP. Cpk index estimation using data transformation. Comput 

Ind Eng 1995, 29: 55:58. 

 

 

 

 

 

 

 

 


